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A
pril 9, 1900, marks the birth date of 
H. D. Kloosterman, one of the leading
Dutch mathematicians of his genera-
tion. At the University of Leiden, where
he spent most of his academic life, the

centenary of his birth was the occasion for a small
celebration, with a discussion by several experts
of Kloosterman’s work on number theory, modu-
lar forms, and representation theory; and of its
place in contemporary mathematics. Although he
was not a prolific writer, his work had a significant
impact and is still of considerable interest.

The centenary is also a good occasion for a brief
discussion of Kloosterman’s work for a wider pub-
lic. This is the raison d’être of the present article.

Biography
Hendrik Douwe Kloosterman was born in Rotte-
valle, a small farming village in the northern part
of the Netherlands. He moved to the city of The
Hague, where he finished high school in 1918. In
the same year he started his study in mathemat-
ics at the nearby University of Leiden. He was a very
fast student, passing the examination for the final
degree (comparable to a master’s degree) in 1922.

The mathematics education in Leiden was 
solid, but it did not bring a brilliant student like
Kloosterman in close contact with current research.
The situation was different in physics. In the first
decades of the twentieth century, high-level 

research in physics was in the air at the University
of Leiden. There were the Nobel Prize winners 
H. Kamerlingh Onnes and H. A. Lorentz, and 
Einstein had a permanent visiting professorship.
Lorentz’s successor (after an early retirement from
formal duties) was P. Ehrenfest, who was in very
close contact with the developments in theoretical
physics. He took great pains with the scientific 
education of his students, particularly his own Ph.D.
students. But Kloosterman seems also to have come
under Ehrenfest’s wings, as a result of which Kloost-
erman was able to continue his studies abroad—
first in Copenhagen with H. Bohr and then in 
Oxford with G. H. Hardy.

Kloosterman obtained his Ph.D. at the Univer-
sity of Leiden in 1924. Supported by a Rockefeller
scholarship, he spent the years 1926–1928 at the
Universities of Göttingen and Hamburg, after
which, from 1928 to 1930, he had a position at the
University of Münster.

In 1930 he returned to Leiden to take the 
position of “lector” (comparable to an associate 
professorship). This was mainly a teaching position.
Kloosterman turned out to be an exceptional teacher.
He was able to expose with great clarity and great
economy the essentials of a piece of mathematics,
be it elementary or advanced.

His teaching obligations were on the elementary
level, but he also gave more advanced courses on
topics outside the regular curriculum or on topics
of then current interest. The notes for most of
these courses, beautifully handwritten, have been
preserved. In his later years Kloosterman intended
to publish lectures on modular forms, but he did
not complete the manuscript.
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In 1947 he was promoted to a full professorship,
which he held until his death in 1968. Kloosterman
visited the U.S. several times. For example, in the
academic year 1955–56 he was a visiting profes-
sor at the University of Michigan in Ann Arbor.

Quadratic Forms and the Hardy-Littlewood
Method
Kloosterman’s thesis [K1] contains an application
of the Hardy-Littlewood method of analytic num-
ber theory to quadratic forms. Kloosterman’s 
formal thesis adviser was the Leiden mathemati-
cian J. C. Kluyver, but the work of the thesis is in
Hardy’s sphere.

The thesis is in Dutch and is not easily accessible.
It deals with the problem of finding the number of
solutions in integers xi of the equation

(1) f (x1, . . . , xs ) = a1x2
1 + · · · + asx2

s = n,

where the ai and n are integers > 0. Around 1920
Hardy and Littlewood devised an analytic method
to attack similar problems (e.g., “Waring’s prob-
lem”).

One introduces the power series

F (z) =
∑
xi∈Z

zf (x1,...,xs ).

It converges for |z| < 1, and the number of solu-
tions of (1) equals the coefficient of zn in F (z) ,
which by a formula of Cauchy equals

(2) I(n) = (2πi)−1
∫
|z|=r

F (z)z−n−1dz,

where r < 1 is close to 1. To deal with (2), the cir-
cle of integration is subdivided into small arcs.

Let N be a positive integer (to be chosen later),
and consider the set F of all rational numbers 
in [0,1] with denominator ≤ N . These rationals
determine a decomposition of [0,1] into smaller
segments. The ordered set of endpoints is the
Farey series of order N. Using properties of Farey
series, one deduces from this decomposition 
another decomposition such that each f ∈ F lies
in the interior of exactly one segment of the new
decomposition. The new decomposition defines 
a decomposition into arcs D of the integration
circle.

