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Purposes and Methods
of Research in

Mathematics Education
Alan H. Schoenfeld

T
he first quotation above is humorous; the
second serious. Both, however, serve to
highlight some of the major differences
between mathematics and mathematics
education—differences that must be un-

derstood if one is to understand the nature of
methods and results in mathematics education.

The Cohen quotation does point to some seri-
ous aspects of mathematics. In describing various
geometries, for example, we start with undefined
terms. Then, following the rules of logic, we prove
that if certain things are true, other results must
follow. On the one hand, the terms are undefined;
i.e., “we never know what we are talking about.” On
the other hand, the results are definitive. As
Gertrude Stein might have said, a proof is a proof
is a proof.

Other disciplines work in other ways. Pollak’s
statement was not meant as a dismissal of math-
ematics education, but as a pointer to the fact that
the nature of evidence and argument in mathe-
matics education is quite unlike the nature of 
evidence and argument in mathematics. Indeed, the
kinds of questions one can ask (and expect to be
able to answer) in educational research are not
the kinds of questions that mathematicians might
expect. Beyond that, mathematicians and educa-
tion researchers tend to have different views of the

purposes and goals of research in mathematics ed-
ucation.

This article begins with an attempt to lay out
some of the relevant perspectives and to provide
background regarding the nature of inquiry within
mathematics education. Among the questions 
explored are the following: Just what is the enter-
prise? That is, what are the purposes of research
in mathematics education? What do theories and
models look like in education as opposed to those
in mathematics and the physical sciences? What
kinds of questions can educational research 
answer? Given such questions, what constitute
reasonable answers? What kinds of evidence are
appropriate to back up educational claims? What
kinds of methods can generate such evidence?
What standards might one have for judging claims,
models, and theories? As will be seen, there are 
significant differences between mathematics and
education with regard to all of these questions.

Purposes
Research in mathematics education has two main
purposes, one pure and one applied:

• Pure (Basic Science): To understand the 
nature of mathematical thinking, teaching, and
learning;

• Applied (Engineering): To use such under-
standings to improve mathematics instruction.

These are deeply intertwined, with the first at
least as important as the second. The reason is sim-
ple: without a deep understanding of thinking,
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teaching, and learning, no sustained progress on
the “applied front” is possible. A useful analogy is
the relationship between medical research and
practice. There is a wide range of medical research.
Some is done urgently, with potential applications
in the immediate future. Some is done with the goal
of understanding basic physiological mechanisms.
Over the long run the two kinds of work live in syn-
ergy. This is because basic knowledge is of 
intrinsic interest and because it establishes and
strengthens the foundations upon which applied
work is based.

These dual purposes must be understood. They
contrast rather strongly with the single purpose of
research in mathematics education, as seen from
the perspective of many mathematicians:

• “Tell me what works in the classroom.”
Saying this does not imply that mathematicians

are not interested at some abstract level in basic
research in mathematics education, but that their
primary expectation is usefulness in rather direct
and practical terms. Of course, the educational
community must provide useful results—indeed,
usefulness motivates the vast majority of educa-
tional work—but it is a mistake to think that direct
applications (curriculum development, “proof”
that instructional treatments work, etc.) are the
primary business of research in mathematics 
education.

On Questions
A major issue that needs to be addressed when
thinking about what mathematics education can
offer is, What kinds of questions can research in
mathematics education answer?

Simply put, the most typical educational ques-
tions asked by mathematicians—“What works?”
and “Which approach is better?”—tend to be 
unanswerable in principle. The reason is that what
a person will think works will depend on what
that person values. Before one tries to decide
whether some instructional approach is success-
ful, one has to address questions such as: Just
what do you want to achieve? What understand-
ings, for what students, under what conditions,
with what constraints? Consider the following 
examples.

One question asked with some frequency by
faculty and administrators is, “Are large classes as
good as small classes?” I hope it is clear that this
question cannot be answered in the abstract. How
satisfied one is with large classes depends on the
consequences one thinks are important. How much
does students’ sense of engagement matter? Are
students’ feelings about the course and toward
the department important? Is there concern about
the percentage of students who go on to enroll in
subsequent mathematics courses? The conclu-
sions that one might draw regarding the utility of
large classes could vary substantially, depending

on how much weight these outcomes are given.
Similar issues arise even if one focuses solely

on the mathematics being taught. Suppose one
wants to address the question, Do students learn
as much mathematics in large classes as in small
classes? One must immediately ask, “What counts
as mathematics? How much weight will be placed
(say) on problem solving, on modeling, or on the
ability to communicate mathematically?” Judg-
ments concerning the effectiveness of one form of
instruction over another will depend on the an-
swers to these questions. To put things bluntly, a 
researcher has to know what to look for and what
to take as evidence of it before being able to 
determine whether it is there.

