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Book Review

a continuous function
to do. It follows only
then that the particu-
lar mode of formal-
ization used in the
Bolzano proof is cor-
rect, since it recon-
structs this behavior.
There is a Platonic
world of absolute
mathematical truth,
and the picture proof
is a successful way of
capturing it, as good
as or better than any
other.

This example indi-
cates that there is more than one way to look at
the role of pictures in proof. The weakest claim is
that a picture can serve as an aid to inspire a proof.
The mathematician presenting the Bolzano proof
could agree to this. A stronger position is that a
picture may be taken to be an element of a formal
proof. If one can specify syntactic rules for words
that constitute a proof, then one might also be able
to specify syntactic rules for pictures that consti-
tute a proof. There are several recent works with
this theme [1], [6]. The strongest position is that
of the mathematician presenting the sketch of the
function crossing the axis. This sketch is supposed
to capture a typical representation of the true sit-
uation. It is a way to perceive the Platonic world
of mathematical reality.

According to Brown, a proponent of this point
of view, “Platonism asserts the existence of abstract
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Brown’s book is mainly about the philosophy of
mathematics, but a special theme is pictures and
mathematical proof. Here is an example. Two math-
ematicians each wish to convey an understanding
of the intermediate value theorem, which states
that a continuous function on a closed bounded
interval that starts below the horizontal axis and
arrives above the axis must cross the axis at some
point. The first mathematician draws a picture
and claims that this gives a proof. The picture is
not itself the proof, but it acts as a symbol that ex-
tracts the essence of the general situation. The
second mathematician gives a proof in the usual
language of analysis, following the argument of
Bolzano. This begins by assuming that f is con-
tinuous on [a, b] with f (a) < 0 and f (b) > 0. The
set S consisting of all x with a ≤ x ≤ b and f (x) < 0
is nonempty and bounded above. So it has a least
upper bound c. And the proof goes on to conclude
eventually that f (c) = 0.

The second mathematician claims that the
Bolzano proof justifies the picture proof. The first
mathematician retorts that it is the other way
around. The picture proof captures what we want
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entities; it says that numbers, functions, rules and
so on are just as real as trees and electrons, though
they are not physical entities located in space and
time.” He celebrates this with a quip. “Being a mere
mathematical entity is not some second-rate sta-
tus. I would take great pride in being an integer—
if that made any sense.”

Brown’s book is partly expository, but it also
takes a position. Its stated goals are:

a. to introduce readers to the philosophy of
mathematics;

b. to introduce some of the newer issues, those
associated with mathematical experiments, the
use of computers, and especially visualization;
and

c. to argue for Platonism in the philosophy of
mathematics (and in particular for a Platonistic view
of how pictures work).

The book is not aimed at the general reader;
words such as “epistemic” and “ontic” occur with-
out explanation. However, the prose is readable,
and the author gives a number of examples of pic-
ture proofs. Mathematicians will find it a cheerful
introduction to the traditional positions on the
foundations of their subject. Unfortunately, the
book is unsystematic and at times imprecise. These
shortcomings are particularly striking in the treat-
ment of picture proofs. For example, on page 4
there is a diagram that is supposed to illustrate the
harmonic series 1 + 1

2 + 1
3 + 1

4 + · · · with infinite
sum. The author says that “the picture does not
give us an inkling of this startling result.” In fact,
the picture does not illustrate the harmonic series
but instead illustrates the geometric series
1 + 1

2 + 1
4 + 1

8 + · · · with sum 2. If the author had
drawn the correct picture, then the analytic argu-
ment on page 5 that the sum of the harmonic se-
ries is infinite could easily be demonstrated graph-
ically.

Later, on pages 36 and 37, the author refers to
the fact that the sum s = 1

2 + 1
4 + 1

8 + 1
16 + · · · has

the value 1. A picture proof is contrasted favorably
with a cumbersome “traditional” proof. However,
the proof based on the solution of 2s = 1 + s is at
least as succinct and rigorous as the picture proof.
(Of course, one has to rule out the solution s =∞.)

This review will concentrate more on the philos-
ophy of mathematics than on the issues associated
with the use of pictures. Here the author’s argu-
ments may have an unintended consequence. While
mathematicians are often natural Platonists, expo-
sure to Platonist arguments may bring new doubts.
A defense of an implicitly held position can weaken
the position, precisely by making it more explicit.
In this case this may result from the lack of a 
detailed theory of the Platonic world and of how 
we come to perceive it.

There are various views on the philosophy of
mathematics, and it is striking that no clean 
resolution has been achieved. A person’s view on

this subject should presumably come from rea-
soning and experience. It may also depend on the
domain where the person feels most comfortable.
Here are four possibilities for such a domain.

