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The phenomenon that any person is only six hand-
shakes, or “six degrees of separation”, away from
any other person on the planet is the essential fea-
ture of the “small worlds” referred to in the title of
this book. The term “small worlds” also provides an
apt self-referential metaphor for this book, which
shows the way many diverse areas of research—
from graph theory to epidemiology to coupled
oscillators—have some surprising connections.

Almost everyone has had the experience of find-
ing that he or she shares a mutual acquaintance
with a total stranger. This casual observation was
put to the test by Stanley Milgram in the late 1960s
at Harvard University [7]. He conducted an exper-
iment in which he asked a random group of peo-
ple in Kansas and Nebraska to send letters to a
particular individual whom they did not know in
Boston, Massachusetts. Each person was instructed
to send the letters to a person whom they knew
on a first name basis and who they felt might have
a greater chance of knowing the intended recipi-
ent. The new letterholder was then asked to
continue the chain. Amazingly enough, some
letters actually reached the person in Boston,
and the median chain length was six. Milgram
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coined the term “six

X . degrees of separa-
Ly ]

e Small Worlds| tion”, and the concept
has permeated the
e i, popular conscious-
{ ness ever since. Six De-
grees of Separation is
the title of a play by
John Guare and a sub-
sequent film adapta-
tion. In the parlor
game “Six Degrees of
Kevin Bacon” partici-
pants are given the
name of a movie actor
and must link that
actor to KevinBacon
through mutual ap-
pearances in films. In the lounges of academia, how
many mathematicians have not made some at-
tempt to compute their “Erdés number”, the num-
ber of connections through coauthorship to Paul
Erdés? As of January 2000, 507 privileged people

have an Erdés number of one [4].

Duncan J. Waiis

Small Worlds stems from Watts’s Ph.D. disser-
tation in the Department of Theoretical and
Applied Mechanics at Cornell University. Part of the
inspiration for the research came from an attempt
to understand the influences of network connec-
tivity on the synchronization of biological oscilla-
tors, in particular the singing of crickets. The other
part was a curiosity about how to prove that there
are only six degrees of separation between any
two people. Along the way to resolving these ques-
tions, Watts took a peripatetic journey with forays
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into a wide range of fields. He has collated these
results into a stimulating and enjoyable book. It
is divided into two parts. The first part addresses
the question of what types of networks or graphs
possess the small-world property and includes a
primer on graph theory. The second half asks what
the “dynamical” consequences are of such a net-
work. On the whole the book provides mostly con-
ceptual insights and new avenues of exploration
rather than hard mathematical results. I believe it
could be of interest to a diverse scientific audience,
including biologists, computer scientists, econo-
mists, mathematicians, physicists, psychologists,
and social scientists, if only as an introduction to
concepts in graph theory and various complex dy-
namical systems (the specific topics are outlined
below). Although no advanced mathematics is pre-
sented and Watts derives or defines most of the
technical terms and concepts used, there are prob-
ably too many formulas in the book for it to be
palatable to the general public.

The first thought that came to mind when I
read the original paper by Watts and Strogatz [10],
[3] which introduced small-world networks was,
Should I be surprised at all that there are just six
degrees of freedom between me and the pope?
After all, if each person has a hundred friends, then
through exponential growth five links will span
a range of ten billion people. The catch is that
our social connections are not independent but
highly interconnected: many of our friends know
each other. This idea is made more precise by
considering a graph with undirected edges. Watts
defines two measures of interest. The first is
the characteristic path length L defined as the
median of the means of the shortest path length
connecting each vertex to all other vertices. The
second measure is the clustering coefficient y,
which is the average fraction of vertices adjacent
to any vertex which are also adjacent to each other.
A graph exhibiting the small-world property is one
with a high level of clustering and a small charac-
teristic path length. It is not so obvious what type
of graph satisfies both constraints.

Watts introduces three models of relational
graphs that possess the small-world property. Each
of the models has a parameter that interpolates
between a graph with a high degree of clustering
(e.g., a lattice with nearest-neighbor coupling)
and a random graph with a small characteristic
length. For example, his § model begins with a cycle
of n vertices where each vertex is connected to k
of its nearest neighbors. The graph is then
“rewired” by randomly assigning with probability
B each edge of a given vertex to any other vertex.
For B =0 (the original cycle), in the limit of large
nand k withn > k, y ~ 3/4 and L ~ n/(2k). This
represents a world where people live in close-knit
communities and the only outside people they
know live in neighboring communities. For =1,
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the graph is essentially random with L ~ Inn/Ink
and y ~ k/n. For n > k there is very little cluster-
ing. In the random world a person is only a few
degrees of separation from anyone else, but no one
would know anyone but the host at a dinner party.
As B is increased from zero to one, the graph
must make a transition from a clustered world
with large L to a random world with small L.
Watts discovered that in this transition, L drops
extremely quickly to the random graph level for
well below 1, while y falls at a much slower rate.
There is a range of § for which the graphs possess
the small-world property. This range generally
holds for § much smaller than 1, which implies that
it may be difficult to tell whether or not a graph
has the small-world property by simply examining
the links to a particular node. In other words,
people could not tell whether they lived in a
small world simply by examining the list of their
friends. They would have to calculate the charac-
teristic path length for the entire population.
Watts’s other models and their variations exhibit
similar properties demonstrating robustness of
the small-world effect.

