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Nathan Jacobson
(1910–1999)

Georgia Benkart, Irving Kaplansky, Kevin McCrimmon,
David J. Saltman, and George B. Seligman

When a colleague was explaining how a mathe-
matician can be recognized to have reached the
summit of recognition by his peers, he used the
metaphor, “He has become part of the furniture.”
That is, his contributions have become a part of
the daily vocabulary and working equipment of
many of us. Such is certainly the status of Nathan
Jacobson. As my fellow authors will show more
specifically, he earned his dominance by recasting
whole theories of algebraic systems and by in-
sisting on the module-theoretic viewpoint in their
study. His expository and research monographs
and his ambitious textbooks have indebted a 
worldwide community to him for strong and 
articulate leadership. The authors use this oppor-
tunity to remind us of some of the ways his ideas
have shaped our thought.

“Jake”, the name all used, died on December 5,
1999, at the age of eighty-nine. Extensive autobi-
ographical material is to be found in the “Personal
History and Commentary” that he wrote in seven
installments in his Collected Mathematical Papers
[B14], published in three volumes by Birkhäuser in
1989. I recommend these passages both for more
details on his personal life and for his comments
on the development of his mathematical work. In
this segment of the present article I provide a
sketch of his career.

His “official” birth date was September 8, 1910,
but Jake maintained that the correct one was 
October 5. His father emigrated to Nashville, 
Tennessee, when Jake was five, leaving the family
in Poland until he was well enough established to
bring them over. The First World War was nearing
its end when Jake, his brother, and his mother
were able to board a Dutch ship with help from the

Hebrew Immigrant Aid Society. After a few months
in the rear of his father’s Nashville grocery, Jake
and his family moved to Birmingham, Alabama, and
then, in 1923, to Columbus, Mississippi. Jake grad-
uated from the S. D. Lee High School in Columbus
in 1926. He entered the University of Alabama
that fall, intending to follow a maternal uncle into
law.

While following a pre-law program, he took all
mathematics courses available. The notice of his
professors was attracted to the extent that in his
junior year he was offered a teaching assistantship
in mathematics. Two of these professors, Fred
Lewis and William P. Ott, were always remembered
fondly as having inspired him to turn to a career
in mathematics. With their advice he applied for
graduate study to Chicago, Harvard, and Princeton,
accepting an offer of a “research assistantship” 
at Princeton. The stipend ($500) fell just a little
short of the bill for tuition, room, and board, but
the following years saw increases to levels that he 
described as “a substantial surplus over living 
expenses.”

His dissertation Non-commutative Polynomials
and Cyclic Algebras, with J. H. M. Wedderburn as
advisor, was accepted for the Ph.D. in 1934. How
his time in Princeton and subsequently at the 
Institute for Advanced Study led to what became
his leadership in the algebraic theory of Lie alge-
bras is described below by Irving Kaplansky and
Georgia Benkart.

Emmy Noether had taken a position at Bryn
Mawr. She gave weekly lectures, attended by Jake,
at the Institute. She took an interest in Jake’s work,
but all opportunities for collaboration ended with
her sudden death in the spring of 1935. Jake was
appointed as her replacement at Bryn Mawr for the
following academic year. After a postdoctoral 
fellowship with Adrian Albert at Chicago in
1936–37, he was appointed to a junior position at
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the University of North Carolina. Jake praised the
university’s president, Frank Graham, and the 
department head, Archibald Henderson, for their
rejection of the exclusionary practices concern-
ing Jews that barred the doors to many positions.

Although he had been on the faculty for five
years, rising to the rank of associate professor,
Jake was still subject to the Navy’s requirement of
special teacher training before being entrusted
with teaching in the U.N.C. wartime program for
prospective flyers. Fortunately the pedagogical
preparation was offered in Chicago. There it enabled
Jake to renew and consolidate his relationship with
his inseparable helpmeet and companion through
fifty-four years of marriage. Florence Dorfman
(“Florie”) gave up her doctoral research with Albert,
but continued in mathematics not only as an 
educator but also as Jake’s reader, supporter, critic,
and coauthor. When the children were older, she
returned as a highly successful and beloved teacher
at Albertus Magnus College. The hospitality of
their home is surely among the reasons why the
mathematics department at Yale has a reputation
for warmth and friendliness.

In 1943 Jake left the Navy and North Carolina
for the Army training program and an associate
professorship at Johns Hopkins, where he had ear-
lier spent a year as a visitor. It was during his time
at Hopkins that he developed much of the general
theory of rings that is his most famous achieve-
ment. The offer of a tenured associate professor-
ship from Yale that he received and accepted in
1947 represented more than an appreciation of his
outstanding research and teaching. The anti-Semitic
barrier to senior appointments in the faculty of Yale
College had fallen only in 1946, and there were still
misgivings about that step in too many quarters;
but the time had come when merit could prevail.

The events of his early years at Yale and his 
visits to Paris and elsewhere are covered in the 
Collected Papers, to which we owe lists of his pub-
lications and of his Ph.D. students. Outstanding was

the academic year 1956–57, when Adrian Albert 
organized support, mainly from the research of-
fices of the arms of the Department of Defense,
for some ten established and younger algebraists
to be at Yale. The university cooperated by partial
support for teaching in most cases. Some of Jake’s
collaborations from that year are [58] and [59] in
the list of bibliographic selections.

