
spective”, a per-
spective image in 
a frame looks like 
a window into a
three-dimensional
world. The image is
completely defined
by the size of the
window and the po-
sition of the
viewer’s eye: each
detail of the world
visible beyond the
frame appears at
the spot where the
straight line joining
it to the eye crosses
the plane of the pic-

ture. The Invention of Infinity shows us a famous
woodcut by Dürer, dated 1525, which material-
izes the concept ingeniously: the eye is a hook on
the wall, the straight lines are strings, etc. A math-
ematical consequence is that all the lines perpen-
dicular to the picture-plane must appear in the pic-
ture to converge to a single point. This is the
“vanishing point”, the foot in the picture-plane of
the perpendicular dropped from the eye, so to
speak. Using Cartesian coordinates reduces to an
exercise the computation of all the aspects of this
projection; however, when artists at the beginning
of the fifteenth century needed a more realistic ren-
dering of space on surface, Descartes (1596–1650)
was two hundred years away. They had only what
was left of classical geometry.

(The relation between perspective and binocu-
lar vision often causes confusion. Two eyes give

The Invention of Infinity: Mathematics and Art
in the Renaissance
J. V. Field
Oxford University Press, 1997
ISBN 0-196-52394-7
384 pages, $35.00

It seems to be a property of human perception
that a two-dimensional graphic pattern must be a
picture of something. The earliest graphics we
know are representations. The picture may be
more or less faithful or schematic, on one or the
other side of what Gombrich calls “the great divide
which runs through the history of art and sets off
the few islands of illusionist styles…from the vast
ocean of ‘conceptual’ art” ([3], p. 9). Since our
minds perceive reality as three-dimensional, a basic
geometrical problem for the illusionistic tradition
is how to render three-dimensional objects and the
surrounding space on a two-dimensional surface.
J. V. Field’s The Invention of Infinity tells the story
of how this problem was discovered as an explicit
geometric problem by the artist/mathematicians
of the Italian Renaissance, how its solution be-
came part of the standard artistic curriculum, and
how its purely mathematical aspects were gener-
alized and developed during the next two hun-
dred years into what we now know as projective
geometry.

The problem is generally labelled by the term
perspective. In its simplest form, “one-point per-
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us “stereoscopic” input that, for nearby objects, de-
livers an immediate sensation of volume and dis-
tance. Leonardo da Vinci, as quoted in Gombrich’s
Art and Illusion ([3], p. 98), complains about the im-
possibility of reproducing this sensation graphi-
cally and adds: “…it is impossible for a painting
to look as rounded as a mirror image…except if
you look at both with one eye only.” One-point per-
spective should be viewed from far away or with
one eye at a time.)

A camera automatically produces a one-point
perspective image of its target. In this age of the
photograph it may be difficult to realize that the
process had to be invented. It is then useful to think
back to childhood. Kids learn the trick of drawing
a square and two adjacent parallelograms to get
something that “looks like” a cube. They do not
“see” the parallelograms any more than the un-
trained eye sees the gamut of colors it takes to ren-
der a faithful image of a yellow ball in the sunlight.
The brain automatically rectifies and corrects.
There is a striking passage in Piaget and Inhelder’s
study of how children think about space  ([6], p.
211). A six-year-old has drawn a gate in the distance
as large as a gate up close. When asked, “Does it
seem smaller or not, at the end, down there?” the
child answers, “It is not smaller.” Similarly, since
God is greater than man, it was natural for the me-
dieval artist to paint a huge Virgin and Child sur-
rounded by pint-sized prophets and saints, just as
it was natural for the Egyptian tomb painter to
show the master twice as tall as his peasants (see
illustrations in [3]). Far from being natural, per-
spective is a calculated illusion, giving the brain
false clues so it will construct a virtual reality.

The Invention of Infinity describes the defining
event, which took place around 1415 just inside
the main doorway of the Florence cathedral. Filippo
Brunelleschi (1377–1446) set up a demonstration
in which his fellow citizens were invited to look out
across the way and to compare their view of the
Baptistry with the view, through a peephole, of his
picture of that view. Presumably the views were
similar enough to excite admiration and aston-
ishment; this would have been the first objective,
systematic exploration of the illusion of depth. In
fact, Brunelleschi did not need any special geo-
metrical knowledge to construct his image: all he
had to do was look at the Baptistry through a
peephole himself and make an accurate drawing
of what he saw. His fundamental innovation was
the idea of an illusionistic rendering of space,
much in the spirit of Giotto’s revolutionary natu-
ralism in the treatment of figures some hundred
years before. Another, perhaps more important
one was his discovery of the eye as a point in space
from which a picture was seen. This made per-
spective into a problem in solid geometry. Beyond
his “demo” in the cathedral, which is fairly well doc-
umented [5] although the picture itself is lost, we

have no trace of these discoveries. Neverthe-
less, the appearance of one-point perspective
in the bas-relief of St. George and the Dragon
(Orsanmichele, Florence) executed by
Brunelleschi’s friend Donatello in 1417 makes
it plausible that the method was indeed in-
vented by Brunelleschi before that date.

