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Editor’s Note. Mikhael Gromov is one of the leading mathematicians of our time. He is a professor of mathematics at the Institut des
Hautes Etudes Scientifiques (IHES), and, as an article elsewhere in this issue of the Notices reports, he recently won the prestigious
Balzan Prize.

The present article, with Part I in this issue and Part II in the next, discusses Gromov’s mathematics and its impact from the point
of view of the author, Marcel Berger. It is partially based on three interviews with Gromov by Berger, and it first appeared in French
in the Gazette des Mathématiciens in 1998, issues 76 and 77. It was translated into English by Ilan Vardi and adapted by the author.

The resulting article is reproduced here with the permission of the Gazette and the author.

he aim of this article is to communicate

the work of Mikhael Gromov (MG) and

its influence in almost all branches of

contemporary mathematics and, with a

leap of faith, of future mathematics. Be-
cause of its length, the article will appear in two
parts. It is not meant to be a technical report, and,
in order to make it accessible to a wide audience,
I have made some difficult choices by highlight-
ing only a few of the many subjects studied by MG.
In this way I can be more leisurely in my exposi-
tion and give full definitions, results, and even oc-
casional hints of proofs.

I wrote this article because I believe that MG’s
work is greatly underrated. I will not analyze the
reasons for this phenomenon, although a general
idea of why this is so will become clear from a read-
ing of the text. Apart from Riemannian geometry,
notable exceptions to this phenomenon occur in
two fields: hyperbolic groups and symplectic geom-
etry via pseudoholomorphic curves; these areas will
be discussed in the first two sections below. In any
case, MG expressed his own view to me:

The readers of my papers look only at
corollaries, sometimes also at the tech-
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nical tools of the proofs, but almost al-
ways never study them deeply enough
in order to understand the underlying
thought.

Adrien Douady said of his own reading of Homo-
logical Algebraby Cartan and Eilenberg that he read
it “until the pages fell off.” The works of MG should
be read in that same way.

The exposition is classical: algebra, analysis,
geometry. One could object to the use of the word
“geometer” in the title, since we will be discussing
algebra and analysis, but it will become clear to the
reader that the method MG uses to attack problems
is to turn them into ones formulated in the lan-
guage of geometry. I owe to Dennis Sullivan the re-
mark, “It is incredible what MG can do just with
the triangle inequality.” Yet MG’s results outside
of Riemannian geometry are really in algebra and
analysis, even though they have not received much
recognition, especially in analysis.

In order to shorten the text, I have omitted es-
sential intermediate results of varying importance
and have therefore neglected to include numerous
names and references. Although this practice might
lead to some controversy, I hope to be forgiven for
the choices.

Algebra: Geometry of Groups of Finite Type

We consider here only “discrete groups of finite
type”, i.e., finitely generated discrete groups. These
groups are of course interesting by themselves, but
they appear also as transformation groups in var-
ious situations: notably in number theory as the
modular group SL(2,Z) acting on the upper half
plane or, more generally, as discrete subgroups I'
acting on homogeneous spaces G/H, yielding
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must be precisely defined, and this can
be achieved by considering everything in
nothing less than the set of all separa-
ble complete metric spaces. On this, MG
defines a metric, denoted by dg—p and

Figure 1. Seen from infinity—practically speaking, from farther and farther
away—the two discrete pictures above look more and more like the
continous real line.

geometric quotients I'\G/H. They appear also as
the fundamental groups of compact differentiable
manifolds, in particular those of negative curva-
ture. Here I highlight two results.

The first is an affirmative answer in [3], “Groups
of polynomial growth and expanding maps”, to Mil-
nor’s 1968 conjecture: Every finite-type group of
polynomial growth contains a subgroup of finite
index that is itself a subgroup of a nilpotent Lie
group. The function Growth with domain the set!
of finitely generated groups is defined on a group
L as the number Growth(L) of elements of the
group that can be expressed as words of length < L
in these generators and their inverses. A change
of generators does not affect growth type: poly-
nomial, exponential, etc. In many cases the result
was known. For example, suppose that G is linear.
By a result of Tits, either G contains a free non-
abelian subgroup and is then of exponential growth
or it is solvable up to finite index. In the solvable
case a 1968 theorem of J. A. Wolf shows that ei-
ther a linear solvable group contains a nilpotent
subgroup of finite index and is of polynomial
growth or it does not and is of exponential growth.

For a general abstract group the problem is to
find a Lie group, i.e., a continuous object, into
which the discrete group can be embedded. MG’s
solution is to look at the group from infinity (Her-
mann Weyl said that “mathematics is the science
of infinity”). For example, the group Z4 seen from
infinity will appear as the Euclidean space R4, be-
cause this lattice from far away has a very small
mesh that ultimately looks continuous. Even under
a change of generators, this structure from infin-
ity will remain the same. For example, take Z, first
with the trivial generators {+1}, and second with
the generators {+2 U +3}. The corresponding Cay-
ley graphs are shown in Figure 1.

It is clear that the second graph, seen from in-
finity, is squeezed down to a line. For any abstract
group I, one naively generalizes this as follows: first
make I'into a homogeneous metric space (I', d) by
letting the distance d(g, h) between two elements
be the length of h~1g when expanded in terms of
generators; the Cayley graph of T then consists in
joining two points by a line if and only if their dis-
tance equals one. Looking at T from infinity
amounts to looking at the limit of the sequence of
metric spaces (I, e 1d) as € goes to zero. This limit

now called the Gromov-Hausdorff met-
ric. We postpone its definition to the be-
ginning of Part II. Very delicate techni-
cal computation is required in order to
show that there is a convergent subsequence in
(I, e~1d), that the limit is a Lie group, and that G
operates suitably on it. Finally, one succeeds in as-
sembling in a single entity all the structure at in-
finity, and this entity is continuous. An important
remark is in order: in the above proof MG uses the
solution of Hilbert’s Fifth Problem to obtain a Lie
group. This problem has a fascinating history; it
was solved in 1955 by Gleason, Montgomery, and
Zippin, but there had been practically no applica-
tions until this result. The problem was to show
that a group without arbitrarily small nontrivial
subgroups is necessarily of Lie type. MG used the
following corollary: The isometry group of a locally
compact, connected, locally connected metric space
of finite dimension is a Lie group with only a fi-
nite number of connected components. To navigate
through the technical details of the proof, the in-
terested reader may look at the informative ex-
pository text of Tits in the Séminaire Bourbaki for
1980-81.