In July 1961 Jake represented the National Acad-
emy of Sciences at the Leningrad Fourth All-Union
Congress of Mathematicians of the USSR. After
considerable resistance, he agreed to serve as chair
of the Yale mathematics department for 1965–68,
with assurance that no extension nor reappoint-
ment was expected. During his term he succeeded
in appointing Abraham Robinson, the founder of
nonstandard analysis and an outstanding con-
tributor to both pure and applied mathematics. An-
other coup was negotiating the return to Yale of
our former Ph.D., Robert Langlands.

As president of the American Mathematical
Society in 1971–1972, Jake had to mediate between
an “activist” faction, particularly in opposition to
the Vietnam War, and a “purist” faction, who felt
the Society should adhere strictly to scientific aims.
Although his personal sentiments were with the 
activists, he preserved the respect of all parties by
offering all a hearing and by following an open
and democratic process in discussion and deci-
sions. His term as vice president of the International
Mathematical Union (IMU) (1972–74) was more
stormy. The issue at the center of contention was
the refusal of the Soviet authorities, as represented
by L. S. Pontrjagin, the other vice president of the
IMU, to permit many outstanding Soviet mathe-
maticians to participate in International Congresses.
Beyond that, anti-Semitic and antidissident prac-
tices kept promising students from being admit-
ted to universities and senior scholars who had
fallen out of favor from being allowed to emigrate.
The determination with which Jake protested may
be gathered from his comments in the June 1980
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for all subsequent work in the field, work that
eventually answered all the major questions.

At the time of the summer of 1938, Jake was only
four years beyond the doctorate. His thesis advisor
at Princeton was Wedderburn. The thesis [1]
concerned finite-dimensional associative al-
gebras. Thus there is a remarkable continu-
ity in the passing of the mantle from Wed-
derburn to Jacobson.

I hope that many readers of this piece
will also read the autobiography and (to
borrow a word from Halmos) the au-
tomathography contained in the three vol-
umes of [B14]. From this we learn that a sec-
ond major influence on Jake at Princeton
was the presence of Hermann Weyl at the
newly founded Institute for Advanced
Study. Weyl gave a course on Lie groups and
Lie algebras for which notes were written
by Jake and by Richard Brauer. A second
lifelong interest was planted in Jake at that
time. It promptly bore fruit in the influen-
tial paper [4]. (I believe that this is the first
paper to use the term “Lie algebra”; the
change from “infinitesimal group” was
made in Weyl’s lectures.) This elegant paper
is probably best known for a lemma
(Lemma 2 on page 877): If A and B are
matrices over a field of characteristic 0 and
A commutes with AB − BA, then AB − BA
is nilpotent. I fell in love with this lemma
and came back to it repeatedly. Just say “Ja-
cobson’s lemma” to just about anyone, and
he or she is likely to light up in recognition.

His early papers on Lie algebras were also note-
worthy for launching the theory of Lie algebras of
characteristic p > 0. Thus far there had only been
one novel example of a simple algebra: the Witt 
algebra. In [24] he broadened this to a family of 
algebras. Once again we find his name attached to
an object, for they came to be called the Witt-
Jacobson algebras. At first blush it might seem that
Jake was overoptimistic in wondering whether all
the simple ones were now at hand [23, page 481].
But when the classification finally came, the 
answer was that one had only to modify the Witt-
Jacobson algebras in the way that Cartan did in his
infinite simple pseudo-groups. In my own study of
Lie algebras I cut my teeth reading these papers.

I have now reached the time period when he
launched his general structure theory for rings in
[31] and [32]. Let A be a ring with unit element. Let
J be the intersection of the maximal left ideals in
A . There is no apparent reason why J should be a
two-sided ideal, but it is. There is no apparent 
reason why J should be a left-right symmetric, but
it is. J is of course the Jacobson radical. When it
vanishes, A is called semisimple. (Warning: Others
say “semiprimitive”, reserving “semisimple” for
the Artinian case.) Now the famous Wedderburn
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issue of the Notices in response to a vicious personal
attack by Pontrjagin.

His retirement from Yale in 1981 came only
after he had earned the honor of carrying the 
university’s mace as senior professor at the com-
mencement ceremonies. Students, colleagues, and
fellow scholars gathered to honor him and to pre-
sent him with their contributions in a volume, 
Algebraists’ Homage [AH]. Retirement made it 
possible for him to accept numerous invitations
from around the world. Kevin McCrimmon and
David Saltman write of his activity and influence
on research in the retirement years.

In February of 1992 he suffered a crippling
stroke. The effect on his speech gradually wore off,
but his right hand was nearly useless for writing,
and he could not walk unaided. With Florie taking
on much of the mechanics, he finished the book
on division algebras [B16] for publication in 1996,
completing the journey he had started with Wed-
derburn. Meanwhile, Florie was receiving powerful
medication. The combination of illness and treat-
ment took her from Jake’s side in 1996. No visitor
thereafter could fail to be reminded how much she
had meant to him.

There was still one happy occasion. He was able
to make the trip to Baltimore in January of 1998
to be honored with the Society’s Leroy P. Steele
Prize for Lifetime Achievement. A photo accom-
panying this article shows his radiance at that
event. His only lament was the absence of Florie.
May they now have found reunion.

—George B. Seligman, organizer

Irving Kaplansky

With the death of Nathan Jacobson (“Jake”) 
the world of mathematics has lost a giant of 
twentieth-century algebra.