The first surviving written instructions for
the geometric construction of perspective im-
ages are due to Alberti (1404–1472), another
Florentine polymath. Gadol [2] gives a com-
prehensive survey of this and the rest of his
extraordinarily various activity. His Della Pit-
tura [1], written in 1435–36, contains an al-
gorithm for drawing a one-point perspective
image of a checkerboard pavement given the
position of the eye relative to the frame. This
special case was of great use to painters, be-
cause it allowed them to draw a convincing
floor on which figures could be placed, with
relative positions readable from the checker-
board “coordinates”. Moreover, since the floor
can be raised or lowered, the algorithm allows
the complete projection of a three-dimensional
grid.

At that time there was a recipe in use for
drawing checkerboard floors in perspective. By
having the columns taper off towards a van-
ishing point and making each row two thirds
of the depth of the row in front of it, one could
produce an illusion of depth. Alberti describes
this construction and criticizes it as inaccurate
because it does not locate the position of the eye
or, as he calls it, “the point of the visual pyra-
mid” ([1], p. 57; in fact the decrease in row
width with distance is inverse-quadratic, not
exponential). Alberti probably refers to the
calculation of the correct position of the eye
by reversing the construction, which is possi-
ble if the perspective has been correctly drawn.
More details of this backwards construction are
given below.

Albrecht Dürer woodcut, 1525, depicting an instrument being
used to draw the perspective image of a lute.
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Alberti’s algorithm, which is not at all obvious,
is shown in Figure 1. The checkerboard is hori-
zontal and abuts the edge of the (vertical) frame.
A point O∗ is drawn in the picture-plane (to the
right in this illustration) on a level with the van-
ishing-point C and such that the horizontal distance
O∗C∗ to the frame is equal to the distance from
the eye to C. As seen from O, the lines in the
checkerboard which are perpendicular to the frame
appear as lines through C. Each line parallel to the
bottom of the frame projects to a horizontal line
in the picture. The height of that line is found by
intersecting the right-hand edge of the frame with
the line from O∗ to the foot of the corresponding
vertical line (the correspondence is given by a
ninety-degree rotation to the left). Why does this
work? Alberti does not tell us, and Field’s expla-
nation (on pp. 26–27) is unsatisfactory. The con-
struction depends crucially on the rotational and
translational symmetry of a checkerboard. This
allows the cone of vision and the entire polygon
OCHMQP to be swung around into the plane of the
picture and allows a three-dimensional construc-
tion to be collapsed to two.

The construction itself may be independently
due to Brunelleschi; it appears in the design of the
vaulted ceiling in the large fresco The Trinity (Santa
Maria Novella, Florence), executed by Masaccio in

1426. Vasari (1511–1574), whose Lives of
the Artists [7] is the standard early refer-
ence on Italian Renaissance art, tells us
(Vol. I, p. 272) that “In particular he
[Brunelleschi] taught Masaccio the painter,
then a youth and his close friend, who did
honour to his instructor, as appears in the
buildings which occur in his works.” About
The Trinity he says (Vol. I, p. 265): “But the
most beautiful thing besides the figures is
a barrel vault represented in perspective
and divided into squares full of bosses,
which gradually diminish so realistically
that the building seems hollowed in the
wall.” The illusion derives its power from
geometry: applying the inverse checker-
board construction to the vault locates the
ideal viewing position as the height of the
eye of a person looking up from across
the aisle.

The next arresting character in the nar-
rative is Piero della Francesca (c.
1412–1492). Piero, one of the greatest
painters of the Renaissance, wrote mathe-
matical treatises. Three survive, one of
which is De Prospectiva pingendi (On per-
spective in painting, c. 1480). In a general
discussion of Piero’s mathematics, The In-
vention of Infinity reproduces illustrations
from this work showing how he locates
points by pairs of “rulers”, one horizontal,
one vertical. For example, the position of
one corner of a column capital is indicated

by a tickmark on one of the horizontal rulers and
a similarly labeled tickmark on the corresponding
vertical ruler. These pictures are fascinating be-
cause they show explicitly how coordinates were
used before coordinate systems existed.