This might be the right time to make the fol-
lowing remark, communicated to me by Hermann
Karcher. Almost all of MG’s big results have three
features. At the start is a very simple, even naive,
idea, so simple that it does not seem possible to
do anything serious with it! The second feature is
that the development to the conclusion is very el-
egant and technical, sometimes using subtle com-
putations but always introducing new tools. The
third feature is that MG in the course of his proof
introduces one or more new invariants, i.e., new
concepts. These are often as naive as the starting
idea, but they play a basic role in the proof and
most often have the paradoxical property that
they are impossible to compute explicitly, even
for the simplest spaces. In many cases it is also im-
possible to decide whether they vanish or not; we
will meet many of these below.

We return to the Gromov-Hausdorff distance be-
tween metric spaces, which has become a basic tool
of Riemannian geometry. It was introduced in full
detail in Gromov’s address at the 1978 Interna-
tional Congress of Mathematicians? and then used
heavily in his 1981 preliminary French version of
[13]. Today it is of primary importance when look-
ing at a Riemannian manifold (M, g) from infinity,
i.e., looking at the sequence (M, €' g) with € going
to zero.

LIf isomorphic groups are identified, then the set of finitely
generated groups is a set.
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2The address was entitled “Synthetic geometry of Rie-
mannian manifolds”.
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The second algebraic topic is the concept of

hyperbolic group. It was invented in [9], “Hy- z
perbolic groups”, which gives many of the

properties of these groups as well as the spec- X

tacular probabilistic statement: almost all y
groups are hyperbolic. This long paper trig- 0=0

gered an immense wave of research and results.
Apart from work in Riemannian geometry, this
and the symplectic geometry paper [7],
“Pseudoholomorphic curves in symplectic man-

ifolds”, are, in my opinion, the only Gromov
works to achieve full recognition. For the paper
[7] Gromov received the AMS Steele Prize in
1997.

The first naive notion to come into play for

Figure 2. A triangle is §-thin when any point of any of its sides is
universally within 6 of the union of the two other sides. In hyperbolic
geometry, there is a 6 so that all triangles are 6-thin, but in Euclidean
geometry this is not the case. Any tree is trivially thin for 6 = 0.

hyperbolic groups is that of geodesic space,
sometimes also called length space; this is a
metric space where any pair of points of distance
a can be joined by at least one segment of length
a, i.e., an isometric map of the interval [0, a] into
the space with ends at the two given points. The
basic example is a complete Riemannian manifold
(the Hopf-Rinow theorem). At the other end of the
spectrum is the Cayley graph of a group in which
one lets every edge be isometric to [0, 1].3

The second notion is to isolate for our group a
concept defined in terms of the metric that is in-
variant under change of generators and that there-
fore will respect the various growth types. Such a
concept is that of quasi-isometry. This concept
was introduced explicitly by Margulis in 1969 for
discrete groups and by Mostow in 1973 for the gen-
eral case. The general definition is quite involved:
Two metric spaces X and Y are quasi-isometric if
there exist twomapsf: X — Yandg:Y — X and
two constants A > 0 and C > 0 such that

dy(f(x),f(¥)) < Adx(x,y)+C
for every x,y € X,
dx(g(x"),g(y") < Addy(x',y") + C
for every x',y’ €Y,
dx(g(f(x),x) < C
for every x € X,
dy(f(gix"),x") < C
for everyx’' €Y.

In other words, f and g are Lipschitz at large dis-
tances, and f and g are almost inverses. One can
check that for Cayley graphs a change of genera-
tors yields quasi-isometric metric spaces. Here are
three more typical examples of quasi-isometry:
< a group and any subgroup of finite index,
R and Z,

3We shall use this metric on a Cayley graph throughout
this article.
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= the universal cover of a compact Riemannian
manifold of negative curvature (a continuous
object) and its fundamental group (a discrete
object).

MG calls a hyperbolic metric space a geodesic
space for which there exists a constant 6 such
that all triangles of the space are §-thin; i.e., any
point on an edge of the triangle has a maximum
distance to the union of the two other edges that
is < 0. In other words, for every triangle
[x,y] U [y, z] U |z, x] with vertices x, y, z and every
u € [y, z], one should have

du,[x,ylulz,x]) = infte[x,y]u[z,x]d(t: u) < 9.

It is not hard to check that this notion is stable
under quasi-isometry and that Euclidean spaces are
not hyperbolic. The classical hyperbolic spaces of
hyperbolic geometry in the ordinary sense, e.g., the
simply connected complete spaces of constant
negative curvature, are indeed hyperbolic. Another
basic example is the fundamental group of a com-
pact Riemannian manifold of negative curvature
(or the manifold itself) and, more generally, any
polyhedron of negative curvature. Trees are an in-
teresting case as they are hyperbolic for the con-
stant 6 = 0. A group is said to be hyperbolic if its
Cayley graph is hyperbolic. Evidently the Cayley
graph depends on the chosen system of generators,
but the property of being hyperbolic does not,
since the differences are only by quasi-isometries.

We avoid any detailed exposition of [9], “Hy-
perbolic groups”, and instead will give a brief
overview. What is the structure of a hyperbolic
group? MG shows that such a group is always fi-
nitely related; i.e., it can be defined by giving only
a finite number of relations among its generators.
This is a corollary of the existence, for any hyper-
bolic group, of a polyhedron of finite dimension
that is contractible and on which the group acts
simplicially with compact quotient. The
contractibility of this polyhedron, which is indis-
pensable, is due to Rips.
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We now give the reader a sense of the great
power of the hyperbolicity notion by discussing
many conditions that are related to it. First is the
viewpoint of “complexity and algorithms” for dis-
crete groups: If a group has a finite presentation
and is of “small cancellation” C’(1/6), then it is hy-
perbolic. Small cancellation means that propor-
tionately little cancellation is possible in the prod-
uct of two defining relations. More precisely, in a
group defined by generators and relations, the re-
lations being certain words in the generators, let
R* be the set of all cyclic permutations of these
relations. The hypothesis C’'(1/6) is that the set R*
can contain two distinct words of the form uv and
uv’of the same length only if the length of u is
< 1/6 of the common length of uv and uv’. Anim-
portant consequence of MG’s results is that the de-
cision problem for discrete groups is only a local
one.4

