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Introduction
The nervous system is perpetually active, in wak-
ing and sleep, creating its own dynamics as well
as reacting to the world around it. Among the dy-
namics are many periodic rhythms. Some of these
are associated with periodic motor behavior, such
as walking, chewing, and breathing. Others—the
ones I am going to be discussing here—are much
more mysterious. They occur in a wide range of fre-
quencies and are associated with mental process-
ing, including sensory activity and cognitive states
[1]. These dynamical phenomena raise many math-
ematical questions, and I shall be focusing on a role
for mathematics in the attempt to understand the
origin and uses of dynamics in the nervous system.

A previous Gibbs Lecturer, Norbert Wiener, was
also intrigued by “brain waves” and wrote about
it in his famous book Cybernetics (2nd Edition). At
that time, almost forty years ago, the technology
for data acquisition and analysis was primitive; it
was a breakthrough to be able to make measure-
ments amenable to the use of autocorrelations so
as to be able to document the existence of rhythms.
Now there are powerful computers and very so-
phisticated technology for measurements of ac-
tivity of individual neurons and collections of
them. However, the wealth of data acts to under-

score the limitations of data gathering alone: in ad-
dition to the technology for measurements, there
must be a way to understand how the observations
fit together and a guide to which kinds of data are
most important to gather. It is here that mathe-
matics can play a central role in the part of neu-
roscience that has to do with dynamics.

The mammalian nervous system is extraordi-
narily complicated, with interconnected neocortex,
hippocampus, thalamus, cerebellum, and other
structures, each of which has its own special
anatomy and many substructures. The dynamics
have different features in different substructures
and can be highly localized in time and space. Al-
though the ultimate goal is to understand the in-
terconnections and how they organize mental pro-
cessing, the current state of the art generally
focuses on some small subset of the nervous sys-
tem and the connections within that subset.

The Mathware
The framework for thinking about electrical activity
in the brain was introduced in the 1950s by A. L.
Hodgkin and A. F. Huxley and won them a Nobel
Prize. A good mathematical introduction to these
ideas is in [2]. The general theory that they devel-
oped plays a role in neurophysiology similar to the
one that the Navier-Stokes equations play in fluid
mehanics. The equations for each neuron are based
on an analogy with electrical circuit theory. The pri-
mary equation is for conservation of charge across
the membrane of a cell:

(1) C
dv
dt

= −
∑
Iion +D∇2v −

∑
Isynapse + Iappl .
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Here v is the voltage difference across the mem-
brane and Iion denotes an ionic current that passes
across the cellular membrane. Each ionic current
is like an element in parallel in an electric circuit.
Each has its own special “battery”, known as the
electrochemical driving force, v − vR, where vR is
the “reversal potential” for that current. Each cur-
rent also has its own “conductance”, which is the
reciprocal of resistance. This conductance comes
about because ionic channels in the membranes can
open to allow the passage of particular kinds of
ions in particular directions.

It is the dependence of the conductances on the
voltage (and sometimes on other quantities as
well) that adds more equations to the full set of
Hodgkin-Huxley equations and makes them so
mathematically challenging. The mathematical rep-
resentation of the conductance usually involves
terms describing up to two molecular “gates”, each
of which must be open for the current to flow. One
of these gates, known as “activation”, generally
opens more as the voltage increases. The other,
known as “inactivation”, generally closes more as
voltage increases. The full conductance is usually
represented as a product gmjh, where g is the max-
imal conductance; m and h, both functions of time,
are the fraction of the activation and inactivation
gates that are open; and j is a positive integer. (For
the classical sodium channel involved in produc-
ing spikes, j = 3.) Each ionic current is the prod-
uct of the conductance and the driving force, i.e.,

(2) Iion = gmjh (v − vR).

For each gate there is an auxilliary equation for
the kinetics which describes how fast the fraction
of open channels changes as membrane voltage
changes. The equations for the two kinds of gates
have the same form:

(3) dx/dt = (x∞(v)− x)/τx(v),

where x =m or h and x∞(v) =m∞(v) or h∞(v).
The difference between the two kinds of gates is
in the form of the function x∞(v). For most cur-
rents the function m∞(v) is a monotone increas-
ing function that saturates for low and high val-
ues of v, while h∞(v) is monotone decreasing with
v. These functions give the asymptotic values of
the fraction of channels open for a given value of
the voltage if the voltage were to be held forever
at that value. The functions τx(v) give the voltage-
dependent time constants for the gating. The full
Hodgkin-Huxley equations are (1–3). Note that they
are a family of equations with many possible cur-
rents and many possible parameters rather than
a single fixed equation. Depending on the type of
neuron, a mathematical representation may use as
few as three or as many as a dozen currents, dif-
fering in reversal potential, maximal conductance,
and gating kinetics. An extremely important fea-
ture of these equations is that there is a very large

spread of time constants, leading to equations
that have many simultaneous time scales.