In De Prospectiva Piero gives a refinement of Al-
berti’s construction and a diagrammed proof that
it really works (Della Pittura has no figures). The
verticals are drawn using the vanishing point as be-
fore. Piero constructs the top edge of the per-
spective floor by Alberti’s method, but then locates
the horizontals by intersecting the verticals with
a diagonal, as shown in Figure 2. Alberti had already
introduced the diagonal as a check on his con-
struction: “If one straight line contains the diago-
nal of several quadrangles described in the picture,
it is an indication to me whether they are drawn
correctly or not” ([1], p. 57). This use of the pro-
jection-invariance of the relation between diago-
nal, horizontals, and verticals is the first hint of
what we now call projective geometry. A further
note: the diagonal, extended upwards, meets the
horizon (the horizontal through the vanishing
point) at O∗∗ . Reasoning with similar triangles
shows that AB/O∗C∗=BH´/H´C∗=AB/O∗∗C, with
points labeled as in Figure 2. It follows that O∗∗C
= O∗C∗ and therefore equals the distance to the

O

frame

C

PM

H

Q

Q*

P*

O*

C*

H*

M*

= eye

checkerboard

Figure 1. Alberti’s construction: unstarred letters represent points in the
vertical plane through the eye O, perpendicular to the picture-plane and

perpendicular to the plane of the checkerboard. Starred letters represent
additional points in the picture plane. C is the vanishing point; O∗C∗ =

OC. The base of the fifth row as seen by the eye is at the same height as
the intersection point with the picture-frame of the line from O∗ to the

inside edge of the fifth column. Inset, a completed construction.

frame
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eye. This is the easiest way to locate the ideal
viewing position. On the other hand, one can short-
cut the construction by first locating O∗∗ using
O∗∗C = OC and joining O∗∗ to the opposite lower
corner of the frame. This further and final sim-
plification of Alberti’s algorithm is traditionally
called the “distance point construction”.

The Invention of Infinity’s first five chapters tell
the story of perspective in the Italian Renaissance.
The second half of the book is denser with math-
ematics. It follows the geometry of perspective
through the sixteenth century and well into the sev-
enteenth, with Commandino (1509–1575),
Benedetti (1530–1590), Danti (1536–1586),
Guidobaldo del Monte (1545–1607), Kepler
(1571–1630), and finally Desargues (1591–1661).
Desargues is given the special attention he de-
serves as the man who brought perspective into
pure mathematics by his recognition of the im-
portance of projective invariance: “…Desargues is
not looking at what is changed by perspective, as
artists were, but at what is not changed.” We are
shown how he implemented this principle in his
unified study of conics. He is also recognized as
“the first mathematician to get the idea of infin-
ity properly under control.” As Field puts it,“He
uses the concept in a completely precise mathe-
matical way.” Here is the culmination, in geome-
try at least, of the invention referred to in the title.

This is a handsome book on a wonderful topic.
It covers a period when mathematics seems to
have been part of the natural efflorescence of ge-
nius, and it links two neighborhoods, fifteenth-cen-
tury Florence and seventeenth-century France,
when an unusual amount of genius walked the
earth. This was a singular period in another way:
mathematics has traditionally taken its new prob-
lems and new material from the physical sciences;
The Invention of Infinity tells the story of a signif-
icant transfusion where the donor was art. And
since the artists involved were among the great-
est of their period, we can witness milestones of
this transfer in details of artistic masterpieces.
For mathematicians it makes an irresistible pack-
age. For the nonmathematical audience to which
this book is presumably addressed, there is a prob-
lem. They can learn that Renaissance mathemat-
ics evolved hand in hand with Renaissance art,
but if they want to penetrate the details of that
mathematics, they will have a hard time. Field con-
centrates on the what-did-they-know-and-when-
did-they-know-it questions, which are certainly
significant. But when the original proof is unin-
telligible, incorrect, or nonexistent, readers are
left to their own devices. Today’s mathematicians
can fill the gaps without much difficulty; for the
general reader the book would have been improved
by a complete and careful account, explicitly
anachronistic when necessary, of each new piece
of mathematics.