The second concept is that of isoperimetric con-
stant. For Euclidean spaces R the isoperimetric in-
equality says that there exists a constant k(d) such
that for all bounded domains D the boundary 0D
always satisfies

Vol(2D) = k(d) - (Vol(D))d-1/d,

This can be expressed by saying that R9 satisfies
an isoperimetric inequality for maximal dimen-
sion domains with exponent (d — 1)/d. One gets
this type of inequality also for the volume of com-
pact closed submanifolds N of a given dimension
s and the minimum volume of the (s +1)-sub-
manifolds whose boundary is N. For Euclidean
spaces, the exponent is equal to s/(s + 1). For clas-
sical hyperbolic spaces there is again an isoperi-
metric inequality in maximum dimension, but the
exponent now equals 1 because the volume of
balls and of spheres grows exponentially and with
the same factor as a function of the radius. For dis-
crete objects, the volume of a domain is understood
to be the number of points it contains, and the
same for its boundary.

What MG shows concerning isoperimetric be-
havior is twofold. First, if a group I' with finite pre-
sentation enjoys a linear isoperimetric inequality
in dimension 2, then it is hyperbolic. To define this
notion precisely, one considers any finite polyhe-
dron X whose fundamental group is isomorphic
to I and calls its universal cover X*. Consider in
X* asimplicial loop y contained in the 1-skeleton
of X*; simple connectivity implies that there exist
simplicial disks whose boundary is y. Call the area
of a disk the number of its 2-simplices, and let A(y)
be the minimal area of disks with boundary y. The
isoperimetric inequality one wants is: for every

4For the various algorithmic notions of simplification, the
reader may consult Strebel’s appendix in the 1990 book
Sur les Groupes Hyperboliques d’aprés Mikhael Gromov
by Ghys and de la Harpe, which is an excellent detailed
presentation of many of MG’s results.
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loop (of length L(y)), one always has A(y) < CL(y)
for some constant C.

The second way to use isoperimetric inequali-
ties is to prove that amenable groups® can be de-
fined as those enjoying an isoperimetric inequal-
ity in maximal dimension with an exponent equal
to zero. One can also define this concept on Cay-
ley graphs: volume will be the number of points
contained in the set, while the boundary of a set
X will be the set of points that are not in X but at
distance 1 from X. Thus amenable groups are not
“too big”. MG proves that a nonelementary hyper-
bolic group, if not amenable, possesses a normal
subgroup that is free and nonabelian. For those
groups MG goes on by defining on them a type of
“geodesic flow”, a dynamical object but only topo-
logical at first, because there is not initially an in-
variant measure. These flows have the same prop-
erties of ergodicity, mixing, etc., as the geodesic
flows on manifolds with negative curvature. In
this and a number of other unexpected situations
in mathematics, dynamics is occasionally invading
mathematical objects in which time is not present
in the definition and yet the object can be en-
dowed with a dynamical system structure, dis-
crete or continuous.

Hyperbolic groups, like manifolds of negative
curvature, admit natural compactifications, so
have a boundary “at infinity” (sometimes a sphere,
but not always). This compactification and the
“sphere” at infinity are to be distinguished from
the limit of (I,e 1d) as above. I make only the
rather vague assertion that, seen from infinity, hy-
perbolic groups “look like trees”.

In [9], “Hyperbolic groups”, MG wrote the heuris-
tic statement, “A group chosen at random is hy-
perbolic.” This statement was completely proved
by Ol’'shanskii in 1992. It should be compared with
MG’s heuristic vision that “almost all polyhedral
geometries have negative curvature.” For geome-
tries this certainly is true in dimension two, but for
higher dimension more study is required, and the
assertion remains an open problem.

In [11], “Asymptotic invariants of infinite
groups”, MG considerably refined the result about
randomness. The first thing is to define precisely
how a group is chosen at random, and the next is
to define, for any group under study, a suitable no-
tion of the ratio d of the number of relations to
the number of generators. The result is this: For a
random group, if d < 1/2, then the group is hy-
perbolic, but if d > 1/2, then the group is trivial.
MG calls such a result an example of “phase
transition”. It fits very well with his philosophy con-
cerning the three states: solid, liquid, and gas. He

5A group G isamenable if whenever G acts continuously
on a compact metrizable space X, X has a G -invariant
probability measure.
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compares it to that for conics: ellipses, parabolas,
and hyperbolas. For groups, the elliptic ones are
the finite groups, the hyperbolic groups are the hy-
perbolic groups in the above sense, and the para-
bolic groups are yet to be defined. The trichotomy
arises also with partial differential equations (PDEs):
elliptic, parabolic, and hyperbolic. We shall discuss
MG’s contribution in this area in the next section.

Number theorists will appreciate the following
property of hyperbolic groups. Fix a system of
generators for such a group, and for any integer
n let o(n) denote the number of elements of the
group of length equal to n. Then the formal series
C(t)=> o(n)t" is a rational function of the vari-
able t.

It is now time to talk about [11], “Asymptotic
invariants of infinite groups”, which is a new de-
velopment growing out of [9], “Hyperbolic groups”.
It studies asymptotic properties of infinite groups.
Briefly, asymptotic properties of groups refers to
properties that are stable under passage to sub-
groups of finite index. The same kind of thought
applies to Riemannian manifolds considered only
up to finite coverings. This is the first text by the
author of a very new kind of mathematical writ-
ing. A later paper of this type is [12], “Positive cur-
vature, macroscopic dimension, spectral gaps and
higher signatures”. These works amount to more
of a research program than a standard paper, al-
though they still contain new notions and results.
The article [11] contains in particular two re-
markable geometric notions, both due to MG: that
of filling and that of simplicial volume. We shall re-
turn to these alittle later in the present article. My
belief is that these works will influence many gen-
erations of mathematicians.

The above classification of groups and the prob-
abilistic result do not address two essential ex-
amples of groups. These are discrete uniform sub-
groups of Lie groups associated with symmetric
spaces of rank at least two and the fundamental
groups of compact manifolds of nonpositive cur-
vature. Right notions, such as “parabolic group” or
“semi-hyperbolic group”, are still awaiting their cre-
ator.