The above description focuses on the change in
voltage due to currents across the membrane. The
full equation for dv/dt has extra terms as well. One
of these reflects the fact that a neuron need not
be concentrated near a spatial point, but may have
processes (dendrites and axons) that spread out
in space in a pattern that is characteristic of that
cell. In such a case the voltage need not be the same
throughout the cell, and the equation is a partial
differential equation with diffusion across the
parts of the cell. The other two terms in (1) reflect
influences from the rest of the system to which that
cell is connected. Isyn is the current that flows
into the cell due to interactions with other cells.
Like the intrinsic currents, they can be inward (de-
polarizing, or pushing the voltage toward the
threshold for firing an action potential) or out-
ward (hyperpolarizing, or pushing the voltage away
from the threshold); it is the reversal potential of
the current that determines whether it is inward
or outward. Iapp is a current that can be injected
by a scientist studying the effects of perturba-
tions.
Strategy and the Spherical Cow
Even without the architectural complexity of the
entire brain, the dynamical complexity of even a
piece of a brain is daunting. Here we get immedi-
ately to an issue of strategy: what sets of equations
are appropriate to represent the dynamics? As
mathematicians, we are drawn to the simplest de-
scriptions that might be relevant. In the case of pe-
riodic dynamics, the simplest description is the one
for uniform angular motion, namely,

(4)
dθ
dt

=ω.

A person steeped in the culture of biology is much
more likely to look for a representation that de-
scribes her reality: since there can be thousands
of cells even in a small slice of tissue, and it may
take on the order of fifty “compartments” for each
cell to capture the spatial voltage differences, and
the currents expressed can differ from cell to cell
and between compartments, even when these equa-
tions are written as ordinary rather than partial,
they can form an immensely large system [1].

Both of these approaches have major difficul-
ties. The problem with the first is the analogue of
the well-known “spherical cow”: if the cow is not
giving milk, its representation as a sphere makes
it impossible to address the interesting questions
about why that might be. In our case, (4) does not
capture enough of the interesting detail to allow
us to make relevant distinctions and to answer
questions such as why the same group of cells is
able to be coherent in multiple frequency ranges
and whether the different frequency bands have
different dynamical properties. The representa-
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tion as “realistic” equations leads to a system that
is about as complicated as the original wetware.
Even with today’s massive computers, which allow
such mega systems to be solved numerically, very
few people are able to look at the output and fig-
ure out what is going on.

The case studies discussed in this article pre-
sent an intermediate strategy, one that focuses on
the structure of the equations. Once some behav-
ior has been identified in both the experiments and
the large-scale simulations, the mathematics serves
to clarify the behavior and identify the key dy-
namical features underlying that behavior. There
are three case studies, two of which are short. To-
gether they give some feel for the variety of ques-
tions and methods in this area of research. More
details about the mathematical issues in these
case studies can be found in chapters by N. Kopell
and G. B. Ermentrout, and by J. Rubin and D. Ter-
man in [3]. These chapters also contain many fur-
ther references.

Synchrony and Cognition
The rhythms discussed in this section are usually
referred to as gamma (30–80 Hz) and beta (12–30
Hz). These rhythms are mysterious and contro-
versial, partly because they are technically difficult
to induce and to spot; they can appear for epochs
under a second and require appropriate data fil-
tering to see. The stakes in the controversy are high,
since some investigators have been marshaling
evidence that these rhythms are associated with
key cognitive states (attention, perception) as well
as with memory. There is also tantalizing new ev-
idence that pathologies in these rhythms are as-
sociated with thought disorders such as schizo-
phrenia.

It remains an open question how the brain
makes use of these rhythms. The most general, and
controversial, idea is that synchrony facilitates co-
ordination between distant parts of the nervous
system that need to work together to create a
movement or a percept [4]. Though rhythms are
not needed to produce synchrony, there are data
from P. König and collaborators (1995) that sug-
gest that synchrony across a distance of more
than a few millimeters does not happen in the ab-
sence of rhythms. An important concrete conse-
quence of synchronous rhythms is plasticity: cells
that fire within some window of time of one an-
other are known to be able to increase the strength
of the synaptic connections between them. This
gives a way to encode the effects of past firing ex-
perience in future behavior. Synchronous activity
also affects the gating of incoming signals and the
strength of the downstream effects.

Though no one is yet sure of the uses of syn-
chronous rhythms in the nervous system, there are
many clues suggesting that a further study can pro-
vide insights about function. The clues come from

the reproducible nature of the circumstances that
evoke the rhythms, the spatial locations in which
they are found, and the synchronization proper-
ties of the different rhythms. For example, the
1989 work by W. Singer and colleagues that led to
a huge burst of scientific activity showed that ex-
posing cats to moving bars of light can lead to
gamma rhythms in the visual cortex. These
rhythms synchronize over a few millimeters of
tissue, and the synchronization properties have
been reported to be related to the global geomet-
ric properties of the stimulus, e.g., whether the
stimulus is one bar or two and whether the two bars
are moved in the same direction. There is another
scientific literature, reviewed in [5], dealing with
sensory-motor tasks; here the investigators have
mainly found rhythms in the lower-frequency beta
range. The rhythms appear in the parts of the cor-
tex expected to be participating in those sensory-
motor tasks. The appearance of the rhythms is task
dependent: e.g., P. R. Roelfsema and colleagues
showed (1997) that at the end of a task, when the
animal is rewarded, there was a shift from the
beta rhythm to the still lower-frequency alpha
rhythm (8–12 Hz).

The synchronization properties of the rhythms
appear to be related to the frequency band. For ex-
ample, in the work of Roelfsema and colleagues,
one sees that both gamma and beta rhythms dis-
play very precise (within a millisecond or two) syn-
chronization across distances of at least a few mil-
limeters. The alpha rhythm, however, has some
coherence but very sloppy synchronization, with
changeable phase lags between pairs of sites.

