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W
hen Hilbert intro-
duced his famous list of
23 problems, he said
a test of the perfec-
tion of a mathe-

matical problem is whether it
can be explained to the first
person in the street. Even
after a full century,
Hilbert’s problems have
never been thoroughly
tested. Who has ever chatted with
a telemarketer about the Riemann hy-
pothesis or discussed general reciprocity
laws with the family physician?

Last year a journalist from Plymouth, New
Zealand, decided to put Hilbert’s 18th problem to
the test and took it to the street. Part of that prob-
lem can be phrased: Is there a better stacking of
oranges than the pyramids found at the fruit stand?
In pyramids the oranges fill just over 74% of space
(Figure 1). Can a different packing do better?

The greengrocers in Plymouth were not im-
pressed. “My dad showed me how to stack oranges
when I was about four years old,” said a grocer
named Allen. Told that mathematicians have solved
the problem after four hundred years, Allen was
asked how hard it was for him to find the best pack-
ing. “You just put one on top of the other,” he said.
“It took about two seconds.”

Not long after I announced a solution to the
problem, calls came from the Ann Arbor farmers

market. “We need you down here right
away. We can stack the oranges, but

we’re having trouble with the arti-
chokes.”

To me as a discrete geometer
there is a serious question be-

hind the flippancy. Why is
the gulf so large between

intuition and proof?
Geometry taunts and de-
fies us. For example, what

about stacking tin cans? Can
anyone doubt that parallel rows

of upright cans give the best arrange-
ment? Could some disordered heap of cans

waste less space? We say certainly not, but the
proof escapes us. What is the shape of the cluster
of three, four, or five soap bubbles of equal vol-
ume that minimizes total surface area? We blow
bubbles and soon discover the answer but cannot
prove it. Or what about the bee’s honeycomb? The
three-dimensional design of the honeycomb used
by the bee is not the most efficient possible. What
is the most efficient design?

This article will describe some recent theorems
that might have been proved centuries ago if only
our toolbag had matched our intuition in power.
This article will describe the proof that the pyra-
mid stacking of oranges is the best possible. But
first I explain a few terms. A sphere packing always
refers to a packing by solid balls. (The subject of
sphere packings should more properly be called
ball packings.) Density is the fraction of a region
of space filled by the solid balls. If this region is
bounded, this fraction is the ratio of the volume
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Figure 1. An
optimal

arrangement
of equal balls

is the face-
centered

cubic
packing.
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of the balls to the volume of the region. If any ball
crosses the boundary of the region, only the part
of the ball inside the region is used. If the region
is unbounded, the density of the intersection of the
region with a ball of radius R is calculated, and the
density of the full region is defined as the lim sup
over R.

Harriot and Kepler
The pyramid stacking of oranges is known to
chemists as the face-centered cubic packing. It is
also known as the cannonball packing, because it
is commonly used for that purpose at war memo-
rials. The oldest example I have seen is the pyra-
mid of cannonballs from the sixteenth century
that rests in front of the City Museum of Munich.
Formulas for the number of cannonballs stacked
in mounds have been known this long. In the six-
teenth century Walter Raleigh gave his mathe-
matical assistant, Thomas Harriot, the task of find-
ing the formula. Harriot did this without difficulty.

As Harriot grew in reputation as a scientist,
spheres became a favorite topic of his. To him,
atoms were spheres. To understand how they stack
together is to understand nature. Numbers were
spheres. In the tradition of Pythagoras, triangular
numbers are stacked like billiard balls set in a tri-
angle. Harriot drew Pascal’s triangle, but with a
sphere packing with that many spheres replacing
each number.

In 1606 Kepler complained that his recent book
on optics was based entirely on theology. He turned
for help to Harriot, who had been conducting ex-
periments in optics for years. In fact, Harriot’s
knowledge of optics was so advanced that he had
discovered Snell’s law—twenty years before Snell
and forty years before Descartes. Harriot supplied
Kepler with valuable data in optics, but he also tried
to persuade Kepler that the deeper mysteries of op-
tics would be unfolded through atomism. Unlike
Kepler, Harriot was an ardent atomist, believing
that the secrets of the universe were to be revealed
through the patterns and packings of small, spher-
ical atoms. Kepler was skeptical. Nature abhors a
vacuum, and between the atoms lies the void.

Harriot persisted. Kepler relented. In 1611 Kepler
wrote a little booklet, The Six-Cornered Snowflake,
that influenced the direction of crystallography
for the next two centuries. This slender essay was
the “first recorded step towards a mathematical the-
ory of the genesis of inorganic or organic form.”1

In a discussion of sphere packings he constructed
the face-centered cubic packing. Kepler asserted
that it would be “the tightest possible, so that in
no other arrangement could more pellets be stuffed
into the same container.” This assertion has come
to be known as the Kepler Conjecture. It went with-
out a proof for nearly four hundred years, until

August 1998, when I gave a proof with the help of
a graduate student, Samuel P. Ferguson.