The integral (2) is now written as the sum of in-
tegrals over the arcs of D, each of which is analyzed
by using properties of Jacobi theta functions (in the
problems studied by Hardy and Littlewood the
analysis is technically more difficult). The result of
the analysis is a formula

I(n) = S(n) + J(n),

where S(n) is computable, at least in principle.
The outcome of the analysis is an infinite product
of “local factors”

S(n) =
∏
Sp(n),

p running through the primes, including p =∞ . The
other term, J(n) , is a “junk” term. The analysis of
J(n) leads to an estimate for its order of magnitude
as a function of n. If that order of magnitude is
strictly smaller than the order of S(n) (assuming
S(n) to be tractable), then one obtains an asymp-
totic formula for the number of solutions of (1) 
for large n. From this one infers that (1) then has
a solution for all sufficiently large n.

Kloosterman shows that for s ≥ 5 this program
can be carried out, leading to the result that for
s ≥ 5, (1) is solvable if n is sufficiently large and
if the ai satisfy suitable congruence conditions.

But for s = 4 the original Hardy-Littlewood
method does not lead to a good estimate of J(n) .
Kloosterman notes the curious fact that the pow-
erful analytic method does not seem to be able to
prove Lagrange’s old theorem that any positive
integer is a sum of four squares!

Kloosterman Sums
Kloosterman took up the challenge posed by the
case s = 4 in [K2]. He refined the Hardy-Littlewood
method so as to give a better estimate for J(n) , 
enabling him to obtain asymptotic formulas in
that case.

In his analysis of the integrals over the arcs of
D there appear what now are called “Kloosterman
sums”, to be discussed below.

H. D. Kloosterman
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Kloosterman’s modification of the Hardy-
Littlewood method has turned out to be quite 
significant. In 1928, during his stay in Hamburg,
he already used his approach to obtain nontrivial
estimates for Fourier coefficients of modular 
forms (that is, estimates towards the so-called 
Ramanujan conjecture). This work had its origin
in a suggestion of E. Hecke, a mathematician who
had an inspiring influence on Kloosterman’s work.

Hecke’s name is held in very high regard nowa-
days. For one thing, Hecke’s work of the 1930s on
the connection between modular forms and Dirich-
let series satisfying a functional equation has led
to vast developments, notably in the work of R. P.
Langlands. Kloosterman knew this work of Hecke
well.

Kloosterman sums are trigonometric sums of
the form

(3) S(a, b; c) =
∑
e2πic−1(ax+by),

where a, b, c are integers with c > 0, the summa-
tion being over the integers x and y with
1 ≤ x, y ≤ c and xy ≡ 1 (mod c). It is easy to see
that S(a, b; c) is a real number. One can show that
the  determination of S(a, b; c) can be reduced to
the case that c is a prime p. (In that case a 
Kloosterman sum can be viewed as a Bessel 
function for the field Z/pZ .) In the case c = p
Kloosterman proves in [K2] that there is a constant
C such that

(4) |S(a, b; c)| ≤ Cp 3
4 .

The fact that in the right-hand side an exponent
< 1 appears enables Kloosterman to obtain a 
sufficiently good estimate for J(n) .

Inequality (4) is a consequence of the following
inequality, which can be proved in an elementary
way:

p∑
a=1

S(a,1;p)4 ≤ 3p3.

Inequality (4) was improved later. The optimal 
estimate is

(5) |S(a, b; c)| ≤ 2p
1
2 .

This follows from the Riemann hypothesis for
function fields, proved by A. Weil in a 1941 paper.

Applications of Kloosterman Sums
Since their first appearance in 1926, Kloosterman
sums have shown up in number theory in 
many places. (At some time there was even talk 
of “Kloostermania”.) Here is an example from 
elementary number theory.

Let p be a prime, and let a be an integer prime
to p. Solve the congruence

mn ≡ a (mod p)

in natural numbers m,n, with m ≤ n, and let M(a)
be the smallest possible value of n. How large can
M(a) be? The analysis of this question leads to
Kloosterman sums, and via an application of (5) one
proves that

M(a) < 2(logp)p
3
4 .

It is not known to what extent this estimate can
be improved.

Consider the Kloosterman sum (3), with c = p,
a prime number. A general method to study such
trigonometric sums is provided by “l-adic coho-
mology”, in characteristic p. The sums can be 
expressed in terms of the cohomology of certain
locally constant l-adic sheaves on an algebraic 
variety X and the action of a “Frobenius map” on
the cohomology. The case of Kloosterman sums
was taken up by Deligne (1978). In that case X is
the line minus the point {0}. A deep study of the
“Kloosterman sheaves” on X, in particular of their
monodromy, was made by N. Katz in [Ka]. As a con-
sequence of his study he obtained a result about
the distribution of the values of Kloosterman sums.