These data raise a number of questions: what
determines frequency? That is, why does the same
collection of cells sometimes display a 50 Hz
rhythm and sometimes an 18 Hz rhythm? Even
more fundamental, what causes activity in some
subsets of the brain to be, at least temporarily, co-
herent? Note that the rhythms we are considering
here involve self-organization, not the result of out-
side coordination as by an orchestra conductor,
making coherence a puzzle. Are the rhythms as-
sociated with distinct frequencies different in struc-
tural ways, not just in their time scale? Can the
structure of rhythms tell us anything about how
synchronization is accomplished across signifi-
cant distances?

The above questions are very far from straight-
forward because of the complexity of the under-
lying equations and the large number of interact-
ing dynamic processes with a large range of time
scales. It is not only the properties of the individ-
ual cells that can affect the outcome but also the
dynamics of the synapses that connect the cells.
Thus the objective of the mathematics is to tease
out how the biophysics of the cells and synapses
work together to create coherent synchronous
rhythms. An overview of related experimental
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results and large-scale numerical modeling can be
found in [1].
Slicing the Problem: Clues from the
Hippocampus
To be able to think carefully about the origin of
rhythms, it is helpful to slice away at the biologi-
cal and mathematical complexity. For the biolog-
ical complexity this is done quite literally by prepar-
ing slices of living tissue, usually from a rat; this
allows an experimenter to deal with intrinsic dy-
namics without the confounding input from the
rest of the brain. In the context of rhythms, one
of the most studied slice preparations is from the
hippocampus, believed to be important for the
formation of memories.

A slice is still a complicated piece of wetware;
it has many substructures and different kinds of
cells. For the purpose of this case study, I am fo-
cusing on one substructure (the CA1 region) and
lumping together the different kinds of cells into
“excitatory” (E-cells) and “inhibitory” (I-cells). In gen-
eral, excitatory cells use a transmitter whose down-
stream effect is to push cells toward threshold; i.e.,
make it easier for them to fire. Inhibitory cells use
transmitters that have the opposite effect.The sig-
nals from these transmitters create currents that
are mathematically similar to those in (2), but with
the gates dependent on the voltage of the “presy-
naptic” cell, or cell giving input to the cell in ques-
tion. Whether the presynaptic cell is inhibitory or
excitatory is encoded in the mathematics by the
value of the reversal potential of the driving force
associated with the synaptic current in the post-
synaptic cell.

In 1995 M. A. Whittington and collaborators
showed that it is possible to induce a rat hip-
pocampal slice to display a gamma rhythm. The
most surprising thing about this work was that the
rhythms were obtained when the signals from the
excitatory cells were entirely blocked, leaving a
network containing only inhibitory cells. This led
to a pair of related mysteries: how can inhibition
alone lead to synchronization, and why does the
rhythm appear in the gamma frequency range?
The latter question is especially puzzling, because
the inhibitory neurons participating in the rhythm
are individually capable of firing at any frequency
between 0 and 200+ Hz.
Inhibition-Based Rhythms
An essential clue about the frequency came from
pharmacology: it was found that substances ap-
plied to the slice that changed the frequency sig-
nificantly were ones (e.g., barbiturates) known to
change the time course of the decay of the inhibi-
tion. It is important to mention here that signals
that come from synapses are not point events;
they have time courses that turn out to be very im-
portant in the behavior of the system.

These and related data led various groups to
look at networks of inhibitory neurons to try to un-

derstand both coherence and frequency. Some of
the authors are C. van Vreeswick, L. Abbott, and
G. B. Ermentrout; W. Gerstner, L. van Hemmen,
and J. Cowan. Several different mathematical tech-
niques were used; these are described in the chap-
ter by Ermentrout and Kopell in [3]. The ideas can
be most easily illustrated by the “spike response
method” originated by Gerstner. The cells involved
are relatively simple, almost linear between spikes.
Thus they are reasonable candidates to be de-
scribed by one of the simplest reductions of the
Hodgkin-Huxley equations, the so-called “integrate
and fire” model. These equations, which combine
the gating variables with the voltage, have the
form

(5) C
dv
dt

= I − gm(v − vR)− Isyn;

the voltage is reset to some specified point when
it reaches a specified threshold. The spike-re-
sponse method works with an integrated version
of this or a somewhat more general equation, using
kernels to keep track of effects of spikes from a
given cell and from the other cells in the network
on the voltage of that cell.

From this work and related work it could be seen
that spiking cells can form coherent rhythms with
signals that are only inhibitory. The mathematics
showed that, if the time course of the onset and
offset of the inhibitory signal is long enough, in-
hibition alone can stabilize a synchronous solution.
However, this made the mystery of gamma even
deeper, since the range of frequencies for which
stable synchrony is possible is much broader than
the gamma range, even for a fixed, physiologically
reasonable inhibitory signal.