The fact that one’s judgments reflect one’s 
values also applies to questions of the type, Which
approach works better (or best)? This may seem
obvious, but often it is not. Consider calculus 
reform. Soon after the Tulane “Lean and Lively”
conference, whose proceedings appeared in 
Douglas [5], the National Science Foundation (NSF)
funded a major calculus reform initiative. By the
mid-1990s NSF program officers were convinced
that calculus reform was a “good thing” and that
it should be a model for reform in other content
areas. NSF brought together mathematicians who
had been involved in reform with researchers in
mathematics education and posed the following
question: “Can we obtain evidence that calculus 
reform worked (that is, that reform calculus is
better than the traditional calculus)?” What they
had in mind, basically, was some form of test.
They thought it should be easy to construct a test,
administer it, and show that reform students did
better.

Those who advocated this approach failed to 
understand that what they proposed would in
essence be a comparison of apples and oranges. If
one gave a traditional test that leaned heavily 
on the ability to perform symbolic manipulations,
“reform” students would be at a disadvantage 
because they had not practiced computational skills.
If one gave a test that was technology-dependent or
that had a heavy modeling component, traditional
students would be at a disadvantage because 
technology and modeling had not been a large part
of their curriculum. Either way, giving a test and
comparing scores would be unfair. The appropriate
way to proceed was to look at the curriculum, 
identifying important topics and specifying what it
means to have a conceptual understanding of them.
With this kind of information, individual institu-
tions and departments (and the profession as a
whole, if it wished) could then decide which aspects
of understanding were most important, which they
wanted to assess, and how. As a result of extended
discussions, the NSF effort evolved from one that
focused on documenting the effects of calculus 
reform to one that focused on developing a 
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attraction, for example. Models are understood to be
approximations, but they are expected to be very
precise approximations in deterministic form. Thus,
for example, to model heat flow in a laminar plate,
we specify the initial boundary conditions and the
conditions of heat flow, and we then solve the 
relevant equations. In short, there is no ambiguity
in the process. Descriptions are explicit, and the 
standard of correctness is mathematical proof. A
theory and models derived from it can be used to
make predictions, which in turn are taken as 
empirical substantiation of the correctness of the
theory.

Things are far more complex in the biological 
sciences. Consider the theory of evolution, for 
example. Biologists are in general agreement with 
regard to its essential correctness, but the evidence
marshaled in favor of evolution is quite unlike the
kind of evidence used in mathematics or physics.
There is no way to prove that evolution is correct in
a mathematical sense; the arguments that support
it consist of (to borrow the title of one of Pólya’s
books) “patterns of plausible reasoning”, along with
the careful consideration of alternative hypotheses.
In effect, biologists have said the following: “We
have mountains of evidence that are consistent with
the theory, broadly construed; there is no clear 
evidence that falsifies the proposed theory, and no
rival hypotheses meet the same criteria.” While 
predictions of future events are not feasible given the
time scale of evolutionary events, the theory does
support an alternative form of prediction. Previ-
ously unexamined fossil records must conform to
the theory, so that the theory can be used to describe
properties that fossils, in particular geological strata,
should or should not have. The cumulative record
is taken as substantiation for the theory.

In short, theory and supporting evidence can 
differ substantially in the life sciences and in math-
ematics and physics. The same holds for models, or
at least the degree of precision expected of them:
nobody expects animal populations modeled by
predator-prey equations to conform to those mod-
els in the same way that heat flow in a laminar plate
is expected to conform to models of heat flow.

Finally, theories and models in the sciences are 
always subject to revision and refinement. As 
glorious and wonderful as Newtonian gravitational
theory was, it was superseded by Einstein’s theory
of relativity. Or consider nuclear theory. Valence
theory, based on models of electrons that orbited
around nuclei, allowed for amazing predictions,
such as the existence of as-yet-undiscovered 
elements. But physicists no longer talk about 
electrons in orbit around nuclei; once-solid 
particles in the theory such as electrons have been
replaced in the theory by probabilistic electron
clouds. Theories evolve.

Research in mathematics education has many of
the attributes of the research in the physical and
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framework for looking at the effects of calculus 
instruction. The result of these efforts was the 1997
book Student Assessment in Calculus [10].