It follows from (5) that for a prime to p there
is a unique θp,a ∈ [0, π ] such that

S(a,1;p) = 2 cosθp,a.

The distribution function fp of the numbers θp,a
for fixed p is the function on [0, π ] whose value
at x is the fraction of the number of θp,a lying in
[0, x]. It is shown in [Ka, p. 241] that fp tends to
the distribution function defined by the measure
2π−1 sin2 θ dθ , as p tends to ∞.

However, about the distribution of the θp,a for
fixed a (say a = 1) for p ≤ x as x→∞ , nothing
seems to be known. It is conjectured that the limit
distribution is again the one defined by
2π−1 sin2 θ dθ .

Another continuation of the study of Klooster-
man sums was along analytic lines, involving the
study of nonholomorphic modular forms, whose
definition will not concern us. This started with ideas
of Linnik (1962) about “averages” of Kloosterman
sums. These led Selberg (1965) to study Dirichlet
series of the form

Z(a, b; s) =
∞∑
c=1

S(a, b; c)c−
1
2−s .

This formula defines a holomorphic function in the
half plane Re(s) > 1. Selberg proved that it has a
meromorphic continuation to the complex plane.

An important result about the average

Σ(a, b;x) =
x∑
c=1

S(a, b; c)c−
1
2

is due to Kuznetsov [Kuz]. He derived a tracelike
formula giving an explication of Selberg’s results
and allowing him to prove that there exist positive
constants C > 0 and θ < 1 such that
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(6) |Σ(a, b : x)| ≤ Cxθ.

In fact, θ may be taken to be any number > 2
3 . It

is conjectured that 23 can be replaced by 12.
The connection between Kloosterman sums and

nonholomorphic modular forms has been well 
developed (by Iwaniec and others) and has been
used in many proofs of striking results in number
theory. The following is a typical example.

Let p be a prime. An integer q is a primitive 
root for p if q + pZ generates the multiplicative
group of Z/pZ. For this to be true with p > 3, it 
is necessary that q 6= 0,±1 and that q is not a
square. There is a conjecture of Artin that any
such q is a primitive root for infinitely many
primes. This conjecture remains unsolved but has
been shown to be true if q is a prime, with at most
two exceptions.

Representations of SL2(Z/NZ)
During the German occupation of the Netherlands
in World War II, the University of Leiden was closed
from 1941 to 1945. In that period Kloosterman
turned to research, the results of which were 
published in the two long papers [K3]. In these 
papers Kloosterman is, eventually, aiming to 
determine the irreducible representations of 
concrete finite groups.

Let Γ = SL2(Z) be the group of 2× 2-matrices

(7) γ =

(
a b
c d

)
,

with a, b, c, d ∈ Z and ad − bc = 1. If N is an 
integer > 1 , denote by SL2(Z,N) the normal 
subgroup of Γ consisting of the γ as in (7) 
with a, d ≡ 1 (mod N) and c, d ≡ 0 (mod N) . The 
finite groups of [K3] are the quotients ΓN =
SL2(Z)/SL2(Z,N) . Such a quotient can also be
viewed as the group SL2(Z/NZ) of 2× 2-matrices
with entries in the finite ring Z/NZ and determi-
nant 1. The group ΓN is the direct product of the
Γpλ , where pλ runs through the prime powers
dividing N. We assume from now on that N = pλ .

A representation R of a finite group G is a 
homomorphism of G into the group GL(V ) of 
invertible linear maps of a finite-dimensional 
complex vector space V . R is said to be irreducible
if the only subspaces of V stable under all R(g) for
g ∈ G are {0} and V . It is always true that V is a
direct sum of G -stable, irreducible subspaces. The
character of R is the function χ on G with
χ(g) = trace(R(g)). It determines R uniquely, up 
to isomorphism. The theory of representations
goes back to Frobenius around 1900.

The problem of describing the irreducible rep-
resentations or, more modestly, the irreducible
characters of a concrete group G is a nontrivial one,
as is already evident from Frobenius’s study of the
case that G is a symmetric group.

As to the groups Γpλ, the case λ = 1 was settled
by Schur in 1907, extending slightly work of 
Frobenius; and in the 1930s the case λ = 2 had 
also been settled.