The central clue turned out to be a major dif-
ference between networks of identical cells and net-
works in which the cells are heterogeneous, e.g.,
in drive, modeled by the parameter I in (5). X.-J.
Wang and G. Buzsaki gave simulations to show that
the coherence is fragile if there is even mild het-
erogeneity in the network. J. White, C. Chow, J. Ritt,
and I analyzed the breakdown and found that it
occurs in different ways in different parameter
regimes. Furthermore, those parameter regimes
are closely related to control of frequency: in dif-
ferent parts of parameter space, the frequency of
the coupled network can be primarily governed by
different parameters, including the decay rate of
the inhibition, the membrane time constant, or
the drive to the cell. The conclusion of the analy-
sis was that coherence is most robust to disrup-
tion from heterogeneity when the system is in a
parameter regime in which the period of the net-
work is proportional to the time constant for the
decay of the inhibition. Since a real slice network
that exhibits this interneuron gamma rhythm is
very likely to have some heterogeneity, this strongly
suggests that one should expect the period to be
proportional to the inhibition decay time. This
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was verified using data from the lab of J. G. R. Jef-
ferys. So the mathematics was able to reveal where
the frequency of the gamma rhythm comes from
and that it takes some heterogeneity to see it.
Transition between Two Rhythms
The same piece of tissue may be capable of mul-
tiple rhythms, with transitions between them, and
the hippocampal slice provides a striking example,
as shown by the 1997 work of Whittington and col-
laborators. If the slice is stimulated, provoking ac-
tivity in both excitatory and inhibitory cells, it dis-
plays a transient gamma rhythm. The more
surprising observation is that, at a higher level of
stimulation, the rhythm starts off at gamma, un-
dergoes a period of 150–200 ms (milliseconds) of
incoherence, and then switches to a slower beta fre-
quency rhythm. Such transitions have been seen
using EEGs (electroencephalograms) to measure
neural activity in humans and have been recently
shown by the group of J. Gruzelier to correlate with
the presentation of novel auditory stimuli.

In the slice, where it is possible to make detailed
measurements from single cells, it can be seen
that the beta rhythm is not just a slower version
of the gamma rhythm. Indeed, it is a nested rhythm,
with the inhibitory cells continuing to fire at a
gamma frequency and the excitatory cells missing
cycles. Furthermore, on the whole, they miss the
same cycles, so that population averages reveal the
slower rhythm.

The most significant thing about the transition
of rhythms in the slice is that it has semiperma-
nent traces. After stimulations of intensity high
enough to produce the gamma to beta switch, later

stimulation that would only have induced the
gamma rhythm now is capable of inducing the en-
tire gamma-to-beta sequence. Thus, beta gives a
way to read back at a later time that some experi-
ence has happened.

The experimental manipulations yielded some
evidence of what physiological changes are in-
volved in this transition. One of these concerns is
which ionic currents are expressed during each
rhythm. Mathematically, this means which terms
should be included in Iion in (1). Some currents in
the excitatory cells that are suppressed by the
consequences of the stimulation return and par-
ticipate during the beta phase. These currents are
outward currents that pull the voltage away from
the firing threshold and hence tend to slow down
those cells. The more surprising and more per-
manent change is the growth of new functional con-
nections among the cells. These connections are
between pairs of excitatory cells and are fostered
by the synchrony between those cells during the
gamma phase. A much-used phrase, attributed to
work of D. O. Hebb, is that “cells that fire together
wire together.”

One mathematical question is whether the above
changes in ionic currents and synaptic connec-
tions are sufficient to produce the transition be-
tween the rhythms. This was recently addressed
by R. D. Traub, Whittington, Ermentrout, and me.
Understanding this required having a working de-
finition of beta; indeed, one critical role of math-
ematics in science is the creation of idealizations
that allows one to conceptualize what is in fact
much more messy. In the case of beta, the work-
ing definition is that the I-cells synchronize at a
gamma rhythm controlled essentially by the inhi-
bition, while the E-cells synchronize at a subhar-
monic.

The simplest network that embodies this idea
and allows one to address how synchrony comes
about has two E- and two I-cells (Figure 1). It is easy
to see that if the E-cells are unable to fire quickly
enough to keep up with the I-cells, each will skip
cycles; what is not clear is why the E-cells skip the
same cycles and synchronize with one another. The
added recurrent excitation (new connections be-
tween E-cells) are critical for this, but not in a
straightforward way: as Gerstner, van Vreeswijk,
and their collaborators have shown, connections
between excitatory cells can actively foster anti-
synchrony or asynchrony between those cells. In
this case, the extra excitation comes in a context
in which the E-cells have the slow currents de-
scribed above and the network has inhibition;
these factors turn out to change the synchroniz-
ing properties of connections between the E-cells.
Long Distance Coordination and Feedback Loops
A central question associated with both beta and
gamma rhythms is how synchronization is possi-
ble between sites with a conduction delay between

Figure 1. A simple circuit suitable for
investigating synchronization of E- and I-cells.