In sum, many of the questions that would seem
natural to ask—questions of the type, What works?
or Which method works best?—cannot be an-
swered, for good reason.

Given this, what kinds of questions can research
in mathematics education address? I would argue
that some of the fundamental contributions from
research in mathematics education are the 
following:

• theoretical perspectives for understanding
thinking, learning, and teaching;

• descriptions of aspects of cognition (e.g., think-
ing mathematically; student understandings
and misunderstandings of the concepts of
function, limit, etc.);

• existence proofs (evidence of cases in which
students can learn problem solving, induc-
tion, group theory; evidence of the viability of
various kinds of instruction);

• descriptions of (positive and negative) conse-
quences of various forms of instruction.

Michèle Artigue’s recent Notices article [1] 
describes many of the results of such studies. I 
will describe some others and comment on the 
methods for obtaining them in the section “Methods”
below.

On Theories and Models (and Criteria for
Good Ones)
When mathematicians use the terms “theory” and
“models”, they typically have very specific kinds
of things in mind, both regarding the nature of
those entities and the kinds of evidence used to
make claims regarding them. The terms “theory”
and “models” are sometimes used in different
ways in the life sciences and social sciences, and
their uses may be more akin to those used in ed-
ucation. In this section I shall briefly walk through
the examples indicated in Table 1.

Subject Mathematics, Biology Education,
Physics Psychology

Theory of. . . Equations; Evolution Mind
Gravity

Model of. . . Heat Flow Predator-Prey Problem
in a Plate Relations Solving

Table 1.  Theories and models in mathematics/physics,
biology, and education/psychology. 

In mathematics, theories are laid out explicitly, as
in the theory of equations or the theory of complex
variables. Results are obtained analytically: we 
prove that the objects in question have the 
properties we claim they have. In classical physics
there is a comparable degree of specificity; physicists
specify an inverse-square law for gravitational 
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evidence in favor of this assertion is compelling
but cannot be definitive. Many kinds of experi-
ments have been performed in which people are
given tasks that call for using more than nine slots 
in working memory, and people have failed at
them (or, after some effort, performed them by
doing what could be regarded as some form of
chunking).

As with evolution, there are mountains of evi-
dence that are consistent with this assertion, there
is no clear evidence to contradict it, and no rival
hypothesis meets the same criteria. But is it proven?
No, not in the mathematical sense. The relevant
standard is, in essence, what a neutral jury would
consider to be evidence beyond a reasonable doubt.
The same holds for models of, say, problem solv-
ing or (my current interest) models of teaching 
(see [12], [13]). I am currently engaged in trying to
construct a theoretical description that explains
how and why teachers do what they do, on the fly,
in the classroom. This work, elaborated at the
same level of detail as a theory of memory, is
called a “theory of teaching-in-context”. The claim
is that with the theory and with enough time to
model a particular teacher, one can build a 
description of that person’s teaching that charac-
terizes his or her classroom behavior with 
remarkable precision. When one looks at this work,
one cannot expect to find the kind of precision
found in modeling heat flow in a laminar plate. But
(see, e.g., [12]) it is not unreasonable to expect
that such behavior can be modeled with the same
degree of fidelity to “real-world” behavior as with
predator-prey models.

We pursue the question of standards for judg-
ing theories, models, and results in the section
after next.

Methods
In this article I cannot provide even a beginning cat-
alogue of methods of research in undergraduate
mathematics education. As an indication of the
magnitude of that task, consider the fact that the
Handbook of Qualitative Research in Education [6]
is nearly 900 pages long! Chapters in that 
volume include extensive discussions of ethnog-
raphy (how does one understand the “culture of
the classroom”, for example?), discourse analysis
(what patterns can be seen in the careful study of
conversations?), the role of culture in shaping 
cognition, and issues of subjectivity and validity.
And that is qualitative work alone—there is, of
course, a long-standing quantitative tradition of re-
search in the social sciences as well. My goal, rather,
is to provide an orientation to the kinds of work
that are done and to suggest the kinds of findings
(and limitations thereof) that they can produce.