For more details (and solid classical mathe-
matical writing) the 1990 book of Ghys and de la
Harpe is invaluable, even if it contains only a part
of MG’s work on the subject.

Analysis: The h-Principle and Applications

Having roots in his dissertation and articles in the
1970s, the h-principle (“h” stands for homotopy)
is the hardest part of MG’s work to popularize. It
was developed fully in his long book [8], Partial Dif-
ferential Relations. But it was only in 1998 in a book
by Spring that parts of [8] were first treated in de-
tail in book form. Gromov’s work [8] is visionary
but very dense, and it tackles many subjects. It is

written with the language of “jets”, “transversal-
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ity”, “sheaves”—language that is not familiar to
every analyst. In addition, the writing is extremely
dense and hard to master. This explains why quite
regularly in analysis journals results appear that
are a small part of some statement of [8]. To de-
scribe the essence of the book, that of the h-prin-
ciple, it is best to quote from the preface:

The classical theory of partial differ-
ential equations is rooted in physics,
where equations (are assumed to) de-
scribe the laws of nature. Law abiding
functions, which satisfy such an equa-
tion, are very rare in the space of all ad-
missible functions (regardless of a par-
ticular topology in a function space).

Moreover, some additional (like initial
or boundary) conditions often insure
the uniqueness of solutions. The exis-
tence of these is usually established
with some a priori estimates which lo-
cate a possible solution in a given func-
tion space.

We deal in this book with a completely
different class of partial differential
equations (and more general relations)
which arise in differential geometry
rather than in physics. Our equations
are, for the most part, undetermined
(or, at least, behave like those) and their
solutions are rather dense in the space
of functions.

We solve and classify solutions of these
equations by means of direct (and not
so direct) geometric constructions.

I add to this a portion of my interview with MG:

This book is the cornerstone for build-
ing a geometric theory of PDEs (the
space of solutions, etc.). The book is
practically ignored because it is too
conceptual. However, it is so universal!
I maintain that most underdetermined
PDEs are soft, while the rigid ones are
exceptional. In my book one can get al-
most anything, even fractals. Therefore
there is a certain robustness; one knows
that robustness is essential in physics,
because “one sees only what is robust”.

The h-principle: it is indeed hard to be-
lieve; analysis experts do not believe in
it, and as a result prove from time to
time parts of what is already in the
book. Hard to believe, because it
contradicts mathematical intuition and
physical intuition at the same time. For

NOTICES OF THE AMS



188

example, for a C 1 equation, the solu-
tions are dense in C9.

But there is still much to do: find a
measure for the space of solutions
(something like Markov fields), trans-
form the h-principle into measure the-
ory. In fact, to be able to say something
statistical about solutions, one must
find a measure.

The h-principle is too long to formulate in detail,
and moreover it has to be defined and proved ex-
plicitly for each specific problem. But what it says,
roughly, is that for the equations under consider-
ation there are no obstructions to constructing
the space of solutions other than those of topo-
logical and transversal nature found in a suitable
set of jets.6 Here, as mentioned above and as will
be mentioned again later, the initial idea is simple
and geometric, and beyond that is a long techni-
cal and subtle path.

Without further definitions, here are some ap-
plications of the philosophy of the h-principle
taken either from the book itself or from subse-
quent texts.

= First, MG made almost complete progress in
the quest for the optimal dimension N(d) of the
isometric embedding problem of abstract Rie-
mannian manifolds M4 of a given dimension into
some RV@ Nash’s famous theorem yielded such
an isometric embedding, but for dimensions of
magnitude like d3, which is too large.

< Another contribution is the extension of Oka’s
principle for Stein manifolds.” Oka’s principle says
that every continuous section of a holomorphic vec-
tor bundle is homotopic to a holomorphic one. In
MG’s way of looking at it, this is nothing but the
h-principle for the Cauchy-Riemann equations.
Like every application of the h-principle, this has
to be stated precisely in the context with which one
is working.

= In Riemannian geometry Lohkamp, in his se-
ries of papers starting in 1992, was inspired by the
h-principle and proved it in the cases he worked
on. His results illustrate in a spectacular way the
deep nature of the h-principle, as outlined by MG
above. The problem is to decide whether the hy-
pothesis of negative Ricci curvature for a Rie-
mannian manifold has strong topological conse-
quences. For sectional curvature, negativity has a
drastic consequence: the manifold’s universal cover
gotten by the exponential map is diffeomorphic to
R4, For Ricci curvature, which will be discussed in

6A jet is a system of values of Taylor coefficients through
a certain order.

MG waited a long time to publish his result in 1992 in a
Joint paper with Eliashberg, “Embeddings of Stein mani-
folds of dimension n into the affine space of dimension
3n/2+1"
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Part II, positivity has many implications, but one
still does not know all the topological consequences
of this condition. As for the negativity of Ricci
curvature, Lohkamp’s result is: “negative Ricci cur-
vature amounts to nothing”. More precisely, any
manifold admits such a metric, but also on such
a manifold the space of all metrics with negative
Ricci curvature is contractible as a topological
space. There are more surprises in store: on any
manifold each Riemannian metric can be approx-
imated by negative Ricci curvature metrics. Of
course, this can hold only in the C%-topology, since
we can start with positive curvature, which is a C2-
object, whereas the metric is a CY object. Again,
using suitably adapted h-principles, Lokhamp very
recently proved that on any compact manifold
there exists a dense set of Riemannian metrics
whose geodesic flow is Bernoulli, hence is mixing,
ergodic, etc. Previously, for the sphere 2, indi-
vidual ergodic metrics had been constructed very
painfully. Lohkamp’s results illustrate the power
of the h-principle.

Practically at the same time that he was pub-
lishing the book [8], Partial Differential Relations,
MG completely revolutionized symplectic geome-
try in his article [7], “Pseudoholomorphic curves
in symplectic manifolds”. This tidal wave, which
is not yet finished, is the subject of the 1994 book
Pseudoholomorphic Curves in Symplectic Geometry
by Audin and Lafontaine. We shall borrow here
from the introduction, and we refer the reader to
the book for a detailed exposition.