For the gamma rhythm, each I-cell receives
input from both E-cells and the other I-cell. The

E-cells get input from the I-cells, but not from
the other E-cell (circuit without the dashed

line); during the time that the beta rhythm is
displayed, there are extra connections between

the E-cells (dashed lines).
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them that is a significant fraction (e.g., 20%–40%)
of the period of the cycle. The long-distance co-
ordination can be mimicked in the hippocampal
slice by stimulating at two different sites in the
slice, separated by a distance yielding a conduc-
tion delay of 6–8 ms. In simulations and experi-
ments on stimulation-induced gamma rhythms in
the hippocampal slice, Traub and collaborators
(1996) noted that there was a strikingly regular
structure in the order of the spikes when the two
sites synchronized: the I-cells almost always dis-
played “doublets”, i.e., a pair of spikes in each
cycle; any parameter range in the simulations in
which those doublets were absent led to nonsyn-
chronous dynamics. The mathematical questions
addressed by Ermentrout and me were how the syn-
chronization comes about and what the role of the
doublets is in this. There had been earlier (1991)
simulations by König and T. B. Schillen showing
that synchronization can take place in the presence
of conduction delays. However, the models in those
simulations used “activity” (essentially firing rate)
as a variable instead of voltage; this kind of de-
scription is valid when one can average many
spikes over a relevant period of time. In the cur-
rent case, with the E-cells firing at most one spike
per cycle, a rate model is not an appropriate de-
scription, and a different mathematical represen-
tation is needed. As discussed below, it is possi-
ble to develop low-dimensional maps (i.e., maps
with a low-dimensional domain) that capture the
essential parts of the physiology and screen out
the rest.

A minimal network for analyzing long-distance
connections lumps together all the cells at each site
that fire synchronously. Such a network has one
E- and one I-cell per site, a total of four cells. Each
E-I pair oscillates: a spike from the E-cell induces
a spike in the I cell, which inhibits the E-cell. The
latter fires again when the inhibition wears off
and, in the gamma rhythm, the I-cell waits for this
excitation to spike again. The essential long-dis-
tance connections are the ones from the E- to I-cells.
(Figure 2).

Analyzing networks of spiking cells: treating high-
dimensional systems as a collection of low-dimen-
sional maps. The simple four-cell network can be
written as Hodgkin-Huxley equations, with extra
equations for the synaptic currents. To include
the minimal number of currents to get action po-
tentials, plus the slow outward current in the E-
cells, plus the equations for the synaptic gating vari-
ables requires a system of at least twenty highly
nonlinear differential equations. Since it is almost
impossible to analyze systems of that size, it is very
helpful to find an analytical technique that captures
the essence of the high-dimensional model in a
faithful enough way that one can ask about effects
of biophysical parameters. This cannot be done by
reducing the number of cells or equations, since

the network and resulting equations already con-
stitute a “minimal” model. The central idea for an-
alyzing stability of a periodic network behavior is
to construct a low-dimensional approximation to
the Poincaré map, valid only in a neighborhood of
a particular periodic trajectory.

The construction starts with a fixed order of the
cells firing in the periodic trajectory, allowing some
cells to be simultaneous. The neighborhood of al-
lowable initial conditions and allowable parame-
ter ranges is constrained so that the firing order
is not changed. In principle the Poincaré map
around a periodic trajectory has dimension only
one less than that of the system. However, the
spread of time scales now enters as a simplifying
factor. In the relevant neighborhood of parameters
and intitial conditions, most of the degrees of free-
dom of the system do not affect the timing of the
spikes in a significant way—in general, they involve
processes fast enough to relax away before another
slower process determines a spike time. The con-
struction of the map requires identifying the rel-
evant degrees of freedom and ignoring the others.
This will be illustrated below. So far it has not
been proved that this method gives correct ap-
proximations, though predictions of the method
have been tested successfully on the minimal bio-
physical networks and on ones that are large and
biologically realistic. The conjecture is that the
method works because it corresponds to identifi-
cation of a center manifold in the dynamics, one
containing the periodic trajectory in question.

Synchronization of gamma and beta: different feed-
back loops. Using the above minimal model (Fig-
ure 2), we look in the parameter range in which the
first spike in the doublet of each I-cell is induced
by excitation from the local E-cell; the second is a
consequence of the distant excitation. With more
excitable I-cells or stronger synapses, a single pulse
of excitation can produce the doublet; however,
such a doublet does not help with synchronization
for reasons to be seen below.

Figure 2. A simple circuit for investigating
synchronization across distances. Each pair of
E-I cells is an oscillator, with long connection
from each E-cell to the distant I-cell, with
signals arriving after a conduction delay.
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It turns out that, with these assumptions, there
is only one important degree of freedom in the sys-
tem: the time between the two E-cells on a given
cycle. Nevertheless, it requires insight into the full
network of Figure 2 to see where in the dynamics
the synchronization signal is. The key feature turns
out to be a property of many kinds of neurons, in-
cluding the fast-firing I-cells of this network.
Hodgkin-Huxley models of these cells have a prop-
erty related to what is sometimes known as “rela-
tive refractory period”. If the cell receives excita-
tion shortly after it has fired, it may wait to fire
again, with the delay to firing decreasing with the
time between the first firing and the new excita-
tion. In the doublets configuration the first spike
in a cycle of the I-cell results from local excitation,
and the second from the distant one. Thus the
delay in the time to fire the second spike encodes
information about the relative phases of the two
E-cells, and the decreasing nature of that function
turns out to synchronize the E-cells. The delay
function, which depends on other inputs to the I-
cells as well as on the intrinsic properties of those
cells, can be computed numerically from the net-
work. This gives a way to understand conceptually
how changes in physiological parameters change
the synchronization properties of the network by
understanding how they affect the critical syn-
chronization signal. More mathematical details
and generalizations are in [6].