Kloosterman was the first to attack the case of
an arbitrary prime power. The method he used is
analytic. The basic idea is to use “holomorphic
modular forms” and goes back to Hecke.

A holomorphic modular form of weight k (an 
integer ≥ 0) is a holomorphic function f in the
complex upper half-plane

H = {z ∈ C | Im(z) > 0}
such that

f ((az + b)(cz + d)−1) = (cz + d)kf (z)

for all z ∈H and all

γ =

(
a b
c d

)

in some SL2(Z,N) . One also imposes a growth 
condition on f as z tends to ∞, but we shall not
need a detailed formulation. For a fixed N such
modular forms span a finite-dimensional vector
space of functions, on which SL2(Z) acts linearly
by

(γ−1.f )(z) = (cz + d)kf ((az + b)(cz + d)−1),

where γ (as before) lies in SL2(Z) and f is in the
vector space. Hecke had used these facts to con-
struct explicit realizations (not easy to obtain using
algebra) of certain irreducible representations of
groups Γp in spaces of modular forms.

Kloosterman in [K3] uses particular modular
forms, namely, theta functions associated to 
quadratic forms. These (or rather specialized 
versions) can be described as follows.

Let V be a real vector space of even dimension
2k, and let b( · , · ) be a nondegenerate symmetric
bilinear form on V , which we assume to be posi-
tive definite. Assume that L is a lattice in V (a free
abelian group generated by some basis of V ) such
that b(x, y) is an integer for x, y ∈ L and is even if
x = y . The matrix S = (b(xi, xj )) of our bilinear
form, relative to any basis (xi) of L, is symmetric
and positive definite, with integral entries and
even diagonal elements. Let

L∨ = {x ∈ V | (x, L) ⊆ Z}.

This is a lattice containing L, and the index of L
in L∨ equals det(S).

For z ∈H and u ∈ L∨ , let

θb(z, u) =
∑
x∈L

eπib(u+x,u+x)z.

These series define holomorphic functions in H
(u running through L∨ ), which span a
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finite-dimensional complex vector space M of holo-
morphic functions.

They are, in fact, modular forms of weight k. The
integer N can be taken to be the smallest positive 
integer such that NS−1 is an integral positive 
definite matrix with even diagonal elements. 
Moreover, M is stable under the action of SL2(Z) on
modular forms of weight k. So we obtain a repre-
sentation of ΓN in M .

These facts follow from the “transformation
formulas of theta functions”, dealt with at length
(and in greater generality) in the first part of [K3].

There is a great deal of freedom in the con-
struction, as b is arbitrary so far. Assume that p
is an odd prime. Kloosterman studies in detail the
case that k = 1 and that S is of the form pλqS′,
where q and det(S′) are prime to p. For a suitable
choice of S′, he constructs a subspace V of M and
a representation R of Γpλ in V . To decompose V , he
introduces an abelian automorphism group A of
V that centralizes R; A comes from automorphisms
modulo pλ of the bilinear form defined by S′.

For each multiplicative character α of A let Vα
be the maximal subspace of V on which any ele-
ment a ∈ A acts as scalar multiplication by α(a).
Then V is the direct sum of the nonzero Vα. Each
such space is Γpλ-stable, and it turns out to be 
irreducible. Thus one obtains the decomposition
of V into Γpλ-stable irreducible subspaces.

Kloosterman computes the characters of the 
irreducible representations so obtained. Somewhat
surprisingly, Kloosterman sums turn up as char-
acter values.

It was shown later by Nobs and Wolfart [NW] 
that Kloosterman’s method indeed produces all 
irreducible representations, provided one admits
also the case that p divides det(S′) (confirming a
prediction by Kloosterman).

Further Developments
The story of the representation theory of Γpλ does not
end here. Its ramifications are still of considerable
interest. The story developed along several lines.
First, there was the completion of Kloosterman’s
analytic approach, which was just mentioned.

A second line had its origin in the paper [W] of 
A. Weil in 1964, which can be viewed as a study of
the transformation formula of theta functions in a
more general context. Weil constructs a represen-
tation—now often called the Weil representation—
of a double cover of groups SL2(A) , where A is 
either a locally compact field or an adele ring. Weil
suggests in a footnote the possibility of viewing the
problems studied by Kloosterman in the context of
his work, for the case that A is finite (see [W, p. 144]).

Weil’s suggestion was taken up by several 
authors—first by Tanaka (1966) and subsequently,
in more detail, by Nobs and Wolfart (1976) in 
[N]. Nobs and Wolfart also dealt with the more
complicated case p = 2 . This work provides a 

complete solution to the problem of describing 
the representation theory of the groups Γpλ.