Theorem (Kepler Conjecture). No packing of balls
of the same radius in three dimensions has density
greater than the face-centered cubic packing.

The face-centered cubic packing is constructed
by setting one layer of balls upon another. Each layer
is a regular pattern of balls in a grid of equilateral
triangles. But there are other sphere packings that
have exactly the same density (π/

√
18 ≈ 0.74) as

the face-centered cubic packing. The best-known
alternative is the hexagonal close-packing. Its 
individual layers are identical to those of the face-
centered cubic, but the layers are staggered to 
produce a different global packing with the same
density (Figure 2). There is no simple list of all
packings of density π/

√
18, but there are many

other possibilities. The density of the packing in
space is defined as a limit, and removing one, two,
or a hundred balls from the packing will not affect
the limiting density. Nor will removing an entire in-
finite layer of balls.

This article gives the broad outline of the proof
of the Kepler Conjecture in the most elementary
terms possible. The proof is long (282 pages), and
every aspect of it is based on even longer computer
calculations. A jury of twelve referees has been de-
liberating on the proof since September 1998. No-
body has raised doubts about the overall correct-
ness of the proof. And yet, to my knowledge, no

1L. L. Whyte, in The Six-Cornered Snowflake, Oxford
Clarendon Press, Oxford, 1966.

Figure 2. There are two optimal ways to place
one layer of spheres upon another. Many
different optimal packings can be constructed
by varying the placement of each successive
layer.
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one has made a thorough independent check of the
computer code.

Gauss
Gauss was the first to prove anything about the Ke-
pler Conjecture. He showed that if all of the cen-
ters of the balls of a packing are aligned along the
points of a lattice, then it can do no better than the
face-centered cubic packing. Gauss’s name confers
an undeserved prestige to this elementary result.
The proof takes only a few lines and requires no
calculations. In the best case it will certainly be true
that two balls will touch each other. Once two balls
touch, the lattice constraint forces the balls to
touch along long parallel strings of balls, like a thick
row of marshmallows on a roasting stick. In the
best case it will also certainly be true that two of
the long parallel beaded strings will touch. The lat-
tice constraint forces the balls to be laid out in iden-
tical parallel plates. The centers of four balls in the
plate form a parallelogram, as shown in Figure 3.
The parallel plates should be set one on the other
so that the plates are as close as possible. A ball
D of the next layer is set in the pocket between
three balls A,B,C in the layer below so that it

touches all three. The triangle ABD formed by the
centers is equilateral.

We now change our point of view. We view all
of the balls as arranged in planes parallel to ABD.
In each of those layers the centers of the balls re-
peat the pattern of the equilateral triangle ABD.
The balls of one layer should be nestled in the pock-
ets of the layer before so that each ball rests on
three below it. The lattice this describes is the
face-centered cubic.

Thue
The two-dimensional version of Kepler’s conjecture
asks for the densest packing of unit disks in the
plane. If we inscribe a disk in each hexagon in the
regular hexagonal tiling of the plane, the density
of the packing is π/

√
12 ≈ 0.9069 . Thue’s theo-

rem, announced in 1890, affirms that this is the
highest density possible. There is a common mis-
conception that the proof of Thue’s theorem is not
elementary. The proof here is based on an idea of
Rogers’s and does not require calculus. The ideal
presentation of this proof would be one that 
develops interactively on the computer screen
without written words. But I never found the time
to write the computer program, and I resort to
words.

Take an arbitrary packing of the plane by
nonoverlapping disks of radius 1. We will partition
the plane into regions and will show that each re-
gion has density at most π/

√
12. Center a larger

circle of radius 2/
√

3 around each disk. Whenever
two of these large circles intersect, draw the seg-
ment between the two points of intersection and
draw two congruent isosceles triangles with this
segment as base and vertices at the centers of the
two circles. There cannot be a point interior to
three large circles. Indeed, in the extreme case,
three large circles meet at a point, the circumcen-
ter, if the centers are the vertices of an equilateral
triangle of edge 2.

This gives our partition of space: regions out-
side all of the larger circles, the isosceles triangles,
and the part inside the larger circles but outside
all triangles. The regions outside all of the larger
circles have density 0, which is certainly less than
π/
√

12. The density of the interior of the larger cir-
cles is the square 3/4 of the ratio (1 : 2/

√
3) of the

smaller to larger radius, again less than π/
√

12.
This inequality can be seen geometrically by draw-
ing a hexagon that the small circle inscribes and
the large one circumscribes. The hexagon has den-
sity π/

√
12, and this will be greater than the den-

sity inside the full larger circle.
To calculate the density of an isosceles triangle,

we apply a linear transformation to the triangle
(preserving ratios of areas and hence densities) to
transform it into an equilateral triangle with edge
2/
√

3. The transformation scales along the or-
thogonal axes through the base and altitude of the

C
Á

A B

Figure 3. In the optimal lattice packing, a ball in
the layer above the layer shown will touch the

three balls A (or A′), B, and C .