Symplectic geometry (sometimes called sym-
plectic topology by those who use the word geom-
etry exclusively in situations where there is a met-
ric) is the study of manifolds M?" endowed with
a symplectic form, namely, a differential 2-form w
that is closed (dw =0) and nondegenerate (one
also says of maximal rank), i.e., is such that the
maximal exterior product form A" w is every-
where nonzero. This product is a volume form
and hence defines a canonical measure on the
manifold. We will speak of symplectic manifolds
and symplectic structures, since there is an obvi-
ous notion of symplectic diffeomorphism (= sym-
plectomorphism). Symplectic structures are found
in the mathematical world in a number of differ-
ent settings, but two are especially important. The
first is that of Kdhler manifolds, in which the sym-
plectic form is nothing but the Kahler form. The
second is that of Hamiltonian mechanics, where the
form under study is the “Liouville form” on the
cotangent bundle (= “phase space”) of the mani-
fold where mechanics is studied.

As a consequence of a theorem of Darboux, one
knows that, locally, every symplectic form w is
symplectomorphic to the canonical symplectic
structure on R given by 31, dx; A dxjsn. It
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follows that there is no local invariant
for symplectic geometry. In dimension
two a symplectic form is just a smooth
orientable measure, so it is legitimate to
ask whether in dimension four or more
there are more symplectic global in-
variants besides ones that come only
from the measure. What freedom do we
have? MG’s contributions to this ques-
tion are various.

A Lagrangian submanifold is one
where the form w vanishes when re-
stricted to it. In his 1986 book Partial Dif-
ferential Relations, MG used the h-prin-

ciple and addressed the question of

freedom by constructing an immense Figure 3. In the complex projective space, for any reasonable symplectic
number of Lagrangian immersed sub- structure, pseudoholomorphic curves mimic exactly the projective

manifolds. On the other hand, he ex- geometry axioms for the projective lines.

hibited a certain rigidity in symplectic
geometry; this is the essence of the 1985

paper [7], “Pseudoholomorphic curves in sym-
plectic manifolds”, where MG proved a conjecture
of Arnold: in R?" there exists no compact La-
grangian embedded submanifold. Now, among the
many results and new tools introduced in [7], I
choose a typical one and treat it in detail so that
the reader might appreciate the full depth of MG’s
ideas, both creative and technical.

We will consider the problem of packing balls
via symplectic diffeomorphisms and try to see
whether there are obstructions beyond their mea-
sure. MG has many results about this problem,
and I choose the simplest one, both to state and
to prove. Let U be an open set in R?" (endowed with
the standard symplectic structure) that contains
two Euclidean disjoint balls By(a, r1) and Ba(b, r2)
of respective radii ; and r»> and respective centers
a and b. The result is this: if there is a symplectic
embedding  of U into a ball of radius R of R2"
(still endowed with the standard symplectic struc-
ture), then one necessarily has r{ +rs < R?. For
n > 4, this condition is stronger than the measure
condition; in dimension 2, it is exactly the measure
condition. We cannot resist mentioning the less
symmetric but more striking result: with their
induced standard symplectic structures in R?", a
ball and a half ball (a ball cut in two parts through
its center) having the same volume are never sym-
plectomorphic as soonasn > 1.

We now sketch the proof of the two-ball pack-
ing problem, which uses a good deal of the tech-
niques introduced in the 1985 paper. We need
some definitions. An almost complex structure on
a manifold (necessarily of even dimension) is an
automorphism J with square minus the identity
(J2 = —Id) on its tangent bundle. As soon as the
dimension is larger than two, such a structure is
typically not integrable; i.e., there is no holomor-
phic complex structure whose J will be multipli-
cation by i = +/—1. Every symplectic structure ad-
mits some (in fact many) almost complex structures
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J that are compatible, i.e., have w(x, Jx) > 0 for
every nonzero tangent vector. In this situation a
pseudoholomorphic curve is a submanifold of di-
mension two whose tangent bundle is stable under
J. In the holomorphic case this is nothing but a
complex curve, but the interest is in the noncom-
plex case. The condition for a two-dimensional
submanifold to be a pseudoholomorphic curve is
a PDE. Motivated by the h-principle, MG showed
that there are numerous global pseudoholomorphic
curves.

In particular, MG studied the case of the com-
plex projective space CP" endowed with its stan-
dard symplectic structure. MG considered any
compatible almost complex structure J, and in
particular he was interested in the case when J is
not the standard complex structure on CP". For
CP? the h-principle reflects the fact in projective
geometry that through any pair of points there
passes a unique projective line. Indeed, MG shows
that through any pair of points there passes a
pseudoholomorphic curve (for any J) and there is
uniqueness. For CP",n > 3, MG shows existence,
but uniqueness no longer holds. According to Gro-
mov this is the best example illustrating that the
h-principle can be, despite its general softness,
sometimes soft and sometimes rigid. More re-
cently, in 1996, Donaldson used the h-principle to
study the similarity between pseudoholomorphicity
and genuine holomorphicity.

Returning to our open set U in R?" and the two
balls By and B> packed symplectically into the ball
B of radius R in R?", we now explain the proof of
the ball-packing result in R*; things are the same
in higher dimensions. We easily construct a sym-
plectic embedding € of B into the complement
CP2\CP!, where CP? has its canonical symplectic
structure w but the structure is normalized in
such a way that the total volume equals w2R%/2,
the volume of the ball B of radius R in R?. Let
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¢ =C oy :U — CP? be the symplectic embedding
obtained by the composition of ¢ and C, where
Y is the given symplectic embedding. We now
push the canonical almost complex structure8 J
of R* into a partial almost complex structure ¢(Jo)
on CP2. It is easy to extend ¢(Jo) into a global and
compatible almost complex structure J on CP2. The
object yielding the result is the pseudoholomor-
phic curve C in CP? that is homologous to CP1 and
passes through the two points ¢p(a) and ¢(b). The
total area of C equals TTR? since it is [- w. This
integral is

> J w + J w.
$(B1) $(B2)

Consider the two surfaces C1 = ¢~ 1(p(B1) N C)
and Cr = ¢~ 1(p(B2) N C) in R*. Then

Area(Cy) = jc $*(w)
and

Area(Cp) = J'C' P *(w).

Moreover, both the surfaces C; and C> are pseudo-
holomorphic curves for the standard Jy structure
of R*, which comes from a complex structure on
R*. So C; and C» are in fact holomorphic, hence
minimal surfaces in R*. By construction, C; con-
tains the center a of Bi. Thus the monotonicity
principle for minimal surfaces implies that the
area of C is larger than or equal to ‘ITI’12. The same
applies to Cy, and hence 1rr{ + 1r3 < TR?.