The intuitive explanation for the small-world ef-
fect is that the random rewiring introduces “short-
cuts” between self-contained communities and it
only takes a small number of shortcuts to make a
large world small. In the close-knit community
world, a few world travelers could link together dis-
tant villages. Watts does not have a general proof
that only a small number of shortcuts makes a large
world small, but he does give some theoretical
backing to this intuition by introducing simpler
heuristic models that allow analytical estimates of
L and y as functions of the number of shortcuts.
The results match the simulation results of the re-
lational graph models quite well. Watts then ex-
amines three real-world networks—the collabora-
tion graph of film actors (also called the Kevin
Bacon graph), the power grid of the western United
States, and the neural connections of the worm C.
elegans. All three graphs possess the small-world
property in that L is similar to that of a random
graph but y is much larger. However, only the
Kevin Bacon graph matched closely with the the-
oretical predictions of the relational graphs. That
the others did not match closely might reflect the
difficulty of fitting all small-world networks into
one simple category. Indeed, the neural network
architecture of C. elegans is keyed directly to
function, so presumably the wiring pattern is
not merely random.

The second half of the book deals with some
consequences of living in a small world, with
chapters on disease spreading, global computation
in cellular automata, game theory, and coupled
oscillators. This half of the book has much less
analysis and is much more exploratory in
nature than the first half. Given the properties of
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small-world graphs discussed in the first half, the
results in the second half are sometimes unsur-
prising. However, there are enough unresolved
questions to keep the reader interested. Watts’s
work has already spurred a flurry of research
activity. The chapters are well written and pro-
vide good introductions to these topics for the
uninitiated.

The most interesting chapters are on global
computation in cellular automata and games like
“Prisoner’s Dilemma” on small-world networks. A
cellular automaton (CA) consists of a lattice of n
cells where each cell is assigned a state. The state
may occupy a finite number of discrete levels and
is updated at discrete intervals of time according
to a transition rule that depends only on the state
of the cell and its neighbors. An example of a
global computation is the density classification
problem for a CA with two states, “on” and “off”.
A transition rule must be found so that the CA
turns on all of its cells (after some finite time)
if initially more than half the cells are on, and
off otherwise. On a one-dimensional lattice it is
nontrivial to find such rules. For example, a local
majority rule does not work because the network
eventually freezes into local domains of on and
off states. However, if instead of a regular lattice
the CA is put on a relational graph with just a
small number of shortcuts, the majority rule works
for almost all initial conditions.

Although it is not mentioned in Watts’s book,
the magnetization of the Ising model of statistical
mechanics comes naturally to mind in this context.
The Ising model consists of an array of “spins” that
can either be up or down (on or off). The spins
interact with their nearest neighbors; the energy
of the interaction is lower if they are aligned
and higher if they are opposite. One question is
whether the minimum energy state of the entire
system is a state in which all the spins are aligned
(i.e., magnetized). The Ising model is similar to
an equilibrium version of the density classification
CA. It is known that for any dimension less than
2 (including fractional dimensions!), spontaneous
magnetization is impossible at a temperature
greater than zero. Fluctuations destroy the order,
resulting in domains of up and down spins. Recent
results show that the Ising model on a small-world
network will show spontaneous magnetization
below a critical temperature if the probability for
shortcuts exceeds a critical level [2]. Interestingly,
at high temperatures the model behaves as if
it were one-dimensional, but at low temperatures
it has the characteristics of a mean field (infinite-
dimensional) model which allows magnetization.
Perhaps new insights into the properties of
disordered materials may arise from using
small-world lattices.