Field presents the history of these mathemati-
cal ideas in great detail, with many quotations of
texts and diagrams by the participants. There is a
wealth of excellent illustration going well beyond
what is necessary to elucidate the text and help-
ing to give a visual impression of an entire intel-
lectual era; this is especially true of the sections
on the Italian Renaissance. There is also a wealth
of fascinating and instructive information. We get
to compare Piero della Francesca’s sober per-
spective palazzo with the wildly baroque per-
spective dome painted by Andrea del Pozzo in
1685, just as we can compare Piero’s humble math-
ematics—the problems in his Abacus treatise are
given in terms of the reckoning of debts, the weight
of fish, the worth of bolts of cloth—with Desar-
gues’s confident search for maximum generality.

The Invention of Infinity grew out of a series of
lectures and in many places has preserved the ir-
reverent tone and breezy, donnish mock-pedantry
that must have made those lectures hugely enter-
taining. “Leonardo of Pisa (c. 1170–c. 1240, some-
times called Fibonacci)”—O.K. But the irreverence
can get out of hand. Partway through the Sistine
Chapel decoration, some of the scaffolding was
taken down. We are told that the view from the
floor led Michelangelo (that scorner of mathe-
matical constructions!) to enlarge the scale of the
figures after work was resumed, and Field indulges
in a bit of fun at the master’s expense (p. 117). The
real story is probably not so simple. I refer read-
ers to the “Michelangelo” entry in the Grove Dic-
tionary of Art. The irreverence is pointed up by the
publishers’ (probably unwittingly) shameless use
of some glorious details of the Sistine Chapel ceil-
ing for the book’s dust jacket.

Sometimes the breeziness can lead to misap-
prehension. Federico da Montefeltro, Alberti’s

Figure 2. Piero della Francesca’s version of the perspective
pavement construction: C, C∗, O∗ as before. Here H´ (at the height
of the top edge of the floor) is located using O∗ as in Alberti’s
method. Then the heights of the other transversals are located by
the diagonal.
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friend and Piero’s patron, deserves better than his
treatment in this text, where (p. 77) he and “the
Duke of Urbino” seem to have independent exis-
tences. His “Duchess”—she never was—fares worse.
In addition, the book takes an authoritative tone
on linguistic matters which is not always justified.
Readers unfamiliar with the history of the modern
Italian language may be puzzled by the many ref-
erences to “Tuscan”. This is like saying that Shake-
speare wrote in “Elizabethan”. In fact, Alberti’s
Della Pittura is still held up as an example of pura
ed efficace lingua (pure and effective language;
see the introduction to the Italian edition of [1]).
The comments tossed off on Italian style and
spelling are most always incorrect, while the au-
thor’s own Italian spelling is unreliable. And mock-
pedantry is only funny when it is dead right. We
are told that Descartes’s Geometry was published
as “Geometrie [sic, no accents],” but then we are told
that Pascal wrote L’Esprit de la Géométrie—im-
possible. (We are further told that this work “reads
like a declaration of love in a tragedy by Racine,”
which is just dead wrong.) These are annoying but
minor shortcomings in a very engaging book that
could have been more useful if its mathematical
potential had been more fully and more carefully
exploited.

References
[1] LEON BATTISTA ALBERTI, On Painting, translated by 

J. R. Spencer, Yale University Press, New Haven,
1966. Edition in Italian: Il Trattato della Pittura e I
Cinque Ordini Architettonici, R. Carabba, Lanciano,
1913.

[2] JOAN GADOL, Leon Battista Alberti, University of
Chicago Press, Chicago and London, 1969.

[3] E. H. GOMBRICH, Art and Illusion: A Study in the Psy-
chology of Human Perception, 2nd edition, Prince-
ton University Press, 1961.

[4] ——— , Meditations on a Hobby Horse and Other Es-
says on the Theory of Art, Phaidon Press, London,
1963.

[5] ANTONIO MANETTI, The Life of Brunelleschi, Pennsyl-
vania State University Press, University Park, PA,
1970.

[6] JEAN PIAGET and BÄRBEL INHELDER, La Représentation de
l’Espace chez l’Enfant, Presses Universitaires de
France, Paris, 1948. This work is available in English:
The Child’s Conception of Space, Routledge & Kegan
Paul, London, 1963. The passage quoted appears on
p. 177 in a different translation.

[7] GIORGIO VASARI, Lives of the Most Eminent Painters,
Sculptors & Architects, translated by A. B. Hinds,
Dutton (Everyman Library), New York, 1963.

rev-phillips.qxp  12/6/99 10:05 AM  Page 50