Introducing Quantitative Methods in
Algebraic Topology

A fundamental but immense program is to study
quantitative (as opposed to qualitative) algebraic
topology and differential topology. An example is
constructing a quantitative theory of homotopy. A
typical example of the need, arising from a ques-
tion of Thom, is: if catastrophe theory is not pre-
dictive, it is precisely because this theory does not
take into account a metric or a measure. Another
aspect of the need is the common definition of al-
gebraic topology as the study of properties in-
variant under “any” deformation. It has been MG’s
constant concern to tackle such questions. We de-
scribe some of MG’s major contributions to quan-
tization of algebraic topology.

In [2], “Homotopical effects of dilatation”, two
subjects are tackled. The first is the complexity of
the space of allmaps f : X — Y from one manifold
into another. To study this setting, one works with
manifolds that are compact and have finite fun-

8The canonical almost complex structure refers to the
one coming from regarding R4 as C2.
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damental group and puts on them an arbitrary
Riemannian metric. As was true in the section
above on algebra, it is important to realize that, for
the current purpose, the metric that is used is
quite irrelevant. This is because two metrics on a
compact manifold are always quasi-isometric. The
dilatation of f is defined to be the supremum of
the ratios
dy(f(x),fX"))

dx(x,x")

over all the pairs (x,x’) with x # x’. The main re-
sult of the article is this: for Y simply connected,
the number of homotopically distinct maps grows
polynomially with respect to dilatation.

In fact, [2] also has a completely new approach
to Morse theory. Briefly, Morse theory considers dif-
ferentiable functions f : M — R on a given compact
manifold M and expresses the existence of criti-
cal points (those where the derivative of f vanishes)
as a function of the topological complexity of M.
The precise statement needs the notion of index
of a critical point, which is nothing but the num-
ber of negative eigenvalues in the second differ-
ential of f. Morse proved that the number of crit-
ical points of index equal to i is always > the i-th
Betti number b;(M). But in many cases, typically
in the study of periodic geodesics, Morse’s result
leaves untouched the values f(x) at these critical
points. Are they very close to each other, very
sparse, or what? Moreover, Morse theory imposes
a technical restriction: all the critical points have
to be nondegenerate; i.e., the quadratic form given
by the second differential of the function has to
be everywhere nondegenerate.

Some of the results of [2] have been treated in
more detail in the book [13] Metric Structures for
Riemannian and Non-Riemannian Manifolds, which
is an enlarged translation of the French 1981 ver-
sion, Structures Métriques pour les Variétés Rie-
manniennes, known to all Riemannian geometers
as the “little green book”. The idea is, as always with
MG, naive at first: get metric control over alge-
braic topology operations. But complete proofs
are hard. MG introduced new intermediate invari-
ants, which are surprisingly subtle. We discuss a
typical example.

In the pioneering work [6] “Volume and bounded
cohomology”, MG introduced the simplicial vol-
ume of a compact manifold M: consider all possi-
ble ways to write the fundamental class [M] in the
top degree of the homology of M as a linear com-
bination [M] = > ; a;jo; of singular simplexes o;
with real coefficients a;. By definition, the simpli-
cial volume ||M|| of M is the infimum of the sum
>ilajl. For a first example, take the sphere S2
where a single simplex will suffice. Map one side
of the standard 2-simplex to a great circle from pole
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to pole, and map the other two sides to another
such great circle. The angle between these great cir-
cles at a pole can be increased through any mul-
tiple of 21t that we please, and in particular this
singular simplex can represent n[M]| with n as
large as we please. The a; = 1/n, and we see that
the simplicial volume of S? therefore vanishes. In
fact, this happens any time a manifold admits
maps into itself of degree larger than 1, since for
anymap f : M — M’ of (topological) degree d, one
has ||M|| = d||M’||. More generally, |[M]| =0 as
soon as the fundamental group 771 (M) is “not too
large”—more precisely, as soon as (M) is
amenable.9 This is one of the results of [6], and it
shows that the simplicial volume is an invariant of
the geometry at infinity of a manifold (actually of
its universal cover).

Another good example is that of a compact
manifold of negative curvature. The geometric vi-
sion here is exactly the opposite of the spherical
case. Namely, when one stretches a simplex, its vol-
ume does not grow, since one easily proves that
the volume is bounded above. Thus |M| > 0. A
classical principle of good mathematics is that
after introducing a new object, one should use it
to prove something deep. In [6] MG uses the sim-
plicial volume to re-prove a part of the Mostow
rigidity theorem, one of the most spectacular re-
sults in geometry. This part of the Mostow theo-
rem says that two discrete compact quotients of
a hyperbolic space in dimension > 2 are isomet-
ric if they have isomorphic fundamental groups.
Gromov’s result is in fact a variable-curvature ver-
sion of this part of Mostow’s theorem.

The simplicial volume is also interesting for
discrete groups, as was shown in [11], “Asymptotic
invariants of infinite groups”. More generally, it ap-
plies to various asymptotic properties of mani-
folds. It strongly inspired the 1995 results of
Besson, Courtois, and Gallot as follows: Define a
space form of rank one to be any compact quotient
of a noncompact Riemannian globally symmetric
space of rank 1 (i.e., a “hyperbolic space” over R,
C, the quaternions, or the Cayley numbers) by the
action of a torsion-free discrete subgroup.l0 Their
results are that the standard Riemannian structure
minimizes all the usual invariants: entropy, growth
of lengths of periodic geodesics, asymptotic vol-
ume of balls, etc.

Nevertheless, positivity of simplicial volume is
incredibly difficult to establish. Simplicial volume
has the following functorial properties: there are
universal constants ¢ and ¢’ depending only on the
dimensions such that

cIM|| IM"|| = IM xM'|| = c"IM]l |[M"]
9See footnote 5.

10We take space forms to have sectional curvature nor-
malized to be in the interval [—4, —1].
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and, in dimension 2,
IM#M'|| = M|+ |M"]l.