1. The Ideal
In Plato’s philosophy the ideal world is the world
of patterns or archetypes of which the world of ex-
perienced phenomena is only an imperfect replica.
Contemporary Platonism in the philosophy of math-
ematics might not make such strong claims about
the ideal, but it would at least assert that mathe-
matical objects have genuine existence independent
of us—mathematical entities are neither ideas nor
material things, but belong to yet another realm.
Thus there are infinitely many natural numbers,
and their nature is accessible to the human mind.
A number such as 2 is as real as a house with that
address, but somehow more permanent. Struc-
turalism is a newer but related view of the nature
of mathematics. It asserts that mathematical 
entities do not have existence in their own right,
but only as places in structures. This is intended
to answer the puzzle of why we seem to be unable
to say exactly what object the number 2 is. Sup-
pose 0 is the empty set. Then the Zermelo natural
numbers are 0, 1 = {0}, 2 = {1}, and so on, with
n = {n− 1} for each n 6= 0. On the other hand, the
von Neumann natural numbers are 0, 1 = {0},
2 = {0,1} , and so on, with n = {0,1, . . . , n− 1} in
the general case. The Zermelo 2 is not the von
Neumann 2. However, the Zermelo natural num-
bers and the von Neumann natural numbers are 
realizations of one and the same natural-number
structure (that is, in more familiar terms, they are
isomorphic). The number 2 is neither {1} nor
{0,1} , but the place (third from the left) each of
them occupies in their respective realizations of
the natural-number structure. Of course, that leaves
open the question of what structures are. The shift
from Platonism to structuralism may be analo-
gous to changing the mathematical perspective
from set theory to category theory. The intuition
behind set theory is that of a collection of objects,
while category theory gives more emphasis to the
mathematical operations, considered abstractly.
It is no longer important to think of natural num-
bers as objects. The categorical perspective might
instead emphasize the successor operation, so the
next number indicates the next house. Whether this
corresponds to a significant philosophical shift is
less clear. Is the successor function not also a
mathematical object? This question about the 
nature of mathematical entities has a psychologi-
cal counterpart. People may first see functions
only as actions on other mathematical objects,
then later come to see them instead as objects in
their own right.
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4. The Printed Page
Finally, there are nominalist and conventionalist
views. Mathematical symbols have no referents;
mathematics is manipulation of symbols accord-
ing to rules. One variant of this is formalism. In
Hilbert’s version of formalism the consistency of
the symbolic manipulation underlying arithmetic
was supposed to be justified by finitist reasoning.
The second Gödel theorem put an end to this hope.
However, the theorem does not refute formalism;
it only makes it less comfortable.

This reviewer has so far not succeeded in 
perceiving Platonic reality. Even his intuition of the
finite seems weak. So his hope is that some blend
of the naturalistic and formalistic theories will
help him understand the workings of mathemat-
ics. Brown gives space to other views, but all his
sympathy is with the Platonist position. So the 
remainder of this review will mainly deal with 
this view.

Platonism is stated in classic form by Frege,
who writes (quoted by Brown) that mathematical
entities are “neither things of the outer world nor
of ideas.” He continues:

A third realm must be recognized. What 
belongs to this corresponds to ideas, in
that it cannot be perceived by the
senses, but with things, in that it needs
no bearer to the contents of whose con-
sciousness to belong. Thus the thought,
for example, which we express in the
Pythagorean theorem is timelessly true,
true independently of whether anyone
takes it to be true. It needs no bearer.
It is not true for the first time when it
is discovered, but is like a planet which,
already before anyone has seen it, has
been in interaction with other planets.

Frege’s words describe the ontic dimensions of
Platonism. Mathematical entities are real, and they
exist independently of us and outside of space
and time. Brown’s discussion also attempts to 
clarify the epistemic dimensions of Platonism. 
His claim is that we have access to the mathe-
matical realm that is something like our percep-
tual access to the physical realm.

At first this position seems natural and obvious.
Mathematics students are taught that there is a set
of natural numbers. It is certainly there indepen-
dent of their wishes. The set is infinite, which 
argues against it being part of the natural world.
And one can—perhaps—have a clear conception of
it. On the other hand, this certainty can be shaken
by further reflection. What is a natural number, 
exactly? Students in set theory courses are most
often taught the von Neumann natural numbers.
As mentioned above, in this account the number
n is a particular set with n elements, namely

2. Nature
A realistic theory of mathematics need not be a pri-
ori; it can also be empirical. Naturalism is the view
that mathematical statements are about regulari-
ties in the physical world. This poses the question
of how to understand the seeming permanence of
mathematics. Are facts about the number 16, for
instance, merely the result of experiment? Could
they change? Not necessarily. Regularities in the
physical world are, presumably, independent of us,
though they are—to the extent they are known to
us at all—known in large part as the result of ex-
periment. Thus, in a naturalist view, facts about the
number 16 are not a result of experiment, any
more than Newton’s law of gravitation, had it
turned out to be a law, would have been the result
of experiment. Physical laws are usually thought
not to change, and so there is no reason to think
that mathematical laws might be changeable. An-
other puzzle for naturalism is how mathematics
can arrive at properties of infinite sets. According
to one view, extrapolations of properties of large
finite sets can be the basis of our understanding
of infinite sets [3]. This might even include the 
theory of infinite cardinal numbers, since insight
into this subject depends on properties of the 
exponential function that hold both in the finite
or infinite case. The main advantage of naturalism
is that it could give an indication of why mathe-
matics is so successful in describing nature. If
mathematics is part of nature, then it should 
certainly reflect nature.