I shall begin by recalling my first contact with
Jake. It was in the summer of 1938 at the Univer-
sity of Chicago. With a fresh bachelor’s degree, I
was attracted by the special program in algebra that
summer. I attended Jake’s course on continuous
groups. This carried me from the definition of a
topological space (new to me) to exciting topics at
the frontier. Also, in a seminar course conducted
by Albert I heard Jake give a talk on locally com-
pact division rings. This kindled in me an interest
in locally compact rings that has lasted to this
day. Pontrjagin had done the pioneering work by
showing that the only connected locally compact
division rings are the reals, complexes, and quater-
nions. The paper [3], joint with Olga Taussky, took
a big step forward by studying a general 
locally compact ring. This laid the foundation 
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structure theorems survive, in a
somewhat weakened form. A semi-
simple ring is a subdirect sum of
primitive ones, and a primitive
ring resembles matrices over a di-
vision ring, with the matrices 
allowed to be infinite.

This splendid theory works.
Over the years there have been re-
peated uses of it to settle prob-
lems not stated in terms of the
theory.

The Colloquium volume [B5] in-
cludes his account of his structure
theory. It was definitive when it ap-
peared. It remains indispensable
today; I think it will continue to be
indispensable for a long time. Late
in life [B16] he returned to the ba-
sic classical topic of finite-dimen-
sional division algebras and pre-
sented a remarkable new view of
this venerable subject.

There are three great classes of
algebras: associative, Lie, and Jor-
dan. The date of his associative
book is 1956. Just six years later
came his Lie algebra book [B6]. It
set a high standard for the fairly
numerous books that have fol-
lowed. Among other things, I find
the abundance of challenging ex-
ercises to be a big plus. After six
more years came his book [B7] on
Jordan algebras, completing his
trio on the three classes of alge-
bras. He did the hat trick! Again,
this book was polished, eminently
readable, and definitive at the
time. But subsequent dramatic de-
velopments, above all at the hands
of McCrimmon and Zelmanov,
have transformed the subject.

It is amazing but true that in ad-
dition to writing these three books

Jake found the time to write an algebra textbook not
once, but twice. I am referring to [B2], [B3], [B4] and
[B10], [B12]. The citation for the Steele Prize for Life-
time Achievement (Notices 45 (1998), 508) said that
the first is superseded by the second. I disagree. I am
glad that we have both; they will both be studied
and enjoyed for a long time.

Let me return to the debts I owe him. After his
structure theory of rings appeared, I ventured to 
begin a steady stream of correspondence with him
about this and about locally compact rings. He was
always prompt in replying, and his replies were 
always helpful. He gently tolerated my often naive
stabs. It was like doing a second Ph.D. thesis. This 
climaxed in his visit to Chicago in the summer of

1947, during which his course on rings was a preview
of the forthcoming book. Polynomial identities and
central polynomials surfaced at that time. This tale
has been told twice—as he remembered it and as I
did. I shall not repeat it here. But let me record how
indebted I am to him for this inspiration. And I would
like also to thank him again for the overly generous
footnote [33, page 702] in which he gave me credit
for extending his commutativity theorem from
xn = x to xn(x) = x.

Let me pay tribute to his wife Florence (“Florie”).
Not only did she offer him support through a long
and happy marriage, she was a joint author [40].
Jake’s final three years were saddened by the loss
of Florie. Friends, students, and colleagues are
mourning the loss of both. We will always re-
member the hospitality they were always ready to
offer and their outgoing, charming personalities.

In closing I would like to mention three more
gems: (1) His inauguration of the fertile concept of
triple systems [39]. (2) His reduction of Hermitian
forms to quadratic forms [21]. Every linear alge-
braist should put this into his or her armory. (3) This
last is due to his student Glennie [G]: the amazing
identity satisfied by special Jordan algebras.

Georgia Benkart

It was spring 1934, and Nathan Jacobson was just
finishing his doctoral dissertation on division al-
gebras at Princeton under J. H. M. Wedderburn.
Richard Brauer, who had been designated Hermann
Weyl’s research assistant at the newly established
Institute for Advanced Study, was delayed in ar-
riving until the fall, so Jacobson was asked to
bridge the gap and write up Weyl’s lecture notes
on continuous groups. This proved to be a mo-
mentous event for Lie theory as well as the start
of young Jacobson’s distinguished writing career.

Weyl felt that it would be of interest to study Lie
algebras over arbitrary fields without recourse to
the group or to the algebraic closure of the field.
Jacobson, who was well versed in Wedderburn’s
similar investigations on associative algebras, read-
ily took to the task. His first paper on the subject,
“Rational methods in Lie algebras” [4], which ap-
peared in 1935, acknowledged Weyl’s profound
influence. It rederives the well-known theorems
of Lie and Engel on solvable and nilpotent Lie al-
gebras by using methods from elementary linear
algebra that set the stage for “rationalizing” other
parts of the theory.

A beautiful example of the rationalizing process
involves Jacobson’s notion of a weakly closed sub-
set S in a finite-dimensional associative algebra
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A . Weakly closed means that for each ordered pair
of elements a, b ∈ S , there is a scalar γ(a, b) so
that ab + γ(a, b)ba ∈ S . If every element a of S is
nilpotent (ak = 0 for some k), then the associative
subalgebra S∗ of A generated by S is nilpotent
((S∗)m = 0 for some m). Jacobson perfectly phrased
this lovely little gem so that it can be invoked for
Lie and Jordan algebras and Lie superalgebras. 
It is noteworthy as one of the few general results
that apply over any field, even fields of prime 
characteristic.