Here # denotes the connected sum operation. In
particular, products of manifolds of negative cur-
vature have positive simplicial volume. Such man-
ifolds have curvature that is only nonpositive. The
other natural type of nonpositive-curvature man-
ifold is a space form of rank at least 2, i.e., a com-
pact quotient of a noncompact Riemannian glob-
ally symmetric space of rank at least 2, but it is still
unknown whether these manifolds have positive
simplicial volume. It remains almost a total mys-
tery whether manifolds with nonvanishing sim-
plicial volume are numerous or scarce. The tie
with groups is subtle: if 1r1 (M) is hyperbolic, then
it does not necessarily follow that ||[M| > 0.

In [6] Gromov introduced a second topological
invariant for compact differentiable manifolds.
The minimal volume of M, written MinVol(M), is
the lower bound of the volume over all Riemann-
ian metrics one can put on M that have their sec-
tional curvature in [—1, 1]. One can think of it as
measuring the extent to which a metric on M is
bumpy. It could in principle be used to find the least
bumpy metric on a given M, but this would not be
robust, since sectional curvature is not robust.
The minimal volume is less subtle than the sim-
plicial volume. It has recently become clear be-
cause of results of Cheeger and Rong in 1996 that
most compact manifolds have zero minimal vol-
ume. Except for surfaces, where the Gauss-Bonnet
theorem gives the answer, and for space forms of
rank 1, where the Besson-Courtois-Gallot result
applies, not a single explicit minimal volume is
known, even for the simplest geometric spaces: not
for the standard projective spaces over R or C, or
the quaternions, or the Cayley numbers, and not
even for the even-dimensional spheres starting
with S2.

There is a basic link between these two volume
invariants, the main inequality of [6]: there is a con-
stant c(d) such that, for any Riemannian manifold
(M4, g) whose Ricci curvaturel!l satisfies Ricci
> —(d — 1), the simplicial volume satisfies

Vol(g) > c(d)|IM]].

A sufficient condition for Ricci > —(d — 1) is
that the sectional curvature satisfy K > —1. Con-
sequentlyl2 MinVol(M) > c(d)||M]|. Thus simpli-
cial volume fits quite well with Ricci curvature; it
is an important open problem to see whether it also
fits well with scalar curvature. The proof of the
main inequality above is quite difficult, and to my
knowledge it has never been written up in detail.
Moreover, it uses a new technique called “diffusion

11 This notion is defined in Part II.
12 This corollary is much weaker than the initial statement.
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manifolds, these relations being valid for
any metric. For example, for surfaces of
genus y, one would expect an inequality of
the form A/L% > c(y) with a constant c(y)
depending on the genus, and one would ex-
pect the constant to grow with the genus.
Before the Filling paper nobody could ob-
tain any result of this form, apart from in-
dependent work of Accola and Blatter in
1960 that for surfaces yields a constant
going to zero tremendously fast with the
genus.

The Filling paper solves these two prob-
lems. The one for surfaces of genus y yields

L L Y

Figure 4. It is very intuitive that, for surfaces with one or more handles
(say the genus is positive) as in the picture, the ratio between the area
and the squared length of the shortest noncontractible curves is larger
and larger when the number of holes grows. But in fact this turns out to

be extremely difficult to prove.

of cycles”; this technique is used in the “Filling
paper”, which we consider next.

The preceding results were mainly concerned
with “topology and metric”. The next result con-
cerns “topology, metric, and measure”. It first ap-
peared in the huge work [5] “Filling Riemannian
manifolds”, which is called the “Filling paper”.
This text is a seminal work, and many of its results
have been used, but to my knowledge nobody has
gone completely through it. In particular, the con-
tent of the last four of the nine sections has never
been elaborated in complete detail. We will now ex-
plain in detail the first topic of the Filling paper,
since it is extremely simple to visualize and for-
mulate. It starts with a result of Loewner con-
cerning the torus: We consider a two-dimensional
torus with an arbitrary Riemannian metric.13 We
define the systole of this torus to be the infimum
of the lengths of the noncontractible closed curves
on this torus. This minimum is classically achieved
by a periodic geodesic, but this is not the point.
Let us call this systole L. Then Loewner proved that
the total area A of our torus always satisfies the
inequality A/L? = \/3/2. Moreover, equality is at-
tained if and only if the torus is flat and regular
hexagonal (i.e., corresponds to the lowest point of
the classical modular domain). Loewner never pub-
lished this result, since he did not consider it deep
enough.

The mathematical mind will immediately ask for
generalizations—first to surfaces of higher genus,
then to higher-dimensional manifolds, and then to
higher-dimensional submanifolds. As Thom
pointed out to me in Strasbourg in 1960, Loewner’s
result is the simplest case of the general problem
of finding universal relations between norms of var-
ious homology classes when putting metrics on

13This can be taken as the one induced by R3 when we
have a “real” torus. On the other hand, if the torus is flat
(that is to say, locally Euclidean), the torus has to be
treated as an abstract manifold or else embedded in some
higher-dimensional Euclidean space.
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a constant growing like y/ log2 y, and un-
published examples of MG show that one
cannot do better. The second problem, the vol-
ume as a function of the systole of curves for
higher-dimensional manifolds, is solved for so-
called “essential manifolds”. A universal inequal-
ity Vol/(Systole)? > ¢ > 0 is hopeless for general
manifolds; just take the product of a circle with any
other compact manifold. What is needed is a con-
dition expressing the geometric fact that the non-
contractible curves generate the fundamental class
(which yields the volume). Essential manifolds con-
stitute a large class, containing all tori, all real
projective spaces, and all compact manifolds whose
universal covering is diffeomorphic to R" (e.g.,
space forms and other manifolds with nonpositive
curvature). MG’s result for surfaces uses the tech-
nique of “diffusion of cycles” mentioned above. The
situation for surfaces is exceptional, since the re-
sult for surfaces is optimal yet is obtained by “el-
ementary” geometry. At the time, the uniformiza-
tion theorem and other techniques of theory of one
complex variable were yielding very poor results.

For higher dimensions one needs new ideas and
invariants. The first thing that MG does in the Fill-
ing paper is to embed the Riemannian manifold
under consideration in the infinite-dimensional
Banach space C 0(M) of all continuous functions on
M9 by the map f given by distance functions to
points, f(x) =d(x, -). The basic property of this
map is that it is an isometric embedding of M4 into
CO%(M) with the supremum norm. The isometry
condition is stronger than the usual one for iso-
metric embeddings into Euclidean spaces: the in-
duced metric is not the Riemannian one based on
length of curves, but the induced one in the ele-
mentary sense:

dx,y)=d({fXx),f(y)) = suAr} ld(x,z) — d(y, 2)|.
zZe

Such a strong isometric embedding is impossible
in finite dimensions, but it is precisely the one
needed for the proof.