Figure 4. The linearly transformed region on
the right occupies a smaller fraction of the

equilateral triangle than the fraction inside the
unit disk.
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triangle and fixes the vertex v opposite the base
of the isosceles triangle. The unit circle is trans-
formed into an ellipse. The linear transformation
preserves the lengths of the two equal edges of the
isosceles triangle. Hence the ellipse cuts those
edges at distance 1 from its center v . This
identifies all four points of intersection of two
conic sections, the ellipse and the unit circle cen-
tered at v (see Figure 4.) Knowing these points of
intersections, we deduce that the intersection of
the ellipse with the interior of the equilateral tri-
angle is contained in a disk of radius 1 centered
at v . In particular, the density of the equilateral tri-
angle is increased by replacing the ellipse with a
circle of radius 1. The equilateral triangles fit to-
gether to form hexagons with inscribed disks of
radius 1. The density of these pieces is therefore
π/
√

12. This completes the proof of Thue’s theo-
rem.

Three Dimensions
We return to three dimensions to discuss the proof
of the Kepler Conjecture. To avoid the unpleasant
boundary effects caused by finite packings, we
study sphere packings that extend to all of Eu-
clidean space. Sphere packings are determined by
a countably infinite set of parameters which give
the coordinates of the center of each sphere. It was
realized in the 1950s that it should be possible to
prove the Kepler Conjecture by looking at a finite
number of balls at a time. With this in mind, we
discuss finite clusters of balls.

Voronoi
Each ball in our packings should be painted one
solid color from a finite color set. These colors are
needed in the details of certain constructions to
resolve degeneracies, to make piecewise smooth
functions smooth, and to keep domains compact.
These colors will help me avoid oversimplifica-
tions in my exposition. But by going into details
about colors, I would obscure the main lines of the
proof of the Kepler Conjecture. So now that we have
established that the balls are colored, the reader
is free to paint all the balls black.

Let t > 1 be a real number. We define a cluster
of balls to be a set of nonoverlapping colored balls
around a fixed ball at the origin, with the property
that the ball centers have distance at most 2t from
the origin. A cluster of n balls is determined by the
3n coordinates of the centers. These coordinates
give a topology on the set C = C(t) of all clusters,
making it a compact set. Two clusters with a dif-
ferent number of balls or different colorings lie in
different connected components of C .

The ball at the center of the cluster is contained
in a truncated Voronoi cell. By definition the Voronoi
cell is the set of all points that lie closer to the ori-
gin than to any other ball center in the cluster. The
truncated Voronoi cell Vt (p) is the intersection of

the Voronoi cell with a ball of radius t at the ori-
gin. We have seen Voronoi cells already in the
proof of Thue’s theorem without calling them that.
The regular hexagons that appear in the proof of
Thue’s theorem are the Voronoi cells of the opti-
mal packing. And the large disks, sliced at times
to form isosceles triangles, are truncated Voronoi
cells (t = 2/

√
3) . Truncation is purely a matter of

convenience, making the volumes of Voronoi cells
easier to estimate.

Truncated Voronoi cells give a bound on the
density of sphere packings. We place every ball of
a packing inside its truncated Voronoi cell. Voronoi
cells do not overlap; a point of intersection of two
closed Voronoi cells, being equidistant from the cen-
ter of two balls, lies on the boundary of both. The
parts of space outside all truncated Voronoi cells
do not meet any balls and have density 0. The den-
sity of the packing is no greater than its densest
truncated Voronoi cell. That is, the greatest possible
volume ratio of ball to truncated Voronoi cell is an
upper bound on the density of a packing.

The Voronoi cells of the face-centered cubic
packing are identical rhombic dodecahedra, as
shown in Figure 5. Let vfcc be the volume of the
rhombic dodecahedron. The density of the face-
centered cubic packing is the ratio of the volume
of the unit ball to vfcc :

4π/3
vfcc

=
π√
18

≈ 0.74.

The most distant vertices of the rhombic dodeca-
hedron are 

√
2 from the center. Thus, if t ≥

√
2,

then truncation has no effect. If t <
√

2, then the
truncation cuts into the rhombic dodecahedron and
destroys the relation between its volume and our
target π/

√
18. We fix the truncation at t =

√
2, its

Figure 5. The face-centered cubic packing is produced by
placing a ball inside each rhombic dodecahedron in the tiling.
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smallest useful value. The truncation now fixed, we
drop t from the notation and write V (p) = Vt (p).