Those who are new to educational research tend
to think in terms of standard experimental stud-
ies, which involve experimental and control groups

1People use “chunking” as a mechanism all the time. A
trivial example: one can recall 10-digit phone numbers in
part by memorizing 3-digit area codes as a unit. More sub-
stantially, the theory asserts that chunking is the primary
mechanism that allows one to read this article. Each of
the words a person reads is a chunk, which was once a
collection of letters that had to be sounded out. The same
is the case for all sorts of mathematical concepts that a
person now “brings to mind” as a unit. Finally, are “light-
ning calculators”—the people who do extraordinary 
mental computations rapidly—a counterexample to the
claim made here? It does not appear to be the case. Those
who have been studied turn out to have memorized a huge
number of intermediary results. For example, many 
people will bring “72” to mind automatically as a chunk
when working on a calculation that includes 9× 8; the
“lightning calculators” may do the same for the products
of 2- or 3-digit numbers. This reduces the load on 
working memory.

life sciences described above. In a “theory of mind”,
for example, certain assumptions are made about
the nature of mental organization—e.g., that there
are certain kinds of mental structures that function
in particular ways. One such assumption is that
there are various kinds of memory, among them
working or “short-term” memory. According to
the theory, thinking gets done using working 
memory: that is, the “objects of thought” that peo-
ple manipulate mentally are temporarily stored in
working memory. What makes things interesting
(and scientific) is that the theory also places rather
strong limits on working memory: it has been
claimed (e.g., in [8]) that people can keep no more
than about nine “chunks” of information in work-
ing memory at one time.

To see that this claim might actually be true, one
could try to multiply 379 by 658 with eyes closed.
Most people will find it difficult if not impossible.
(In a recent meeting I gave a group of about sev-
enty-five mathematicians this task. None of them
succeeded within a few minutes.) The reason is that
the number of things a person has to keep track
of—the original numbers and the various subto-
tals that arise in doing the multiplication—exceeds
nine. Now, a person is better able to do the task
mentally after rehearsing some of the subtotals:
e.g., a person can calculate 8× 379 = 3032 and 
repeat “3032” mentally until it becomes a chunk
and occupies only one space (a “buffer”) in work-
ing memory. That leaves enough working space to
do other computations. By using this kind of chunk-
ing, people can transcend the limits of working
memory.1

Now consider the truth status of the assertion
that people’s working memory has no more than
about nine slots. There will never be an absolute
proof of this assertion. First, it is unlikely that the
researchers will find the physical location of work-
ing memory buffers in the brain even if they exist;
the buffers are components of models, and they
are not necessarily physical objects. Second, the 
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and the use of statistics to determine whether or
not the results are significant. As it turns out, the
use of statistics in education is a much more com-
plex issue than one might think.

For some years from mid-century onward, re-
search in the social sciences (in the United States,
at least) was dominated by the example of agri-
culture. The basic notion was that if two fields of
a particular crop were treated identically except for
one variable, then differences in crop yield could
be attributed to the difference in that variable.
Surely, people believed, one could do the same in
education. If one wanted to prove that a new way
of teaching X was superior, then one could conduct
an experiment in which two groups of students
studied X—one group taught the standard way, one
taught the new way. If students taught the new way
did better, one had evidence of the superiority of
the instructional method.

Put aside for the moment the issues raised in
the previous section about the goals of instruction
and the fact that the old and new instruction might
not focus on the same things. Imagine that one
could construct a test fair to both old and new 
instruction. And suppose that students were ran-
domly assigned to experimental and control
groups, so that standard experimental procedures
were followed. Nonetheless, there would still be 
serious potential problems. If different teachers
taught the two groups of students, any differences
in outcome might be attributable to differences in
teaching. But even with the same teacher, there can
be myriad differences. There might be a difference
in energy or commitment: teaching the “same old
stuff” is not the same as trying out new ideas. Or
students in one group might know they are getting
something new and experimental. This alone might
result in significant differences. (There is a large
literature showing that if people feel that changes
are made in their own best interests, they will
work harder and do better—no matter what the
changes actually are. The effects of these changes
fade with time.) Or the students might resent being
experimented upon.

Here is a case in point. Some years ago I devel-
oped a set of stand-alone instructional materials
for calculus. Colleagues at another university
agreed to have their students use them. In all but
two sections the students who were given the 
materials did better than students who were not
given them. However, in two sections there were
essentially no differences in performance. It turns
out that most of the faculty had given the materi-
als a favorable introduction, suggesting to the 
students that they would be helpful. The instruc-
tor of the sections that showed no differences had
handed them out saying, “They asked me to give
these to you. I don’t know if they’re any good.”