In CO%M), an infinite-dimensional setting, MG
proves an isoperimetric inequality for the volume
of the manifolds N9*1 that fill the image f(M49); i.e.,
the boundary of N9*1 is precisely f(M9). The
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infimum of these vol-
umes is called the filling
volume of M4. Another
new invariant is needed:
the filling radius of M4,
the smallest number p
such that if an N9*1 has
M4 as boundary, then it
cannot be contracted to
f(M49) inside the p-neigh-
borhood of f(Md). Now
MG proves (this is the rel-
atively easy part) that for
essential manifolds the
systole is < 6p. The proof
of the isoperimetric in-
equality in infinite di-
mensions is hard, and MG

not contract to

Boundary of N4+l does

S in Up(f (M)

Nd+1

\f (M)

Boundary of Nd+1

contracts to fAM4)

in Up(f (M%)

considers it as belonging
to “geometric surgery”.

Some comments are
now in order. We have al-
ready mentioned the fact
that MG’s invariants are
often impossible to compute for standard mani-
folds. The filling volume and the filling radius il-
lustrate this point. The filling radius has been com-
puted only for spheres, real projective spaces, and
the complex projective plane (by M. Katz in 1983
and 1991). The filling volume is more baffling, be-
cause its exact value is still unknown for any man-
ifold, even for the simplest one, namely, the circle
S1 (the expected value is 21, the area of a hemi-
sphere).

Let us continue with the Filling paper, which is
150 pages long and is written in a very succinct
style. The Filling paper contains numerous other
results and techniques as well as an in-depth vi-
sion of metric geometry, and not only of Rie-
mannian manifolds but also of “Finsler mani-
folds”.14 Finsler manifolds are those for which the
metric structure is given by a collection of convex
symmetric bodies in the various tangent spaces of
a manifold under consideration. The Riemannian
case is when they all are ellipsoids. Other new in-
variants introduced in the Filling paper are the vi-
sual closure and the visual volume, which are await-
ing other applications.

Still, the Filling paper is diffusing slowly into var-
ious fields. For example, MG proves a result that
apparently seems trivial: Consider a Riemannian
manifold with the property that every ball is con-
tractible inside the ball with same center and twice
the radius; then the volume of this manifold is in-
finite. This type of universal contractibility is now
basic in Riemannian geometry and is related to the
topic called controlled topology.l>

higher.

L4 For these spaces, see, for example, D. Bao, S.-S. Chern,
and Z. Shen, An Introduction to Finsler Geometry, Lec-
ture Notes in Math., Springer-Verlag, 2000.
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The above concerned situations in which the sys-
tole was “one-dimensional”. We return to Thom's
program, stated above, for higher-dimensional sys-
toles, i.e., with homology or homotopy classes in
dimension > 1. Natural candidates are complex
projective spaces, products of manifolds, etc. Un-
happily, in a 1992 paper, “Systolic and intersystolic
inequalitites”, MG laid the foundations of a pro-
gram that kills every possible hope for these man-
ifolds. Starting with dimension 2, no universal sys-
tolic inequality can hold. We have here systolic
softness, whereas there is systolic rigidity in the one-
dimensional case. MG’s program has been pur-
sued by various authors, including Babenko, Katz,
and Suciu, in recent years and has been almost com-
pletely finished. The guess is that no manifold will
have any systolic rigidity. For MG’s version of the
history of this subject, see his “systolic reminis-
cences” at the end of Chapter 4 of [13], Metric
Structures for Riemannian and Non-Riemannian
Manifolds.

We turn to Gromov’s contribution to surgery, a
basic tool in algebraic topology. His work lies in
“geometrically controlled surgery”, or “quantitative
surgery”. The basic surgery operation works with
two manifolds, M and N, of equal dimension. The
trivial kind of surgery is the connected sum: one
joins M and N by a small tube after having taken
a small ball out of each. More sophisticated surgery
is possible in higher dimensions. From M9 one

15See, for example, the survey of Berger “Riemannian
geometry during the second half of the twentieth century”,
in the Jahresbericht der DMW in 1998 or reprinted as AMS
University Lecture Notes, volume 17, in 2000 (ISBN 0-
821-82052-4).
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Figure 5. It is intuitive that the tubular neighborhood of radius R of a subvariety M, for
small R, can be retracted to M, but that there is a limit value (called the filling radius) for
which that property stops. Then M will bound some submanifold of one dimension
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removes a topological sphere Sk and looks at a
small tubular neighborhood of it inside M4. The
boundary of this tube is S¥ x $9-k~1_One does the
same to N9, but this time with a sphere §4-k-1,
Here we have again a tube, and the boundary this
time is S9-k~1 x Sk It remains to glue the two
boundaries by exchanging the order of the fac-
tors. The simplest example is two copies of S x S2,
with surgery around a circle in each of them. If one
does not interchange the role of the parallels and
the meridians on the torus S! x S1, the final result
is still S x $2. But interchanging them yields the
sphere §3 (as in the Hopf fibration of S3).

MG used controlled surgery (with metrics) in a
number of cases. The firstis in a joint 1980 paper
with Lawson, “The classification of simply con-
nected manifolds of positive scalar curvature”,
which is the basic work about the classification of
Riemannian manifolds of positive scalar curva-
ture. The authors show that, if one starts with two
Riemannian manifolds M and N, both with posi-
tive scalar curvature, and if one performs a surgery
of codimension at least 3, then the manifold so ob-
tained can be endowed with a Riemannian metric
that is also of positive scalar curvature.

In the Filling paper [5] controlled surgery is
used at least twice: first for the optimal systolic in-
equality for surfaces of high genus, second to
prove the isoperimetric inequality in infinite di-
mensions. Controlled surgery is also a basic tool
for proving systolic softness for some manifolds.
One constructs local boxes that are systolically
soft and controls the surgery done when intro-
ducing these boxes into the manifolds.

In Part I we shall discuss MG’s contributions to
Riemannian geometry and related subjects; some
of these have been hinted at in Part 1.
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