The minimum volume of a Voronoi cell (either
untruncated or truncated at t =

√
2) was recently

determined by Sean McLaughlin. For this result he
was awarded the AMS-MAA-SIAM Morgan Prize in
January 2000. It confirms a conjecture made by 
L. Fejes Tóth nearly sixty years ago.

Theorem (McLaughlin). The volume of the Voronoi
cell of a sphere packing of a cluster p is uniquely min-
imized by a regular dodecahedron of inradius 1.

The cluster of balls that gives the regular do-
decahedron is a cluster with one ball at the center
and twelve additional balls tangent to the one at
the center, placed at the centers of the faces of the
regular dodecahedron.

The ratio of the volume of the unit ball to the
volume of the regular dodecahedron is an upper
bound on the density of a sphere packing. This
upper bound is about 0.75. In two dimensions the
Voronoi cell of minimal volume is the regular hexa-
gon, and it tiles the plane to form the optimal
packing. In three dimensions the Voronoi cell of
minimal volume no longer tiles. The locally opti-
mal figure, the dodecahedron, no longer corre-
sponds to the globally optimal figure, the tiling by
rhombic dodecahedra. This is the source of com-
plications in the proof of the Kepler Conjecture.

We add a correction term f to the minimization
of the volume of Voronoi cells; namely, we define
a continuous function f on C and consider the
minimization problem

min
p

(
vol(V (p)) + f (p)

)
.

We say that f is fcc-compatible if the minimum of
vol(V (p)) + f (p) is vfcc , the volume of the rhombic
dodecahedron.

Let Λ be the set of centers of the balls in a gen-
eral packing. For λ ∈ Λ consider the cluster of
balls centered at distance at most 2t = 2

√
2 from

λ. Translating the cluster to the origin, we obtain
a cluster pλ in C . Let ΛR = Λ∩ BR be the set of all
centers within distance R of the origin. We say that
f is transient if ∑

λ∈ΛR
f (pλ) = o(R3).

Assume that f is fcc-compatible and transient.
By summing

vfcc ≤ vol(V (p)) + f (p)

over ΛR , we obtain

|ΛR|vfcc ≤ vol(BR) + o(R3).

Divide by R3vfcc to get the density of a packing in-
side a ball of radius R.

|ΛR|
R3 ≤ 4π/3

vfcc
+ o(1) =

π√
18

+ o(1).

Taking the limit as R tends to ∞, we obtain the
bound π/

√
18 on the density of the packing.

That shows that the whole proof of the Kepler
Conjecture follows if a transient fcc-compatible
function f can be found. To establish fcc-compat-
ibility, an extremely difficult nonlinear optimiza-
tion problem on C must be solved. We select the
function f with transience in mind, so that tran-
sience is automatically satisfied.

Fejes Tóth
Do correction terms with the required properties
exist? The evidence suggests that they exist in
abundance. The first correction term was pro-
posed by L. Fejes Tóth in 1953, but his clusters were
much larger than those used here. His clusters
contain so many balls that fcc-compatibility has
never been established. Nevertheless, his proposal
represents a significant advance, because it gave
the first evidence that the Kepler Conjecture could
be solved through an optimization problem in a
finite number of variables. He proposed in 1964
that computers might be used to determine the
minimum. Thus, the general strategy of a proof was
set.

The correction terms f are based on a careful
study of the local geometry of sphere packings.
Fejes Tóth’s correction term f (p) has the form∑

q
a(p, q)v(q),

with q running over all centers of balls in the clus-
ter p within a fixed distance of the center of the
cluster. The term v(q) is the volume of a trun-
cated2 Voronoi cell centered at q. The constants
a(p, q) sum to zero, 

∑
p a(p, q) = 0, for all clusters

p in a packing. This zero-sum condition leads to
a cancellation of the terms in 

∑
f (p), and hence to

the transience of f. This correction term illustrates
the general correction term strategy: f is con-
structed as sums of volumes that are added at p
and subtracted again at q. The sum 

∑
f (p) behaves

like the telescoping series 1− 1 + 1− 1 + · · · , and
each term of the sum is swallowed by the next in
its path. Transience results from this cancellation
of terms.

Of course, there is no need for the volumes that
are shuffled between p and q to be Voronoi cells.
One of many other possibilities is known as the De-
launay decomposition. In that decomposition an
edge is drawn between two centers of balls if their
Voronoi cells share a face. These edges form sim-
plices, known as Delaunay simplices, and the sim-
plices partition space.