The game “Prisoner’s Dilemma” involves two
players (A and B) who can choose to cooperate (C)
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or defect (D) upon meeting. A payoff (P) is given
to each player depending on the four possible
outcomes: CaCp, CaDp, DACg, and DaDg. The
payoff for player A follows the ordering
PA(DACB) > PA(CaACB) > PA(DADg) > PA(CaDB) .
The payoff for B is the same, but with indices
reversed. The dilemma arises because although
the maximum payoff for both players together is
obtained if both cooperate, the only rational choice
is for both to defect. However, when generalized
to a game with repeated interactions, the dilemma
may be resolved. In a famous computer tournament
that pitted multiple strategies against each other,
the winning strategy was “tit-for-tat”, in which a
player initially cooperates and then mimics the
opponent’s action from the previous round [1].
Watts investigated how network topology might af-
fect the tendency to cooperate or defect in a gen-
eralized tit-for-tat game. The game begins with an
initial seed of cooperators in a sea of defectors. The
players are assigned a “hardness” h (0 <h < 1).
At each time step they calculate the fraction of
neighbors who were cooperators on the previous
step, and if this exceeds h, they cooperate; other-
wise they defect. Watts found that there were
nontrivial dependencies on h and the number of
shortcuts. Generally, the propensity for coopera-
tion decreases as the number of shortcuts
increases. It seems as if a sense of community is
required to foster cooperation, and making the
world more random makes for a nastier world.
(Are we seeing signs of this in our world?) For
relatively low values of h (easily swayed popula-
tion), a small-world network supports the growth
of cooperation, but for increasing h cooperation
becomes much less likely. Without any shortcuts
cooperation can thrive locally but will only spread
very slowly to other areas initially populated by
defectors. It seems that in order to have a coop-
erative world the populace must be amenable
to change and there must be a small number of
long-range connections.

The chapter on disease-spreading is somewhat
less enlightening; ironically, the same can be said
about the chapter on coupled oscillators, which
provided some of the inspiration for this work.
Watts shows that infectious diseases spread
faster in networks with shorter characteristic
path lengths, which is as expected. There are some
quantitative curiosities in the dynamics of
disease-spreading, and Watts and collaborators
have since analyzed more complicated models [8].
Watts also finds that coupled phase oscillators
will synchronize much more easily in a small-
world network than on a regular lattice. This
result was to be expected, since it is known that
even small amounts of long-range coupling in a
regular lattice can synchronize a network that
otherwise would have supported traveling waves
[5]. What would be more interesting to understand
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are which types of nonsynchronous dynamics are
possible. This could have relevance to various
firing patterns observed in the brain, for example.

In his preface Watts notes that much of the
book may need to be revised by the time it is
printed. Indeed, he may have written the book too
soon. For example, some of his recent work with
M. Newman has addressed the scaling form of L
for a variant of the § model. They find that
L =(n/k)g(Bkn), where g is a universal scaling
function [8]. Using methods from statistical
mechanics, they have shown this form applies in
the limit of small 8 and large n. I think the book
would have been much stronger if this and other
recent results were included. Perhaps the book
begs for a second edition, and if this comes to
pass, a glossary of the technical terms would be
extremely helpful.

I assume part of Watts’s motivation to publish
at such an early stage was to inspire more re-
search. An obvious open question to be answered
is, Under what conditions do small-world networks
arise? Watts has shown that small-world graphs
exist only over a subset of the parameter space of
his relational graph models. Recent work has shown
that if a network attempts to minimize the total
“length” of edges (assuming it is embedded in a
metric space) and maximize connectivity simulta-
neously, small-world networks can arise [6].
Another question is whether the small-world
property would persist if the number and location
of vertices and edges were allowed to change.
An evolving network would be closer to the real
social world where people constantly make new
friendships, give birth, and die. Does the small-
world property remain robust under such changes?
If people lived forever and the population were
conserved, then presumably everyone would
eventually meet everyone else, creating a
completely connected graph. Would we have
a “large world” if the population grew at a rate
faster than the rate at which people can make
friends?

Watts’s book has opened up a previously
neglected avenue of research both in the theory
of graphs and their influence on dynamics. He
has found a way to classify network topology
that goes beyond the narrow confines of regular
lattices and random graphs. While the small-world
effect is certainly interesting and likely to have
applications, I think his method for interpolating
between a regular lattice and a random graph may
be the most important contribution. Within graph
theory, exact expressions for the clustering
coefficient, the characteristic path length, and
other properties of relational graphs as functions
of network size and interpolation parameter f3
await computation [9]. In the study of complex
systems, one is always confronted with the issue
of whether an observation or property of a system

SEPTEMBER 2000

is a detail that must be studied in isolation or
whether it is a general concept. People have long
believed that network architecture should play a
major operational role in systems such as social
networks or the brain. However, there were few
conceptual frameworks to address such consid-
erations. Watts has provided us with a new way to
categorize and manipulate networks. It may not be
complete, but it is certainly a good start.
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