The minimal network described above is rigged,
both in the architecture and parameter range, so
that the doublet configuration is a solution; the
mathematics then addresses the issue of stability.
However, in a large, distributed network the I-cells
can get excitation from many cells at many times,
and even the existence of a solution with the dou-
blet configuration is at issue. J. Karbowski and I
recently addressed this question in the context of
a large lattice of oscillators, with signals arriving
at each I-cell from many neighbors at many times.
Use of methods like those in statistical physics
showed that the doublet configuration is a stable
one for a significant parameter range. Further-
more, though there is a parameter range in which

other solutions (e.g., one with a triplet configura-
tion) are stable, the doublet configuration is sta-
ble over a larger parameter regime. The work sug-
gested that the messiness of a real network might
actually be helpful to synchronization: in the model
distributed network some disorder in the arrival
times of the signals increased the parameter range
over which synchrony is stable.

When the local rhythms at the two sites are
beat-skipping beta rhythms as described above,
there are more dynamical processes that can be
called into play to create the synchronization. For
the gamma rhythm the essential synchronizing
signal comes from the timing between the spikes
of the doublets. For the beta rhythm the extra time
scale associated to the slow outward current cre-
ates new nonlinear interactions with the potential
to help the synchronization.

In recent work the contrast between the syn-
chronization properties of gamma and beta was in-
vestigated by Ermentrout and me. Since the E-cells
all synchronize in the idealized version of the beta
rhythm as well as the gamma rhythm, the same
anatomical network as above (Figure 2) can be
used to analyze the long-distance synchroniza-
tion. Once again the relevant approximation to the
Poincaré map is one-dimensional, but the map
changes, with the timing information coming from
the distant cell interacting nonlinearly with timing
information carried by the slow outward current.
The result is that the beta rhythm can tolerate sig-
nificantly longer conduction delays than can
gamma and still synchronize robustly. This con-
clusion was tested by Traub in very large-scale
models (as in [1]) and was shown to hold. Current
work by S. R. Jones and collaborators is showing
that other rhythms with still lower frequency need
not be able to synchronize over distances, under-
scoring the need to look at how detailed biophys-
ical structure—specifically which ionic currents
are involved, what kinetics they have—translates
into mathematical structure in the associated maps.

Within this framework Ermentrout and I also
looked at the role of the long-range connections
between the E-cells in the synchronizing process
(Figure 3) for the beta rhythm. The analysis and
simulations of the biophysically based networks
show that these connections are not needed to
create stable synchrony and indeed do not much
change the dynamical behavior in a neighborhood
of that trajectory. However, without those con-
nections there are other stable solutions, and a crit-
ical role for the long E-E connections in the beta
regime is to make other competing solutions un-
stable or nonexistent.

These results have implications for differential
uses of the gamma and beta rhythms in the ner-
vous system. They are consistent with data from
electrophysiology on animals and human EEG
recordings, suggesting that coherence in the

Figure 3. The same circuit as in Figure 2, with
added long connections between the E-cells.
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gamma range is used in the nervous system for rel-
atively local processing (e.g., within the primary vi-
sual cortex), while the beta range is used for co-
ordination among sites that have a longer
conduction delay between them. Relevant data in-
clude work of A. von Stein and collaborators and
Gruzelier and collaborators. The analysis shows
why the ionic currents and network connectivity
associated with the beta rhythm have the nonlin-
ear properties appropriate to this behavior and why
other rhythms can lack those properties.

Sleep Rhythms
We now focus on other parts of the nervous sys-
tem to discuss rhythms that are associated with
different stages of sleep. The thalamus is deep in
the brain and has traditionally been considered the
gateway between the sensory organs and the neo-
cortex. Unlike the earlier descriptions of the thal-
amus as a relay station during wakefulness and a
wall during sleep, it has been discovered that the
thalamus is the origin of many complex dynami-
cal behaviors that are state dependent.

From a mathematical point of view, the study
of thalamic rhythms creates new issues, because,
at least during sleep rhythms, many of the cells un-
dergo “bursting”. That is, they have a succession
of spikes followed by a quiet period. In bursting
cells there are more nonlinearities associated with
the ionic currents, and the mathematical tech-
niques that work for spiking cells are not in gen-
eral usable. The major cellular players in the sleep
rhythms are thalamocortical cells (TC) that are ex-
citatory and reticular cells (RE) that are inhibitory;
both are bursting neurons.

Two of the main rhythms in sleep are known as
“spindling” and “delta”. Spindling occurs in early
and light sleep and has a population rhythm of
8–14 Hz. J. Rinzel and A. Destexhe have written ex-
tensively about models of this rhythm. Delta oc-
curs in deep sleep. It is more regular and has a pop-
ulation rhythm of 1–4 Hz. These rhythms have
very different dynamical stuctures, and the focus
of this case study is the insights that mathemat-
ics provides in understanding the origins of those
structures and the transitions between them.

If we temporarily bracket the physiology and
just think about structure, there is a useful way to
characterize the main differences between these
two rhythms. The delta rhythm corresponds to
synchrony of the TC cells, while spindling corre-
sponds to “clustering” of the TC cells. In the lat-
ter the population of TC cells breaks down into sub-
sets called clusters. Within a cluster the cells
synchronize while the different clusters fire at dif-
ferent phases. In the clustered state the frequency
of the population rhythm is several times that of
any given cell; it is the frequency of a cell times
the number of clusters. In the delta rhythm the TC
cells fire on each cycle in a synchronous manner.