When asked to name the most difficult part of
the proof of the Kepler Conjecture, I answer

2A different truncation constant is used in this approach.
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without hesitation that it was the design of the de-
composition of space implicit in f. I had worked
with Voronoi cells without success and had also
tried Delaunay simplices. Both approaches became
complicated beyond my ability to understand them.
My progress stopped. Finally, one day in Novem-
ber 1994 I realized how to combine the two ap-
proaches into a hybrid decomposition that re-
tained the best features of each. From that day on,
I never waivered in my confidence that the Kepler
Conjecture would eventually be solved by the hy-
brid approach.

Hybrid correction terms are extremely flexible
and easy to construct, and soon Samuel Ferguson
and I realized that every time we encountered dif-
ficulties in solving the minimization problem, we
could adjust f to skirt the difficulty. The function
f became more complicated, but with each change
we cut months—or even years—from our work.
This incessant fiddling was unpopular with my
colleagues. Every time I presented my work in
progress at a conference, I was minimizing a dif-
ferent function. Even worse, the correction func-
tion in my early papers differs from the one in the
final papers, and this required me to go back and
patch the old papers. The correction function did
not become fixed until it came time for Ferguson
to defend his thesis, and we finally felt obligated
to stop tampering with it. However, if I were to re-
vise the proof to produce a simpler one, the first
thing I would do would be to change the correc-
tion function once again. It is the key to a simple
proof.

Combinatorial Structures
With f a fixed transient function, the only remain-
ing problem is the minimization problem: show that
the corrected volume F (p) = vol(V (p)) + f (p) , for
p ∈ C, is at least the volume vfcc of the rhombic do-
decahedron. The space of clusters C is so compli-
cated that we cannot minimize F directly. We as-
sociate with each cluster p ∈ C a planar graph that
identifies the most prominent geometrical fea-
tures of the cluster. Next, we give a lower bound
on the value of F (p) that depends only on the com-
binatorial structure of this planar graph. In most
cases the combinatorial lower bound on F (p) is
greater than vfcc , as desired. The combinatorial
approximation to F (p) is rather crude, and some-
times it fails to give the lower bound we want. By
means of a computer search we can generate all pla-
nar graphs for which the combinatorial lower bound
on F (p) is less than vfcc . If F (p) < vfcc , the planar
graph of p must appear on this computer-gener-
ated list of possibilities. This list contains about
5,000 planar graphs.

The planar graph of a cluster p is easy to con-
struct. Each edge of the graph corresponds to pairs
of balls that are close to the ball at the origin and
that are close to each other. Set τ = 4

√
3/7 ≈ 2.618.

Closeness is deter-
mined by a parame-
ter3 T ∈ (2, τ). If two
ball centers have dis-
tance at most T from
the origin and dis-
tance at most T from
each other, we draw
a circular arc on the
unit ball at the origin
connecting the two
unit direction vectors
pointing to the two
ball centers (Figure
6).

These circular
arcs do not meet, ex-
cept at their end-
points. In fact, this is
why we require that
T < τ . If T = τ , we
have the configura-
tion of ball centers
shown in Figure 7.
The edges all have
length 2 or τ, and
the edges of length
τ are marked with
heavy lines. The
edges A and B give
crossing arcs on the
sphere at the origin
0. For any smaller T,
the arcs cannot
cross.

The planar graph
—or more accu-
rately, the spherical
graph—associated
with a cluster p is the one formed by this system
of arcs on the unit sphere. For example, the pla-
nar graph associated with the face-centered cubic
packing is an alternating pattern of equilateral tri-
angles and squares, with two triangles and two
squares meeting at every vertex. The planar graph
associated with the regular dodecahedral cluster
is the icosahedral graph with twenty triangles
arranged five to a vertex.

In the complement of this collection of arcs on
the unit sphere, we call the closure of each con-
nected component a standard region. In simple
cases, these standard regions are just spherical
polygons on the unit sphere. But in general they
may be much more complicated. The most diffi-
cult estimates in the proof of the Kepler Conjec-
ture are those that establish that the complicated
standard regions are never optimal. This is done
by making a combinatorial approximation to the
minimization problem. We calculate a lower bound

3We use T = 2.51 , but this is rather arbitrary.

Figure 6. A tetrahedron cuts out a
spherical triangle on the unit sphere.

A

B
0

Figure 7. This configuration must be
excluded because it produces
overlapping edges on the unit sphere.
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on F (p) that depends only on the combinatorial
structure of the planar graph associated with p.

Most of my time between 1995 and 1998 was
spent working out a proof of these combinatorial
lower bounds. Already in 1994 I knew what the
bounds should be, but the proofs eluded me. The
primary difficulty was with standard regions with
a large number of sides. As the number of sides
increased, the dimension became too large for me
to handle.