One crowning achievement of nineteenth-
century mathematics was the classification by 
Cartan and Killing of the finite-dimensional 
simple Lie algebras over an algebraically closed 
field F of characteristic zero. These Lie algebras 
are (up to isomorphism):
a) sln(F) , the special linear Lie algebra of n× n

matrices over F of trace 0 for n ≥ 2;
b) son(F) , the orthogonal Lie algebra of n× n

matrices x over F such that xt = −x for n ≥ 5,
t denoting transpose;

c) spn(F) , the symplectic Lie algebra of n× n
matrices x over F such that xtJ + Jx = 0 for
n ≥ 4. Here nmust be even, and J is the n× n
matrix of a nondegenerate skew-symmetric
bilinear form.

d) one of 5 exceptional Lie algebras e6, e7, e8, f4, g2.
When the underlying field F is not algebraically

closed, it is possible to describe the simple Lie 
algebras L over F that upon extension to the 
algebraic closure ̄F are isomorphic to sln(F̄) , son(F̄)
for n 6= 8, or spn(F̄) . Jacobson’s ground-breaking 
papers of 1937–38 [9], [14], [15] showed that L is
the Lie algebra (A, [ · , · ])/F1 constructed from a
simple associative algebra A whose center is F1
(or what is now called a central simple associative
algebra), or it is the set of skew elements of a 
central simple associative algebra with involution.
This work began Jacobson’s general program on
“forms of algebras” [89] that ultimately led to his
classification of the forms of the Lie algebra 
g2 using composition algebras [19] and to the 
classification of forms of simple Jordan algebras
[40], [58].

For any sort of algebra A (associative, Lie, 
Jordan, etc.), the linear transformations D : A→ A
that satisfy the “derivative property” D(ab)
= D(a)b + aD(b) are said to be derivations. Deriva-
tions are very natural objects to study  [11], [28] es-
pecially in Lie theory, because the adjoint transfor-
mation ad x : L→ L , given by ad x(y) = [x, y], of a
Lie algebra L is always a derivation. This statement
is equivalent to the Jacobi identity. In general, the 
composition D1D2 of two derivations need not be
a derivation; however, the set of all derivations is a
Lie algebra under the commutator product
[D1,D2] = D1D2 −D2D1 . If the underlying field 
has characteristic p > 0, then it is a consequence 
of Leibniz’s formula,

Dp(ab) =
p∑
k=0

(
p
k

)
Dp−k(a)Dk(b),

that Dp(ab) = Dp(a)b + aDp(b) . In other words, Dp
is a derivation. It was Jacobson’s great insight 
that the property of being closed under p-powers
conveys important structural information. This
idea led him to introduce the notion of a restricted
Lie algebra [11].

Rather than present the general abstract defin-
ition, let us assume for simplicity that the center

Z(L) = {z ∈ L | [z, x] = 0 for all x ∈ L}
of the Lie algebra L is zero. In that case, L is restricted
if for each x ∈ L , the mapping (ad x)p , which is a 
derivation of L, in fact equals ad y for some y in L.
Usually the element y is written x[p] to indicate its
dependence on both x and the p-power.

The Lie algebras associated to algebraic groups
(the analogues of Lie groups over arbitrary fields)
are always restricted, so the characteristic p ver-
sions of the Lie algebras in (a) through (d) are re-
stricted. They are simple too, except when p | n for
sln(F), where it is necessary to factor out scalar mul-
tiples of the identity matrix. However, they are
not the only finite-dimensional simple Lie alge-
bras over algebraically closed fields of character-
istic p > 0. The Witt algebra, which is the deriva-
tion algebra of the truncated polynomial algebra
F[x | xp = 0], provides an example, as do the Ja-
cobson-Witt algebras, which are the derivations
of F[x1, . . . , xm | xpi = 0] . The latter algebras were
discovered and investigated by Jacobson in the
early 1940s as part of his efforts to develop a Ga-
lois theory for purely inseparable field extensions
using derivations rather than automorphisms [28].
His work set the stage for Albert and Frank [AF],
[F], who constructed simple Lie algebras from the
Jacobson-Witt algebras. Kostrikin and Šafarevič
[KS] extended the ideas in [AF] and [F] by identi-
fying four unifying families of simple Lie algebras
that live in the Jacobson-Witt algebra. These four
are called the Cartan-type Lie algebras because
they correspond to Cartan’s four infinite families
(Witt, special, Hamiltonian, contact) of infinite-di-
mensional complex Lie algebras.

Kostrikin and Šafarevič conjectured that over an
algebraically closed field of characteristic p > 5 a
finite-dimensional restricted simple Lie algebra is
classical (as in (a) through (d) above) or of Cartan
type. Almost one hundred years after the classifi-
cation of the simple Lie algebras of characteristic
zero, Block and Wilson [BW] in 1988 succeeded in
proving this conjecture. If the notion of Cartan-type
Lie algebras is expanded to include the simple al-
gebras arising from Cartan-type algebras that are
twisted by an automorphism, then one can for-
mulate the Generalized Kostrikin-Šafarevič Con-
jecture by erasing the restrictedness assumption
in the statement above. In the absence of
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restrictedness, Strade’s p-envelopes, which are re-
stricted Lie algebras, save the day and enable the
classification to be carried out (see [SW], [St]). It is
impossible to imagine how the classification might
have been achieved without Jacobson’s notion of
a restricted Lie algebra and his guiding light, for
Jacobson kindled in his students and grandstu-
dents a great interest in the classification problem.
As a result, he and his descendants—Curtis, Selig-
man, Wilson, Gregory—and I all have been involved
in this enterprise.