In short, the classical experimental method can
be problematic in educational research. To mention

just two difficulties, double blind experiments in
the medical sense (in which neither the doctors nor
the patients know who is getting the real treat-
ment and who is getting a placebo treatment) are
rarely blind, and many experimental variables are
rarely controllable in any rigorous sense. (That
was the point of the example in the previous para-
graph.) As a result, both positive and negative 
results can be difficult to interpret. This is not to
say that such studies are not useful or that large-
scale statistical work is not valuable—it clearly
is—but that it must be done with great care and that
results and claims must be interpreted with equal
care. Statistical work of consistent value tends to
be that which
a) produces general findings about a population.

For example, Artigue [1] notes that “[m]ore
than 40% of students entering French univer-
sities consider that if two numbers A and B are
closer than 1/N for every positive N, then they
are not necessarily equal, just infinitely close.”

b) provides a clear comparison of two or more pop-
ulations. For example, the results of the Third
International Mathematics and Science Study
document the baseline performance of students
in various nations on a range of mathematical
content.

c) provides substantiation, over time, of findings
that were first uncovered in more small-scale
observational studies.

What one finds for the most part is that research
methods in undergraduate mathematics education—
in all of education for that matter—are suggestive of
results and that the combined evidence of many
studies over time is what lends substantiation to
findings.

I shall expand on this point with one extended
example drawn from my own work. The issue con-
cerns “metacognitive behavior”, or metacognition:
specifically, the effective use of one’s resources 
(including time) during problem solving.

Here is a motivating example. Many years ago,
when one standard first-year calculus topic was
techniques of integration, the following exercise
was the first problem on a test given to a large 
lecture class: ∫

x
x2 − 9

dx.

The expectation was that the students would make
the obvious substitution u = (x2 − 9) and solve the
problem in short order. About half the class did.
However, about a quarter of the class, noticing that
the denominator was factorable, tried to solve the
problem using the technique of partial fractions.
Moreover, about 10 percent of the students, notic-
ing that the denominator was of the form (x2 − a2),
tried to solve the problem using the substitution
x = 3 sinθ . All of these methods yield the correct
answer, of course, but the second and third are very
time consuming for students. The students who
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suggests the range. If anything, the number and type
of methods have increased, as evidenced in the three
volumes of Research in Collegiate Mathematics 
Education. One finds, for example, reports of 
detailed interviews with students, comparisons of
reform and traditional calculus, an examination of
calculus “workshops”, and an extended study of one
student’s developing understanding of a physical
device and graphs related to it. Studies employing
anthropological observation techniques and other
qualitative methods are increasingly common.

How valid are such studies, and how much can
we depend on the results in them? That issue is
pursued immediately below.

Standards for Judging Theories, Models,
and Results
There is a wide range of results and methods in
mathematics education. A major question then 
is the following: How much faith should one have 
in any particular result? What constitutes solid 
reason, what constitutes “proof beyond a reason-
able doubt”?

The following list puts forth a set of criteria that
can be used for evaluating models and theories (and
more generally any empirical or theoretical work)
in mathematics education:

• Descriptive power
• Explanatory power
• Scope
• Predictive power
• Rigor and specificity
• Falsifiability
• Replicability
• Multiple sources of evidence (“triangulation”)

I shall briefly describe each.
Descriptive Power
By descriptive power I mean the capacity of a 
theory to capture “what counts” in ways that seem
faithful to the phenomena being described. As
Gaea Leinhardt [7] has pointed out, the phrase
“consider a spherical cow” might be appropriate
when physicists are considering the cow in terms
of its gravitational mass—but not if one is ex-
ploring some of the cow’s physiological properties!
Theories of mind, problem solving, or teaching
should include relevant and important aspects of
thinking, problem solving, and teaching respec-
tively. At a very broad level, fair questions to ask
are: Is anything missing? Do the elements of the
theory correspond to things that seem reason-
able? For example, say a problem-solving session,
an interview, or a classroom lesson was video-
taped. Would a person who read the analysis and
saw the videotape reasonably be surprised by
things that were missing from the analysis?
Explanatory Power
By explanatory power I mean providing explana-
tions of how and why things work. It is one thing
to say that people will or will not be able to do 
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used those techniques did poorly on the test, largely 
because they ran out of time.

Examples such as this led me to develop some
instructional materials that focused on the strategic
choices that one makes while working integration
problems. The materials made a difference in student
performance. This provided some evidence that
strategic choices during problem solving are 
important.