The eventual proof was shaped by the capabil-
ities of computers. If computers had been more
powerful, the proof might be drastically shorter.
If computers had been less powerful, I would still
be working toward a solution. As a result of the
development of computers, the proof of the Kepler
Conjecture fifty years from now will likely be en-
tirely different from what it is today.

A simple heuristic told me what I could get
from a computer. My computer was generally able
to prove statements about a single tetrahedron, but
failed to prove anything about more complicated
geometrical objects. In other words, my computer
could tell me about the six-dimensional space pa-
rametrizing the edge lengths of a tetrahedron but
was too slow to handle seven dimensions. Given
that the Kepler Conjecture is an optimization prob-
lem in about seventy variables, I found this limi-
tation to be a frustrating one. The challenge of the
problem was to come to a thoroughly six-dimen-
sional understanding of a seventy-dimensional
space.

5,000 Cases
In some cases the crude combinatorial bounds
were not good enough. One case turned out to be
far more intricate than the others, and it became
the subject of Ferguson’s thesis. The remaining
4,999 or so planar graphs were analyzed individ-
ually. For each there is a large-scale nonlinear op-
timization problem to be solved. Minimize F (p)
subject to the constraint that the cluster be asso-
ciated with the given planar graph. Nonlinear op-
timization problems of this size can be hopelessly
difficult to solve rigorously. We might easily have
come this close to a solution only to be thwarted
in our attempts by nonlinearities. But a new ob-
servation carries us forward: the large-scale struc-
ture of the problem is linear and can be solved by
linear programming methods.

The large-scale linearities of the problem can
best be understood by turning back to the prob-
lem, solved by McLaughlin, of minimizing the vol-
ume of a truncated Voronoi cell. Here there is no
correction term; that is, f = 0. To further simplify
the exposition, let us assume that there is no trun-
cation, so that the full Voronoi cell lies inside a ball
of radius 

√
2 at the origin. We divide the Voronoi

cell into simplices according to some convenient
scheme. To fix our attention, here is one possibil-

ity. Drop a perpendicular from each face (at a point
on the face we will call v ) to the center of the
Voronoi cell. Drop a perpendicular from each edge
(at a point w) of the face to v . The vertices of a sim-
plex are the center of the Voronoi cell, the point
v on the face, the point w on the edge of the face,
and finally either endpoint of the edge. These sim-
plices partition the Voronoi cell.

Instead of minimizing the volume of the Voronoi
cell directly, we can introduce variables xi repre-
senting the volumes of the individual simplices. We
minimize the sum of the xi (which is certainly lin-
ear in xi), subject to the constraint that the pieces
fit together. The assembly constraints are all lin-
ear. There are constraints of the form z = z′ (which
is linear in z and z′), where z is the length of an
edge of a simplex and z′ is the length of a match-
ing edge of a second simplex that shares an edge
with the first. There are constraints of the form
α1 +α2 + . . . +αk = 2π (linear in αi ) that stipulate
that the dihedral angles of the simplices around
an internal edge should sum to 2π, and there are
similar linear constraints for edges that lie on a face
of the Voronoi cell. The problem becomes a mas-
sive linear programming problem.

There is a flaw in this argument: there are un-
avoidable nonlinear constraints. The volumes xi
and the dihedral angles αi are nonlinear functions
of the edge lengths of a simplex. Nevertheless, the
large-scale structure of the problem is linear. The
nonlinear relations are the relations that hold for
a simplex in isolation. These nonlinearities involve
a small number of variables and can be treated by
computer according to the heuristic principle enun-
ciated above that the computer can tell us what-
ever we want to know about a single simplex. In
particular, the computer verifies inequalities be-
tween volumes, dihedral angles, and edge lengths
that can be used as linear substitutes for the non-
linear relations.

If we now go back to the Kepler Conjecture, so
that the correction term f is nonzero, the large-scale
structure of the problem is still linear. In fact, the
function f is defined geometrically as a linear com-
bination of volumes. Knowing that linear programs
would be an essential part of the proof, I was care-
ful to choose a function f adapted to that end. By
breaking larger objects into smaller objects, we can
express the minimization problem in terms of sim-
ple quantities such as areas of spherical triangles
and volumes of simplices, subject to linear as-
sembly constraints. All nonlinearities of the prob-
lem are confined to a small number of variables.

Linear Programs
The linear part of the problem was solved with a
linear programming package. A typical linear op-
timization problem involves about 200 variables
and perhaps 2,000 constraints. I estimate that
nearly 105 linear programming problems of this
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size were solved as part of the solution. This is a
small calculation in comparison with industrial
applications of linear programming.