Although after the mid-1950s Jacobson devoted
much of his research to associative and Jordan al-
gebras, he wrote two books, Lie Algebras [B6] and
Exceptional Lie Algebras [B9], and supervised a
number of graduate students in Lie theory. Lie Al-
gebras transformed the beautiful classification
picture of Cartan and Killing into highly under-
standable text. Its status as a “classic” having been
confirmed by its 1979 republication in the Dover
series, Lie Algebras still remains the best basic
reference for restricted Lie algebras and for an ex-
position of the famous embedding result known
as the Jacobson-Morosov theorem. This book, like
Jacobson’s papers, has a timeless quality, and one
must marvel at just how readable his works are
even now, over sixty years after many of them
were written.

The nonassociative algebra of octonions (or
Cayley numbers) is responsible for most of the ex-
ceptional phenomena in Lie and Jordan theory.
Just as the complex numbers C = R⊕Ri are the
double of the real numbers R, and the quaternions
H = C⊕Cj are the double of the complex numbers,
so the octonions O = H⊕H` can be regarded as
the double of the quaternions. The derivation al-
gebra Der(O) of the octonions is the simple ex-
ceptional Lie algebra g2 ([19] or [B6]). The space of
3× 3 Hermitian matrices H3(O) with entries in O
is the exceptional 27-dimensional simple Jordan
algebra, now called the Albert algebra, and its de-
rivation algebra Der(H3(O)) is the simple excep-
tional Lie algebra f4. The Lie algebras of types e6,
e7, and e8 can be constructed using the octonions
as well. This is the tale told in Exceptional Lie Al-
gebras by an author whose own contributions to
that story are immense.

My only class with Jacobson was an exceptional
Lie algebras course—it was truly an exceptional Lie
algebras course. About twelve years after I took this
class, a colleague at Wisconsin, who knew what the
book meant to me, brought me nine copies of Ex-
ceptional Lie Algebras that he had found on sale
in New York. They are long gone to good homes,
as inquiring minds wanted to know, and there is
no better place to start.

As president of the American Mathematical So-
ciety and vice president of the International Math-
ematical Union, Jacobson was extraordinarily busy
during my graduate years at Yale. Yet he was a
calm, reassuring mentor who never seemed rushed
and who always had time to talk. We, his thirty-
three Ph.D. students who felt his gentle guidance
and experienced his gracious kindness, owe him
a special debt that perhaps can be repaid only in
kind by emulating his behavior with our own grad-
uate students.

I last saw “Jake” about a year ago, when I briefly
stopped in New Haven en route to a colloquium in
Boston. Knowing that I had arrived from Princeton,
he was eager to reminisce about the exciting early
days of the Institute there. He also had just received
a copy of Kevin McCrimmon’s new book, A Taste
of Jordan Algebras [McC2]. What delighted him
most about the book, dedicated to “Jake” and his
wife Florie, was that the contributions of each of
them had been acknowledged. That is exactly how
he wanted it to be. The mathematical community,
their family, and their friends will miss them both
very much.

Kevin McCrimmon

I would like to say a few words about Jake’s
legacy for Jordan algebras. Jordan algebras were
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Ji ⊆ Ai any Jordan isomorphism J1 → J2 extended
to an isomorphism or anti-isomorphism of the
given associative envelopes A1 → A2. In his 1949
papers [40] (with his wife Florie) and [39], he in-
troduced the universal specialization µ in the uni-
versal special envelopeU of J (analogous to the well-
known universal associative enveloping algebra
of Lie theory). This was introduced to reduce Jor-
dan homomorphisms (called specializations)
J → A+ to associative homomorphisms U → A of

introduced by P. Jordan as an attempt to provide
an algebraic setting for quantum mechanics that
enjoyed all the properties of the usual model yet
did not presuppose an underlying associative al-
gebra. In the usual interpretation, quantum-me-
chanical observables are represented by operators
on Hilbert space, but only hermitian operators are
physically observable. A linear algebra is called a
Jordan algebra if it satisfies the identities

xy = yx,(J1)

(x2y)x = x2(yx).(J2)

If A is an associative algebra, then the vector space
A , together with the “anti-commutator” multipli-
cation x · y := 1

2 (xy + yx) , forms a Jordan algebra,
denoted A+. A Jordan algebra J is called special if
it arises as a Jordan subalgebra of some associa-
tive algebra, J ⊆ A+ . The most important example
is the subspace H(A,∗) of ∗ -hermitian elements
x∗ = x with respect to an involution ∗ on A (i.e.,
an involutive antiautomorphism). Any symmetric
bilinear form 〈 · , · 〉 on a vector space V over a field
F somewhat accidentally gives rise to a special
Jordan algebra (a “spin factor”) on the space
F · 1⊕ V by having 1 act as identity element and
having vectors multiply by v ·w := 〈v,w〉1; this is
a Jordan subalgebra of the Clifford algebra of the
bilinear form.