The issue of strategic choices appeared once
again when, as part of my research on problem solv-
ing, I examined videotapes of students trying to
solve problems. Quite often, it seemed, students
would read a problem statement, choose a solution
method quickly, and then doggedly pursue that 
approach even when the approach did not seem to
be yielding results. To make such observations
rigorous, I developed a “coding scheme” for 
analyzing videotapes of problem solving. This 
analytical framework provided a mechanism for
identifying times during a problem session when
decision making could shape the success or failure
of the attempt. The framework was defined in such
a way that other researchers could use it, not only
for purposes of examining my tapes, but also for
examining their own as well. Using it, researchers
could see how students’ decision making helped or
hindered their attempts at problem solving.

Such frameworks serve multiple purposes. First,
having such a scheme allows the characterization
of videotapes to become relatively objective: if 
two trained analysts working on the same tape 
independently produce the same coding of it, then
there is reason to believe in the consistency of the
interpretation. Second, having an analytic tool of
this type allows one to trace the effects of problem-
solving instruction: “before and after” comparisons
of videotapes of problem-solving sessions can 
reveal whether students have become more efficient
or effective problem solvers. Third, this kind of tool
allows for accumulating data across studies. The
one-line summary of results in this case: metacog-
nitive competence is a very productive factor in 
problem solving.2 For extensive detail, see [9].

As indicated above, research results in education
are not “proven” in the sense that they are proven 
in mathematics. Moreover, it is often difficult to 
employ straightforward experimental or statistical
methods of the type used in the physical sciences 
because of complexities related to what it means
for educational conditions to be “replicable”. In 
education one finds a wide range of research 
methods. A look at one of the first volumes on 
undergraduate mathematics education, namely [14],

2In the case at hand (metacognitive behavior), a large num-
ber of studies have indicated that effective decision mak-
ing during problem solving does not “come naturally”.
Such skills can be learned, although intensive instruction
is necessary. When students learn such skills, their prob-
lem-solving performance improves.
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certain kinds of tasks or even to describe what
they do on a blow-by-blow basis; it is quite 
another thing to explain why. It is one thing, for 
example, to say that people will have difficulty
multiplying two three-digit numbers in their heads.
But that does not provide information about how
and why the difficulties occur. The full theoretical
description of working memory, which was men-
tioned above, comes with a description of memory 
buffers, a detailed explanation of the mechanism
of chunking, and the careful delineation of how the
components of memory interact with each other.
The explanation works at a level of mechanism: it
says in reasonably precise terms what the objects
in the theory are, how they are related, and why
some things will be possible and some not.
Scope
By scope I mean the range of phenomena covered
by the theory. A theory of equations is not very 
impressive if it deals only with linear equations.
Likewise, a theory of teaching is not very impres-
sive if it covers only straight lectures!
Predictive Power
The role of prediction is obvious: one test of any
theory is whether it can specify some results in ad-
vance of their taking place. Again, it is good to keep
things like the theory of evolution in mind as a
model. Predictions in education and psychology are
not often of the type made in physics.

Sometimes it is possible to make precise predic-
tions. For example, Brown and Burton [4] studied
the kinds of incorrect understandings that students
develop when learning the standard U.S. algorithm
for base 10 subtraction. They hypothesized very
specific mental constructions on the part of stu-
dents—the idea being that students did not simply
fail to master the standard algorithm, but rather
that students often developed one of a large class of
incorrect variants of the algorithm and applied it 
consistently. Brown and Burton developed a simple
diagnostic test with the property that a student’s
pattern of incorrect answers suggested the false 
algorithm he or she might be using. About half of the
time they were then able to predict the incorrect 
answer that the student would obtain to a new 
problem before the student worked the problem!

Such fine-grained and consistent predictions
on the basis of something as simple as a diagnos-
tic test are extremely rare of course. For example,
no theory of teaching can predict precisely what
a teacher will do in various circumstances; human
behavior is just not that predictable. However, a
theory of teaching can work in ways analogous to
the theory of evolution. It can suggest constraints
and even suggest likely events.

[Making predictions is a very powerful tool in
theory refinement. When something is claimed to
be impossible and it happens, or when a theory
makes repeated claims that something is very
likely and it does not occur, then the theory has

problems! Thus, engaging in such predictions is an
important methodological tool, even when it is
understood that precise prediction is impossible.]
Rigor and Specificity
Constructing a theory or a model involves the
specification of a set of objects and relationships
among them. This set of abstract objects and 
relationships supposedly corresponds to some set
of objects and relationships in the “real world”. The
relevant questions are:

How well defined are the terms? Would you know
one if you saw one? In real life? In the model? How
well defined are the relationships among them? And
how well do the objects and relations in the model
correspond to the things they are supposed to 
represent? As noted above, one cannot necessarily
expect the same kinds of correspondences between
parts of the model and real-world objects as in the
case of simple physical models. Mental and social
constructs such as memory buffers and the “didac-
tical contract” (the idea that teachers and students
enter a classroom with implicit understandings 
regarding the norms for their interactions and that
these understandings shape the ways they act) are
not inspectable or measurable in the ways that heat
flow in a laminar plate is. But we can ask for detail,
both in what the objects are and in how they fit 
together. Are the relationships and changes among
them carefully defined, or does “magic happen”
somewhere along the way? Here is a rough analogy.
For much of the eighteenth century the phlogiston
theory of combustion—which posited that in all
flammable materials there is a colorless, odorless,
weightless, tasteless substance called “phlogiston”
liberated during combustion—was widely accepted.
(Lavoisier’s work on combustion ultimately 
refuted the theory.) With a little hand waving, the
phlogiston theory explained a reasonable range of 
phenomena. One might have continued using it, just
as theorists might have continued building epicy-
cles upon epicycles in a theory of circular orbits.3 The
theory might have continued to produce some use-
ful results, good enough “for all practical purposes”.
That may be fine for practice, but it is problematic
with regard to theory. Just as in the physical sci-
ences, researchers in education have an intellectual
obligation to push for greater clarity and specificity
and to look for limiting cases or counterexamples to
see where the theoretical ideas break down.

Here are two quick examples. First, in my research
group’s model of the teaching process, we
represent aspects of the teacher’s knowledge, goals,
beliefs, and decision making. Skeptics (including us)
should ask, how clear is the representation? Once
terms are defined in the model (i.e., once we specify
a teacher’s knowledge, goals, and beliefs) is there

3This example points to another important criterion, sim-
plicity. When a theory requires multiple “fixes” such as
epicycles upon epicycles, that is a symptom that something
is not right.
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hand waving when we say what the teacher might do
in specific circumstances, or is the model well enough
defined so that others could run it and make 
the same predictions? Second, the “APOS theory”
expounded in [2] uses terms such as Action, Process,
Object, and Schema. Would you know one if you met
one? Are they well defined in the model? Are the
ways in which they interact or become transformed
well specified? In both cases the bottom line issues
are, What are the odds that this too is a phlogiston-
like theory? Are the people employing the theory
constantly testing it in order to find out? Similar
questions should be asked about all of the terms
used in educational research, e.g., the “didactical
contract”, “metacognition”, “concept image”, and
“epistemological obstacles”.
Falsifiability
The need for falsifiability—for making nontauto-
logical claims or predictions whose accuracy can be
tested empirically—should be clear at this point. It
is a concomitant of the discussion in the previous two
subsections. A field makes progress (and guards
against tautologies) by putting its ideas on the line.
Replicability
The issue of replicability is also intimately tied to
that of rigor and specificity. There are two related
sets of issues: (1) Will the same thing happen if the
circumstances are repeated? (2) Will others, once
appropriately trained, see the same things in the
data? In both cases answering these questions 
depends on having well-defined procedures and
constructs.

The phrasing of (1) is deliberately vague, be-
cause it is supposed to cover a wide range of cases.
In the case of short-term memory, the claim is that
people will run into difficulty if memory tasks 
require the use of more than nine short-term 
memory buffers. In the case of sociological analy-
ses of the classroom, the claim is that once the 
didactical contract is understood, the actions of the
students and teacher will be seen to conform to 
that (usually tacit) understanding. In the case of 
beliefs, the claim is that students who hold certain
beliefs will act in certain ways while doing mathe-
matics. In the case of epistemological obstacles 
or APOS theory, the claims are similarly made that
students who have (or have not) made particular
mental constructions will (or will not) be able to do
certain things.

In all of these cases the usefulness of the find-
ings, the accuracy of the claims, and the ability to
falsify or replicate depend on the specificity with
which terms are defined. Consider this case in
point from the classical education literature.
Ausubel’s theory of “advance organizers” in [3] pos-
tulates that if students are given an introduction
to materials they are to read that orients them to
what is to follow, their reading comprehension
will improve significantly. After a decade or two
and many, many studies, the literature on the topic

was inconclusive: about half of the studies showed
that advance organizers made a difference, about
half not. A closer look revealed the reason: the very
term was ill defined. Various experimenters made
up their own advance organizers based on what
they thought they should be—and there was huge
variation. No wonder the findings were inconclu-
sive! (One standard technique for dealing with 
issues of well-definedness, and which addresses
issue (2) above, is to have independent researchers
go through the same body of data and then 
compare their results. There are standard norms
in the field for “inter-rater reliability”; these norms
quantify the degree to which independent 
analysts are seeing the same things in the data.)
Multiple Sources of Evidence (“Triangulation”)
Here we find one of the major differences between
mathematics and the social sciences. In mathe-
matics one compelling line of argument (a proof)
is enough: validity is established. In education and
the social sciences we are generally in the business
of looking for compelling evidence. The fact is, 
evidence can be misleading: what we think is 
general may in fact be an artifact or a function of
circumstances rather than a general phenomenon.