Some variables represent distances between
balls in various finite clusters of balls. Other vari-
ables represent dihedral angles, volumes, solid an-
gles, and corrected volumes of Voronoi cells. Some
constraints express geometric relations between
the variables. Other constraints restrict the lengths
and angles so that physically realistic packings of
balls are obtained. The linear programming prob-
lems minimize the corrected volume subject to
these constraints. By checking that in every case
the corrected volume is greater than the volume
of the rhombic dodecahedron, the Kepler Conjec-
ture is proved.

Honeycombs
If we turn to the next page after the Kepler Conjec-
ture in Kepler’s Six-Cornered Snowflake, we find a dis-
cussion of the structure of the bee’s honeycomb.
The rhombic dodecahedron was discovered by 
Kepler through close observation of the honeycomb.
The honeycomb is a six-sided prism sealed at one end
by three rhombi. By sealing the other end with three
additional rhombi, the honeycomb cell is trans-
formed into the rhombic dodecahedron.

During the eighteenth century, mathematicians
made extensive studies of the isoperimetric prop-
erties of the honeycomb and believed the honey-
comb to be the most efficient design possible. For
example, in 1743 C. MacLaurin in his investigation
of the rhombic bases of the honeycomb concluded,
“The cells, by being hexagonal, are the most ca-
pacious, in proportion to their surface, of any reg-
ular figures that leave no interstices between them,
and at the same time admit of the most perfect
bases.” However, the obvious answer provided by
the honeybee turned out to be incorrect. Upsetting
the prevailing opinion, L. Fejes Tóth discovered that
the three-dimensional honeycomb cell is not the
most economical (Figure 8). The most economical
form has never been determined.

The cannonball packing of balls leads to hon-
eycomb cells. It is also related to more general
foam problems. If we tile space with hollow rhom-
bic dodecahedra and imagine that each has walls
made of a flexible soap film, we have an example
of a foam.

Kelvin
The problem of foams, first raised by Lord Kelvin,
is easy to state and hard to solve. How can space
be divided into cavities of equal volume so as to
minimize the surface area of the boundary? The
rhombic dodecahedral example is far from optimal.
Kelvin proposed the following solution. Truncated
octahedra fill space (see Figure 9). In fact, their
cross-sections are regular octagons, and the oc-
tagons tile the plane except for square holes. Each
truncated octahedron contains square plugs, so

that the next layer of octahedra plugs the square
holes of the previous layer.

Kelvin found that by warping the faces of the
truncated octahedra ever so slightly, he could ob-
tain a foam with smaller surface area than the
cells of the truncated octahedra. This was Kelvin’s
proposed solution. It satisfies the conditions
Plateau discovered for minimal soap bubbles.
Everyone seemed satisfied with Kelvin’s solution;
only a proof of optimality was missing.

Kelvin and his supporters were wrong, as the
physicists D. Phelan and R. Weaire showed in 1994.
They produced a foam with cavities of equal vol-
ume with a considerably smaller surface area than
the Kelvin foam. The Phelan-Weaire foam contains

Figure 8. In 1964 a cell (right) was discovered that is more
efficient than the bee’s honeycomb (left).

Figure 9. Kelvin conjectured that the optimal partition of
space into equal volumes is obtained by warping the tiling of
space by truncated octahedra.
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two different types of cavities, one with 14 sides,
the other with 12. (See Figure 10.) Imagine a cube
with a small ball at each vertex and one in the cen-
ter. Add two balls to each face as shown in Figure
11. Form the Voronoi cells around each ball, ad-
justed so that they all have the same volume. If one
warps the faces of this configuration ever so
slightly, the Phelan-Weaire counterexample to
Kelvin’s conjecture is obtained.

A finite version of the problem might be more
tractable. What shape minimizes surface area if the
foam contains only finitely many bubbles of equal
volume? If there is a single bubble, the problem is
the classical isoperimetric problem. The sphere
uniquely minimizes the area of a surface enclos-
ing a given volume. The problem of two bubbles,

known as the double bubble conjecture, was solved
only recently by J. Hass, M. Hutchings, and 
R. Schlafy.4 The problem for more than two bub-
bles is still unsolved.

The Kepler Conjecture and the Kelvin problem
are both special cases of a more general foam
problem. Phelan and Weaire ask us to imagine that
the soapy film walls have a measurable thickness.
We interpolate between the Kepler and Kelvin prob-
lems with a parameter w (measuring the wetness
of the film) that gives the fraction of space filled
by the thick film walls, and 1−w is the fraction
filled by the cavities. If the foam is perfectly dry,
then w = 0 and the film walls are surfaces. The
Kelvin problem asks for the most efficient design.
When the foam becomes sufficiently wet, w is
close to 1 and the cavities of the foam can be in-
dependently molded. The isoperimetric inequality
dictates that they minimize surface area by form-
ing into perfect spheres. The Kepler problem asks
for the smallest value of w for which every cavity
is a perfect sphere.