A Jordan algebra is called exceptional if it is not
special; Jordan was seeking an exceptional Jordan
model for quantum mechanics. In 1934 Jordan, J.
von Neumann, and E. Wigner made a complete
classification of finite-dimensional formally real
Jordan algebras and showed they were direct sums
of five types of simple algebras: spin factors and
hermitian n× n matrices Hn(R),Hn(C),Hn(H) over
the reals R, the complexes C, or Hamilton’s quater-
nions H, together with a totally unexpected Hn(O)
over Cayley’s octonions O (but only for n = 3). This
latter 27-dimensional Jordan algebra has since be-
come the celebrated exceptional Jordan algebra
(often referred to as the Albert algebra).

The exceptional Jordan algebra proved to be
an invaluable ingredient in explicit constructions
of the exceptional Lie algebras, especially those
over arbitrary fields. These Lie constructions and
related foundational work Jake did with Albert
and others on classifying finite-dimensional nonas-
sociative algebras have already been discussed by
Georgia Benkart. I will concentrate on the new in-
sights, new concepts, and new tools he brought to
Jordan algebras.

Universal Gadgets
In his very first paper on Jordan algebras [31] in
1948, describing the isomorphisms between the
special simple Jordan rings classified by Albert in
1946, Jake used results of Ancochea and Kalisch
showing that for certain special Jordan algebras
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the universal gadget. It was characterized by 
its universal property that all specializations
J

ϕ−→ A (not just the isomorphisms) were reduced
to associative homomorphisms of U

ϕ̃−→ A by fac-
toring through the universal specialization,

the right vertical arrow in the second diagram in-
dicating the forgetful map.

This was especially effective, since U is finite di-
mensional when J is (unlike in the Lie case), so that
the homomorphisms of U were well understood
from the associative theory. This strategy made the
extension of Jordan specializations to the asso-
ciative envelope automatic. There was of course
work to be done in describing the universal gad-
get for any particular Jordan algebra, but then the
entire question of Jordan specializations was re-
duced to the study of this one associative algebra.

The study of specialization is essentially the
study of all Jordan “modules”. Jake also intro-
duced a universal gadget for multiplication spe-
cializations (corresponding to Jordan “bimodules”)
and showed how it related to a certain “meson al-
gebra” introduced by physicists.

Triple Products
To avoid messy factors 12 in Jordan products, we
can introduce the brace product (or 2 -tad)
{x, y} := 2xy. In 1949 [39] Jake recognized the im-
portance of the so-called 3-tad {x, y, z} defined by

2{x, y, z} := {{x, y}, z} + {{z, y}, x} − {y, {x, z}}.

In associative algebras these products take the
simple form {x, y} = xy + yx and {x, y, z} = xyz
+ zyx. Jordan triple systems are algebraic struc-
tures closed under a triple product behaving like
{x, y, z} . Jordan algebras are of course closed
under their triple products, but certain subspaces
might be closed under the triple but not the bilinear
product, so Jordan triple systems were a wider
class of algebraic structures (as Jake had shown for
Lie triple systems). Once more an unexpected con-
nection appeared between Jordan and Lie theory:
3-graded Lie algebras L = L1 ⊕ L0 ⊕ L−1 lead nat-
urally to Jordan pairs (V+, V−) = (L1, L−1)—a pair of
spaces acting on each other, but not on them-
selves, as Jordan triple systems—via the Jordan
triple product {x+, y−, z+} = [[x+, y−], z+]. Jordan
triples and pairs are now seen as important fea-
tures of the mathematical landscape, with Jordan
algebras as especially exemplary members of
this family.
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The U-Operator and the Fundamental
Formula
One particular case of the Jordan triple product oc-
curs when the two outside variables coincide, lead-
ing to an important quadratic product,

Uxy =
1
2
{x, y, x}.

This is equal to xyx in special algebras. Jake in-
troduced these operators and the U-notation (its
origins are obscure) and conjectured the Funda-
mental Formula in operator terms,

UUxy = UxUyUx.

This is easy to verify in associative algebras, since
on an element z it becomes (xyx)z(xyx) =
xyxzxyx = x(y(xzx)y)x . After hearing Jake lec-
ture on this, I. G. Macdonald went home and proved
the conjecture. Moreover, using a deep theorem of
Shirshov on two-generated Jordan algebras, he
went on to establish a general principle that any
Jordan polynomial identity in three variables that
is linear in one of them will hold in all Jordan al-
gebras as soon as it holds in all associative alge-
bras.

The U-operator and its Fundamental Formula
have completely recast our view of the Jordan
landscape: we have slowly come to realize that
the fundamental product in a Jordan system is
the quadratic product Uxy, not the bilinear prod-
uct {x, y} or the trilinear product {x, y, z}, which
results by polarizing x→ (x, z) in the quadratic
expression Uxy. This basic product is as associa-
tive as such a product can be: unital Jordan alge-
bras are described axiomatically by

• U1 = 1J ,
• Ux{y, x, z} = {x, y,Uxz} ,
• UUxy = UxUyUx .
Jake used the U-operator to obtain the basic

facts about inverses. He showed that the proper
definition of x invertible is that Ux be an invert-
ible operator, with Ux−1 = (Ux)−1 . There is no cor-
responding result for the bilinear multiplication.