Another solution of the problem—purely 
algebraic—had been given for p 6= 2 a few years 
earlier in the thesis of P. Kutzko (1973). The prob-
lem has a natural extension to the case of 
finite groups Γpλ = SL2(o/pλ) , where o is the ring
of integers of a local field k and p is the maximal
ideal of o. Subsequently, Kutzko also described the
irreducible representations of such groups. But
his work has not been published in detail.

In the beginning of the 1970s, probably under
the impetus of the work of Jacquet and Langlands,
the problem came to be viewed in another perspec-
tive, namely, from the point of view of the repre-
sentation theory of p-adic groups. Here is a rough
sketch of that perspective.

Let k, o, and p be as before. The group K = SL2(o)
is a compact topological group, and Γpλ can be
viewed as a quotient of K by an open subgroup. It
is easy to see that every finite-dimensional con-
tinuous representation of K factors through Γpλ for
some λ. Consequently, the representation theory
of Γpλ is contained in the representation theory of
K. This in itself is an observation of no great 
interest. But things become more interesting if
one also introduces the group G = SL2(k) and its
representation theory.

This G is a noncompact topological group, 
and K is a maximal compact subgroup of G . The
representations of G that one considers—the 
admissible representations—are not finite dimen-
sional any more. They are defined to be represen-
tations of G in a complex vector space V such
that:

a) each v ∈ V is fixed by a compact open 
subgroup U of G ,

b) for each such U the subspace of V fixed
pointwise by all elements of U is finite
dimensional.

For admissible representations one can define
matrix coefficients, as in the case of a finite-
dimensional representation. An admissible 
representation is supercuspidal if it is irreducible
in the usual sense and if its matrix coefficients have
compact support in G .

If G is a finite group and K is a subgroup, 
one has an induction procedure (going back to 
Frobenius), associating to a representation of K a
representation of G . The procedure extends to the
situation of our G and K. Induction of a finite-
dimensional continuous representation of K leads
to an admissible representation of G .

(These definitions and notions make sense for
a wider class of groups, for example, for the groups
GLn(k) . In general the definition of supercuspi-
dality is slightly different: one has to require 
compactness modulo the center of the support of
matrix coefficients.)
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In the 1970s several people came to the insight (it
is a bit hard to disentangle priorities) that a super-
cuspidal representation of G = SL2(k) is induced by
an irreducible continuous representation of K that
is unique up to isomorphism. Not all irreducible rep-
resentations of K arise in this fashion, but it is known
how to describe the remaining ones. Thus we have
an approach to the representation theory of the
groups Γpλ via the infinite-dimensional representa-
tion theory of SL2(k) . This is probably the most 
satisfactory approach.

There is a further line of development in the
story of the representation theory of Γpλ . The al-
gebraic group SL2 is a semisimple linear algebraic
group of minimal possible dimension. What about
other types of semisimple (or reductive) groups?
The first examples that present themselves are
the groups GLn. Here there is recent work by sev-
eral people, for example, by Bushnell and Kutzko
(see [Ku]). They proved that a supercuspidal rep-
resentation of GLn(k) is induced by a continuous
irreducible representation of an open subgroup
that is compact modulo the center, belonging to an
explicit finite set of such subgroups that includes
GLn(o) . It is conjectured that results of this kind
will hold in general, i.e., for all reductive groups.

Thus, some irreducible representations of
GLn(o) , but not all of them, are connected with su-
percuspidal representations of GLn(k) . At this
point it should be observed that the classification
of supercuspidal representations of GLn(k) has
much to do with the recently proved (see [R]) “local
Langlands conjecture” for GLn, i.e., with nonabelian
local class field theory. One gets into deep waters!

These recent developments contain information
about the following problem, which generalizes
Kloosterman’s original problem: describe the rep-
resentation theory of GLn(o/pλ). A full answer does
not seem to be known, even for the first interesting
case n = 3 (for n = 2 one is very close to the original
problem). More generally, one has the analogous
problem for the finite groups G(o/pλ), where G is a
smooth, reductive, affine group scheme over Z. In
this generality, very little seems to be known if λ > 1.
If λ = 1, the finite group in question is a “finite group
of Lie type”. Thanks to the efforts of several people,
notably G. Lusztig, the representation theory 
and character theory of the latter groups are well
understood (see [L]). One can wonder whether the
powerful methods of algebraic topology used 
to deal with the finite groups of Lie type can also 
be used in the case of the groups G(o/pλ)… .
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