R. Weaire was writing a book on sphere packings
when I finished the proof of the Kepler Conjecture,
and we began to correspond. Under his influence,
I turned to the planar version of the foam problem.
This problem goes back over two thousand years.
What is the most efficient partition of the plane into
equal areas? The Honeycomb Conjecture asserts
that the answer is the regular hexagonal honey-
comb.

Pappus
Around 36 B.C. the Roman scholar Marcus Teren-
tius Varro wrote a book on agriculture in which he
discusses the hexagonal form of the bee’s honey-
comb. There were two competing theories of the
hexagonal structure. One theory held that the hexa-
gons better accommodated the bee’s six feet. The
other theory, supported by the mathematicians of
the day, was that the structure was explained by
the isoperimetric property of the hexagonal hon-
eycomb. Varro writes, “Does not the chamber in the
comb have six angles…The geometricians prove
that this hexagon inscribed in a circular 
figure encloses the greatest amount of space.”

This ancient proof has been lost, unless it was
the proof presented a few centuries later by Pap-
pus of Alexandria in the preface to his fifth book.
The argument in Pappus is incomplete. In fact, it
involves nothing more than a comparison of three
suggestive cases. It was known to the Pythagore-
ans that only three regular polygons tile the plane:
the triangle, the square, and the hexagon. Pappus
states that if the same quantity of material is used
for the constructions of these figures, it is the
hexagon that will be able to hold more honey.

Figure 10. In 1994 R. Phelan and D. Weaire found this
counterexample to the conjecture of Kelvin stated in

the caption of Figure 9.

Figure 11. The centers of the Phelan-Weaire cells are
located at the corners, at the marks on the faces, and

at the center of the cube.

4The double bubble conjecture, Electron. Res. Announc.
Amer. Math. Soc. 1 (1995), no. 3, 98–102.
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Pappus’s reason for restricting his attention to the
three regular polygons that tile are not mathe-
matical (bees avoid dissimilar figures). He also ex-
cludes gaps between the cells of the honeycomb
without mathematical argument. If the cells are not
contiguous, “foreign matter could enter the inter-
stices between them and so defile the purity of their
produce.”5

In 1943 L. Fejes Tóth gave a proof of the Hon-
eycomb Conjecture under the hypothesis that all
the cells are convex polygons. He stated that the
general conjecture had “resisted all attempts at
proving it.” In 1999 I found the first general proof.

Theorem (Honeycomb Conjecture). Any partition
of the plane into regions of equal area has perime-
ter at least that of the regular hexagonal honeycomb
tiling.

The main ingredient of the proof is a new
isoperimetric inequality which has the regular
hexagon as its unique minimum.

My expectations of mathematics have been
shaped by the Kepler Conjecture. I have come to
expect every theorem to be a monumental effort.
I was psychologically unprepared for the light 
20-page proof of the Honeycomb Conjecture. It
makes no significant use of computers and took
less than six months to complete. In contrast with
the years of forced labor that gave the proof of the
Kepler Conjecture, I felt as if I had won a lottery.

The honeycomb problem is preparation for the
real challenge, the Kelvin problem. What is the
most efficient partition of space into equal vol-
umes? Is it the Phelan-Weaire foam?

In this year of renewed interest in Hilbert’s
problems, many mathematicians are proposing
new lists of problems. My submission to Hilbert’s
millennial list is the Kelvin problem. It has a rich
history. Its solution will require new ideas from geo-
metric measure theory. Frank Morgan predicts that
the Kelvin problem might take a century to be
solved. For starters: Does an optimal solution exist?
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About the Cover
The mathematical structure of the hexago-

nal honeycomb has intrigued humankind for
over two thousand years. Pappus attributes
great wisdom to bees for choosing the hexag-
onal form for the cells in the honeycomb. The
theme of the sagacity of the bees is repeated
throughout the centuries, and the bee in Ara-
bian Nights asserts that “Euclid himself could
learn from studying the geometry of my cells.”

Mathematicians, as early as the first century
B.C., have remarked on the efficiency of the de-
sign of the honeycomb. As the Roman scholar
Marcus Terentius Varro expressed it, “The geo-
metricians prove that this hexagon inscribed in
a circular figure encloses the greatest amount
of space.” This isoperimetric property of the
honeycomb has continued to intrigue mathe-
maticians today. The article “Cannonballs and
Honeycombs” describes a modern version of
this ancient observation in two dimensions.

In three dimensions, the bee’s honeycomb is
not the most efficient design possible, as was
shown by L. Fejes Tóth (see page 447).

—T. C. H.

“Bees on a Honeycomb”. Photograph by Peter
Poulides for Tony Stone Images.
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