Once more, while the U-operator and Funda-
mental Formula were proving their worth alge-
braically, they popped their heads up again in dif-
ferential geometry in work of Koecher: Ux arises
naturally out of the inversion map j(x) = −x−1 by

Ux = (∂j |x)−1

for ∂j |x the usual differential (best linear ap-
proximation) of the nonlinear map j at the point
x . This allowed T. A. Springer [Sp] to base an en-
tire theory and classification of Jordan algebras on
the operation of inversion. Another illustration of
how Ux arises from inversion is the Hua identity,
which can be written as

Ux(y) = x− (x−1 − (x− y−1)−1)−1
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or as

x−1 + (y−1 − x)−1 = (x−Uxy)−1

whenever x , y , and y−1 − x are invertible. This
identity is relatively easy to derive by an argument
appealing to Zariski density and change of unit el-
ement. It was Jake who showed how to change
units in Jordan algebras (passing from J with unit
1 to an “isotope” with unit u, for any invertible u)
and demonstrated the power of this method in Jor-
dan theory.

Generic Norms
Jake made frequent use of the concept of generic
norm. This is a generalization of the determinant
for matrices, more generally of the “reduced norm”
on finite-dimensional associative algebras. He
showed that the generic norm could be defined for
any finite-dimensional power-associative algebra,
i.e., an algebra in which each element generates an
associative subalgebra, so that the usual rules of
powers apply, though the algebra as a whole need
not be associative [69]. The key idea was that the
“generic element” satisfied a generic minimum
polynomial

xn −σ1(x)xn−1 + . . . + (−1)nσn(x)1 = 0

in which each σi is a homogeneous polynomial
function of degree i. Here σ1 is the generic trace
and σn the generic norm. For ordinary associative
matrix algebras these are just the usual trace and
determinant, and the generic minimum polyno-
mial is the characteristic polynomial. The key
player here was the generic norm N( · ), since the
minimum polynomial could be recovered as

N(λ1− x) = λn −σ1(x)λn−1 + . . . + (−1)nσn(x)1

for an indeterminate λ.
Any quadratic form Q is the generic norm of a

Jordan algebra of “degree 2 ”, x2 − T (x)x +
Q(x)1 = 0. Only certain very special cubic forms,
such as with the Albert algebra, arise as generic
norms of “degree 3” Jordan algebras, x3 − T (x)x2 +
S(x)x−N(x)1 = 0. We no longer say, with Cartan,
that the exceptional Lie group E6 arises as a group
of transformations preserving a certain cubic form
on 27-dimensional space; we say that E6 arises as
the group of linear transformations on the 27-di-
mensional Albert algebra that preserve the generic
norm, or equivalently, the surface N(x) = 1. Simi-
larly, F4 arises not as the isotropy group of a point
on the cubic surface, but as the isotropy group of
the identity element, or better, as precisely the
automorphism group of the Albert algebra.

Inner Ideals
David Topping [T] introduced quadratic ideals
(subspaces B ⊆ J closed under the quadratic prod-
uct UBJ ⊆ B) in his study of Jordan algebras of self-
adjoint operators on Hilbert space. Jake

recognized im-
mediately the
utility of these
as an analogue
of one-sided
ideals for gen-
eral Jordan
algebras and
developed a
structure the-
ory for Jordan
rings with de-
scending chain
c o n d i t i o n
(d.c.c.) on qua-
dratic ideals
that was com-
pletely analo-
gous to the
Artin-Wedder-
burn theory for
a s s o c i a t i v e
rings with
d.c.c. on left
ideals [73]. Like
Athena spring-
ing full grown
from the mind
of Zeus, this
theory sprang
full grown
from the mind
of Jake.

This was the
first truly ring-
theoretic ap-
proach to Jor-
dan algebras: the requisite idempotents (for no
theory seemed possible without a rich supply of
idempotents) arose from the minimal quadratic
ideals instead of elements algebraic over a field.
After Jake’s paper, one could paraphrase
Archimedes and say, “Give me the Fundamental
Formula and I can move the world.” I mimicked
Jake’s entire paper [McC1] to get a theory of qua-
dratic Jordan rings based entirely on the product
Uxy ≈ xyx , which had no need of a scalar 1

2 and
hence was applicable not only to fields of charac-
teristic 2 but also to arithmetic situations, such as
algebras over the integers.

Later Jake rechristened these B’s inner ideals.
The Jordan product xyx does not have a left or
right like the associative product xy; it has an in-
side and an outside. An inner ideal is a subspace B
closed under inner multiplication by J,UBJ ⊆ B,
while an outer ideal is closed under outer multi-
plication, UJB ⊆ B. If there is a scalar 12 available,
these outer ideals are the same thing as ideals
(two-sided, both inner and outer).

The final achievement of the classical age in
Jordan algebra was Jake’s structure theory for

Jacobson  at his 75th birthday celebration,
1985, with Efim Zelmanov.

Yale, about 1980. Left to right: Ying Cheng,
Jacobson, and Walter Feit. 
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(but not the crossed-product approach) extends
beautifully to Azumaya algebras over rings. Fur-
thermore, behind Jacobson’s derivation extension
result lay a useful fact that has become key in the
theory, namely, that the Brauer group map is sur-
jective over purely inseparable extensions.

The next paper on central simple algebras, of
particular note, is on another topic still. In [15] Ja-
cobson began his study of central simple algebras
with involution, a subject he concerned himself
with until the end of his career. An involution of
A is an anti-automorphism of order 2, and for the
moment an involution will always be the identity
on the center F of A . If A = EndF (V ) , then involu-
tions correspond to similarity classes of symmet-
ric or antisymmetric nonsingular bilinear forms on
V . In the symmetric case (that of a quadratic form)
the involution is called orthogonal, a concept that
generalizes to an arbitrary central simple A .