Here is one example. Some years ago I made a
series of videotapes of college students working
on the problem, How many cells are there in an 
average-size human adult body? Their behavior
was striking. A number of students made wild
guesses about the order of magnitude of the 
dimensions of a cell—from “let’s say a cell is an
angstrom unit on a side” to “say a cell is a cube
that’s 1/100 of an inch wide.” Then, having 
dispatched with cell size in seconds, they spent a
very long time on body size, often breaking the
body into a collection of cylinders, cones, and
spheres and computing the volume of each with
some care. This was very odd.

Some time later I started videotaping students
working problems in pairs rather than by them-
selves. I never again saw the kind of behavior 
described above. It turns out that when they were
working alone, the students felt under tremendous
pressure. They knew that a mathematics professor
would be looking over their work. Under the 
circumstances they felt they needed to do some-
thing mathematical, and volume computations 
at least made it look as if they were doing 
mathematics! When students worked in pairs, they
started off by saying something like “This sure is a
weird problem.” That was enough to dissipate some
of the pressure, the result being that there was no
need for them to engage in volume computations
to relieve it. In short, some very consistent behavior
was actually a function of circumstances rather than
being inherent in the problem or the students.

One way to check for artifactual behavior is to
vary the circumstances: to ask, do you see the same
thing at different times in different places? Another
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is to seek as many sources of information as possi-
ble about the phenomenon in question and to see
whether they portray a consistent message. In my 
research group’s work on modeling teaching, for 
example, we draw inferences about the teacher’s 
behavior from videotapes of the teacher in action—
but we also conduct interviews with the teacher, 
review his or her lesson plans and class notes, and
discuss our tentative findings with the teacher. In this
way we look for convergence of the data. The more
independent sources of confirmation there are, the
more robust a finding is likely to be.

Conclusion
The main point of this article has been that 
research in (undergraduate) mathematics education
is a very different enterprise from research in
mathematics and that an understanding of the 
differences is essential if one is to appreciate (or
better yet, contribute to) work in the field. Findings
are rarely definitive; they are usually suggestive.
Evidence is not on the order of proof, but is 
cumulative, moving towards conclusions that can
be considered to be beyond a reasonable doubt. A
scientific approach is possible, but one must take
care not to be scientistic—what counts are not the
trappings of science, such as the experimental
method, but the use of careful reasoning and 
standards of evidence, employing a wide variety of
methods appropriate for the tasks at hand.

It is worth remembering how young mathemat-
ics education is as a field. Mathematicians are used
to measuring mathematical lineage in centuries, if
not millennia; in contrast, the lineage of research in
mathematics education (especially undergraduate
mathematics education) is measured in decades.
The journal Educational Studies in Mathematics dates
to the 1960s. The first issue of Volume 1 of the 
Journal for Research in Mathematics Education was
published in January 1970. The series of volumes
Research in Collegiate Mathematics Education—the
first set of volumes devoted solely to mathematics
education at the college level—began to appear in
1994. It is no accident that the vast majority of 
articles cited by Artigue [1] in her 1999 review of 
research findings were written in the 1990s; there was
little at the undergraduate level before then! There
has been an extraordinary amount of progress in
recent years, but the field is still very young, and
there is a very long way to go.

Because of the nature of the field, it is appro-
priate to adjust one’s stance toward the work and
its utility. Mathematicians approaching this work
should be open to a wide variety of ideas, under-
standing that the methods and perspectives to
which they are accustomed do not apply to 
educational research in straightforward ways. They
should not look for definitive answers but for
ideas they can use. At the same time, all consumers
and practitioners of research in (undergraduate)

mathematics education should be healthy skeptics.
In particular, because there are no definitive 
answers, one should certainly be wary of anyone
who offers them. More generally, the main goal for
the decades to come is to continue building a 
corpus of theory and methods that will allow 
research in mathematics education to become an
ever more robust basic and applied field.
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