In spindling each TC cell fires once per several pop-
ulation cycles, and the population rhythm is higher.
Unlike the beta rhythm described above, in the
spindling rhythm the excitatory cells miss differ-
ent cycles, not the same cycle.

The network that produces these two rhythms
is anatomically the same. The mathematical ques-
tion is what kind of change gives rise to a transi-
tion between these rhythms or, equivalently, a
transition between clustering and synchrony. As
in the other case studies in this lecture, the phys-
iology gives clues to the mathematics. In this case
the clue is in what is happening to the inhibition
on a cycle-by-cycle basis. For spindling it was
shown by M. Steriade and his collaborators that the
RE cells fire on each cycle. In the delta rhythm the
RE cells fire only at the beginning of an episode of
this rhythm and then are silent until another
episode is induced by excitation from the cortex.

We know from the work in spiking cells that in-
hibition can be important to synchronization. But
it can also be the enemy of synchronization. In the
context of bursting cells, one can understand the
complexities of inhibition in geometrical ways, es-
pecially by methods associated with singularly
perturbed systems. Such methods have been de-
veloped by many people over the last decade. A re-
cent review is the chapter by Rubin and Terman
in [1]. Here I discuss a simple version of some of
these ideas to give the flavor of these techniques.

When dealing with bursting neurons, one com-
monly used simplification is to airbrush out the in-
dividual spikes and to work with the envelope of
the voltages of the burst. In such an envelope the
voltage trace has some slowly changing periods,
interspersed with rapid transitions (Figure 4). The
geometrical methods used to study these systems
exploit the difference in the time scales.

One simple idea that is useful even in large,
complicated networks can be seen most easily in
two dimensions. It deals with the effects of long-
lasting inhibition. In singularly perturbed systems,
parts of the trajectory hug the nullsurface (null-
cline in two dimensions) of the fast variable. A con-
stant source of inhibition changes the effective
phase space by moving the voltage nullclines,
which moves the trajectory to a different rest point

Figure 4. Schematic drawing of a bursting neuron with a set of
spikes. If the spikes are removed, the resulting envelope has
the shape of a relaxation oscillator.
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(Figure 5). When the inhibition is released, the tra-
jectory makes a long excursion corresponding to
a burst before returning to rest. This is known as
“post-inhibitory rebound”. Now consider many
cells, all receiving the same inhibition. They are
each pushed to a neighborhood of the same point
and, on release, follow nearby trajectories. Esti-
mates, either in phase space or using time-based
metrics, show that the trajectories are pulled closer
together. Thus, simultaneous release from inhibi-
tion can be a synchronizing mechanism.

In some parameter regimes, inhibition need not
be synchronizing and can lead to the formation of
clusters (Figure 6). Whether there will be syn-
chronization or some other network behavior is a

subtle issue depending on interactions of time
scales. Geometric methods give a powerful frame-
work for understanding and predicting emergent
network behavior, as Terman and Rubin have
shown in recent work. These methods help to ex-
plain, for example, why fast onset of inhibition
works actively to prevent synchrony.

We now use the mathematics to go back to the
rhythms in the thalamocortical network. In that
neuronal network there are two kinds of inhibition,
known as GABAA and GABAB. The first has a fast
onset and a short-lived effect; the second has a
much longer time to onset and a longer decay
time. Insights from the mathematics suggests that
a key feature in the transition from spindling to
delta rhythms, i.e., clustering to synchrony, is the
removal of the fast-onset inhibition, which prevents
the synchrony of the TC cells. Indeed, data show
that the cells providing the fast inhibition do not
participate in the synchronous delta after the ini-
tial burst in some episode, while they do take part,
cycle by cycle, in the spindling rhythm. How those
cells might get functionally removed from the net-
work is discussed in [7]. The role of the mathe-
matics is to indicate what kinds of changes in the
network are sufficient to produce the transition.
This kind of “functional reorganization”, in which
networks switch to very different behavior, ap-
pears to be widespread in neural dynamics and
could be important in pathology. For example, a
model by Destexhe with a similar flavor describes
the transition from normal thalamic dynamics to
certain kinds of seizure activity.

Dynamics in a Spatially Extended Neuron
The rhythms associated with cognition and sleep
are by no means all the rhythms in the nervous sys-
tem. The last example comes from a different part
of the nervous system and illustrates very differ-
ent mathematical ideas. The neurons involved in
this example, from the subcortical structure called
the substantia nigra, provide the neurotransmit-
ter dopamine to other parts of the brain; degen-
eration of these cells leads to Parkinson’s disease.

Unlike many cells in the brain, these cells never
appear to be in relay mode, faithfully reporting on
their inputs. Instead, they have a set of predeter-
mined patterns in their dynamics. The switches
among these patterns are mysterious, but so is the
formation of the patterns themselves. For exam-
ple, a pattern of bursting associated with reward
signals has not been replicated by injecting any pat-
tern of electrical signals into the cell body of the
neuron in a slice. Some current thinking about the
origin of the dynamical patterns focuses on the
dendrites, the part of the neuron where most of
the inputs arrive. So far in this article I have been
talking about cells as if the spatial structure does
not matter; in this case the spatial structure may
be a critical part of the dynamics.

Figure 6. A schematic diagram showing synchrony and
clustering in a network of 4 cells. In A the cells are

synchronous; i.e., they fire at the same time. In B there are two
clusters of 2 cells each, synchronous within a cluster but not

between them. The population frequency of B is twice that of A.