Given a quadratic form, one can define the use-
ful and important Clifford algebra and even Clif-
ford subalgebra. In [70] Jake showed that one could
define an even Clifford algebra for an orthogonal

algebras with capacity [B13]. The d.c.c. leads to min-
imal inner ideals, which generate division idem-
potents, so Jake just started from a decomposition
of the unit 1 into a finite sum of division idem-
potents. Serendipitously, this was just what was
needed when Efim Zelmanov ushered in the new
age in Jordan theory with his classification of sim-
ple Jordan algebras of arbitrary dimension.

And so the torch was passed to a new genera-
tion.

David J. Saltman

Nathan Jacobson has had an important and
deep influence on the theory of central simple al-
gebras despite the fact that he wrote on the sub-
ject only at isolated points of his career. His con-
tributions can be divided into distinct time periods,
separated by periods when he published in other
areas. His influence was not only exercised by
means of research papers but also through his ex-
position of known results in monographs.

To begin with, Jake’s Ph.D. thesis was in the area
of central simple algebras [1]. In that work he
traced the connection between cyclic algebras and
twisted polynomial rings. The deepest part con-
cerned the so-called Schur index, which is the de-
gree of the division algebra associated to a central
simple algebra. In his thesis Jake shows that the
Schur index of a cyclic algebra can be computed
by knowing the factorization of a polynomial in the
twisted polynomial ring. Though this work dates
to 1934, the point of view is still being exploited
and generalized, for example, in the work of Louis
Rowen.

The next phase of Jake’s work in central simple
algebras came in two papers, [11] and [12], in 1937.
In the then-current theory of central simple alge-
bras, an important place was occupied by the so-
called Noether-Skolem Theorem, which concerned
automorphisms of these algebras. Jacobson began
the investigation of derivations and their place in
the theory. His first important result was analogous
to the automorphism case. He proved that every
derivation of a central simple algebra, trivial on the
center, was inner. His next result had no auto-
morphism version: Jake proved that every deriva-
tion on the center extended to the whole algebra,
a result clearly false for automorphisms. These ob-
servations turned out to be crucial in the theory,
then just begun, of so-called p-algebras, which are
central simple algebras of prime characteristic p
and degree a power of p. Jake could rewrite cyclic
algebras of degree p in terms of derivations instead
of automorphisms. It turns out that this approach
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involution on an arbitrary central simple A . This
was the important first result in a continuing long
program of many people (e.g., J. P. Tignol) that has
extended many parts of the theory of quadratic
forms to involutions.

While on the subject of involutions, let me jump
ahead to one of Jake’s last published results. An
involution on A , still trivial on the center, which
is not orthogonal is called symplectic. If S ⊂ A is
the space of elements fixed by a symplectic invo-
lution, then there is a form p on S , called the
Pfaffian, whose square is a form of the determi-
nant restricted to S . In [79] Jake showed that the
function field L of the zero set of the Pfaffian was
a so-called “generic 12 splitting field”. That is, A⊗F L
has Schur index 2 in the nontrivial cases, and any
other field with this property is a specialization of
L. This was the first (and best understood) exam-
ple of what one calls generalized Brauer-Severi va-
rieties.

The last subject of Jake’s interest we highlight
is reduced norms. If A is a central simple algebra
with center F and F̄ is the algebraic closure of F ,
then A⊗F F̄ is isomorphic to a ring of matrices
Mn(F̄ ) . Such an example has the well-known de-
terminant map d : Mn(F̄ ) → F̄ . However, this map
can be defined on A itself and is then called the
reduced norm n : A→ F . This is a polynomial map
and can be thought of as a polynomial on A . Jake
showed that this polynomial carries a surprising
amount of information about the algebra-structure
of A . Namely, he showed that a linear map
f : A→ B that preserves 1 and preserves the norm,
must be an isomorphism or anti-isomorphism.
This result is a special case of the Jordan theory
in [76], where it arises, in the above form, only after
combining other results.

The book mentioned above, [B16], was Jake’s last
publication and will very likely influence the field
significantly. In [B11] Jake wrote a monograph giv-
ing a complete exposition of Amitsur’s noncrossed
product result. His clear, careful, and streamlined
approach was a huge influence on mathematicians
following up on Amitsur’s result.
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of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat.
33 (1969), 251–322.

[McC1] K. MCCRIMMON, A general theory of Jordan rings
Proc. Nat. Acad. Sci. USA 56 (1966), 1455–1459.

[McC2] ———, A Taste of Jordan Algebras, submitted for
publication.

[Sp] T. A. SPRINGER, Jordan Algebras and Algebraic Groups,
Ergebnisse der Mathematik, vol. 75, Springer-Verlag,
Berlin-New York, 1973.

[St] H. STRADE, The classification of the simple modular
Lie algebras, VI. Solving the final case, Trans. Amer.
Math. Soc. 350 (1978), 2553–2628.

[SW]H. STRADE and R. L. WILSON, Classification of simple
Lie algebras over algebraically closed fields of prime
characteristic, Bull. Amer. Math. Soc. (N.S.) 24 (1991),
357–362.

[T] D. M. TOPPING, Jordan algebras of self-adjoint oper-
ators, Mem. Amer. Math. Soc. 53 (1965).

mem-jacobson.qxp  8/7/00  11:36 AM  Page 1071