Figure 5. Post-inhibitory rebound. Inhibition
lowers the nullcline of the voltage variable. If

the inhibition is held long enough, the system
goes toward the new stable rest point P. When
the inhibition is released, the trajectory from

the initial condition P moves around the
original nullcline before returning to the old

rest point.
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C. J. Wilson and J. C. Callaway have done ex-
periments using a combination of electrophysiol-
ogy and imaging of calcium concentrations to help
illuminate the origin of the cellular dynamics. They
found that pharmacologically isolated cells in a
slice can oscillate at 1–2 Hz. Furthermore, there is
evidence that there are differences between the cell
body and the dendrites in the rates at which cal-
cium goes into and out of the cell. This has led them
to a model in which the parts of the cell are treated
as separate oscillators, with a gradient in natural
(uncoupled) frequency along the dendrite. If we
think of the dendrite as broken up into spatial
compartments, then a rough mathematical de-
scription of a single cell is that of a chain of os-
cillators with a gradient in frequency. The cou-
pling is electrical rather than via chemical synapses;
mathematically, this is written as a discretization
of a Laplacian.

Simulations of this model were able to repro-
duce various experimentally produced dynamical
behaviors, including the observation that the fre-
quency slows down over time. The latter phe-
nomenon occurs in many neural systems but is usu-
ally associated with special ionic currents such as
the slow outward current discussed in connection
with the beta rhythm. In this model the descrip-
tion of the local oscillators has no feature that
could account for the slowdown. The mathemati-
cal issue here is to understand the origin of the
slowdown, which is believed by some to be related
to the origin of the bursting in vivo.

The simple, biophysically based model belongs
to a class of equations of the form

dvi
dt

= fi(vi,wi) + d(vi+1 − 2vi + v̄i+1)

dwi
dt

= εgi(vi,wi).

Here the uncoupled equations for the ith com-
partment describe a relaxation oscillator, with the
fast variable vi denoting the voltage of that com-
partment and wi the concentration of calcium in
the ith compartment. The uncoupled oscillators
have a gradient in frequency along the chain, and
d is much greater than 1.

To get a sense of how the spatial structure of
the network affects the transient frequency be-
havior, G. Medvedev and I recently considered a
simple version of equations of this type, namely,
the van der Pol equations in Lienard form. He and
I discovered that the equations had some unex-
pected mathematical properties. The coupling be-
tween the compartments is very strong, so that the
voltages are essentially the same throughout the
chain. Nevertheless, because the different com-
partments in the chain have calcium dynamics
with different rates, the wi are not the same in the
different compartments. The most unexpected
outcome was the observation that, for very large

electrical coupling (d > 1), the system has an in-
variant manifold on which it behaves like a per-
turbed conservative system; in the d →∞ limit, the
system has a family of periodic solutions, and for
d <∞ there is a drift along the invariant manifold
toward a final state (Figure 7), accompanied by a
slowly changing frequency, as in the experimen-
tal data. Thus the mathematics shows how the
strong electrical coupling translates into a Lya-
punov function defined on an invariant manifold
and how this spatial interaction between the com-
partments produces the observed frequency mod-
ulation. The mathematics also makes the unintu-
itive prediction that the stronger the coupling, the
slower the drift toward the final state.

What Next?
There are several kinds of challenges I see in try-
ing to understand neural dynamics and their
functional importance. The first is to build a vo-
cabulary of examples, in the spirit of the ones I
discussed, to try to understand in a clear and con-
ceptual way the mechanisms for producing in-
trinsic dynamics in parts of the nervous system.
This is best done in the context of specific ex-
amples, especially since the biology gives gener-
ous hints about mathematical structure. The bi-
ological structure (time scales of synapses and
intrinsic currents, spatial effects, slow modula-
tors, etc.) creates mathematical structure (in-
variant manifolds, Lyapunov functions, singu-
larly perturbed systems, etc.), which can, in turn,
illuminate the biology.

The second challenge is to take the ideas un-
derstood in idealized situations and explore

Figure 7. A trajectory for equations describing two
compartments coupled strongly with electrical coupling. The
plot shows v and w for one of the compartments. Notice that
after the initial part of the trajectory, the phase plane portrait
displays the trajectory moving slowly along a 1-parameter
family of periodic orbits.
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whether they work in larger and more realistic but
messier circumstances. This may involve statisti-
cal and probabilistic notions, a kind of statistical
mechanics for neurons. I believe it will be critical
for such a theory to respect the structure of the
smaller idealized building blocks, not simply mimic
the concepts developed for statistical physics. An
example in which a simple and rigorous analysis
was “scaled up” in this way was given above in the
case study on synchronization of the gamma
rhythm across distances.

Finally, in a working brain that is listening to a
lecture, taking notes, daydreaming, or thinking
about the next theorem to be proved, parts of the
brain are not isolated from one another and the
outside world. A very large challenge is to make
use of knowledge about dynamics of parts of the
nervous system to understand what role dynam-
ics plays in filtering and processing the inputs
from other parts of the brain and the outside
world, including inputs that are not periodic. In all
of these questions, by exploring the origin and
functional implications of dynamics, mathematics
can play a significant role in helping us to under-
stand how the brain organizes itself.
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