3. Construction
There are also the variants of constructivism. These
are points of view that limit the sphere of mathe-
matics in some way. The philosophical motivation
for imposing such limitations may vary. However,
in all cases these theories seek to reformulate
mathematics in terms that are more concrete and
computational. Intuitionism is the view that math-
ematical objects are mental constructions, not 
independent of us. It maintains that each natural
number is humanly conceivable, but rejects the idea
that the infinite totality of all natural numbers is
humanly conceivable. There is no problem with 16,
nor with 216 = 65536, nor for that matter with
2216

. Other versions of constructivism may be more
limiting. One extreme is radical finitism. A skep-
tic can doubt not only the existence of the infinite
set of natural numbers, but also the existence of
large finite numbers. One can arrange 65536 num-
bers (or houses) in a row, but there is no way to
do the same with 2216

, counting by ones [4]. Maybe
this view will come to seem congenial in the com-
puter age. Brown shows some sympathy for it. In
the course of describing one of the less radical
forms of constructivism, he declaims: “Give us the
power of Platonism or give us computational prac-
ticality. Constructivists give us neither.”
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{0,1, . . . , n− 1} . This is clever and has been 
influential; a device much like this occurs in the 
C programming language. However, does anyone
believe that this is what numbers are? Certainly
every set has a cardinal number, but any particu-
lar set construction of this number seems arbitrary.
There is the Russell definition, in which 2 is the
class of all sets with two elements, but this seems
extravagant. For that matter, what is a set? What
kinds of objects can belong to a set? Is it really pos-
sible to collect infinitely many objects into a set?
If so, how can one experience an infinite set? I
may not perceive each element of the set, but I can
perhaps get a clear idea of its properties. However,
there is also a problem with this. Mathematicians
often think that they have an established theory
of natural numbers. However, Abraham Robinson
(using formalist methods) constructed a new 
theory of natural numbers that captures much of
the same arithmetic but that distinguishes 
between standard and nonstandard natural num-
bers. Each natural number 0,1,2,3, . . . with a name
is a standard natural number. There are nonstan-
dard natural numbers, and each nonstandard 
natural number is greater than each standard 
natural number. At first one might think that the
natural numbers of the Platonic realm are the 
standard natural numbers. But there is a more
radical view: the natural numbers of the Platonic
realm are those of the Robinson theory, and 
Robinson’s achievement was to perceive a new
distinction in this realm. (The use of this new 
predicate “standard” has been compared to color
on a TV set: the picture is the same, but we see 
distinctions that we could not make before [5].) It
is not clear what kind of Platonic perception would
allow us to see which view is true. There is even
the possibility that the Platonic realm contains
several flavors of natural numbers. How can one
investigate such matters?

This question does not have a good answer in the
Platonist framework, but here the formalist posi-
tion is stronger. For instance, the following passage
contrasts the conventional theory with the Robinson
theory from a formalist point of view [5]. The 
context is a sequence of observations, to be treated
by the methods of probability theory. In the first
theory the sequence is infinite; in the second it is 
finite, up to some nonstandard natural number.

The conventional approach involves an
idealization, because one cannot actu-
ally complete an infinite number of ob-
servations. The second approach also
involves an idealization, because one
cannot actually complete a nonstandard
number of observations. In fact, it is in
the nature of mathematics to deal with
idealizations. The choice of a formalism
must be based on esthetic considera-

tions, such as directness of expression,
simplicity, and power. Actually, differ-
ent formalisms in no way exclude each
other, and it can be illuminating to look
at familiar material from a fresh point
of view.

Brown makes the strongest possible claims for
Platonism at the beginning of the book (pp. 11–14).
Later on, in a few brief paragraphs (p. 150), he
seems to retreat. At this point he distinguishes 
external realism (or metaphysical realism) from 
internal realism (or scientific realism). External 
realism is “the doctrine that statements about
numbers, rules, trees, and electrons are true (or
false) independently of our beliefs, our evidence,
our conceptual structure, our biology, our ways of
testing.” Internal realism says that “the theoreti-
cal entities of science (electrons, genes) have the
same ontological status as observable entities
(trees and cloud chambers).” The connection with
Platonism is the following: “Numbers, functions
and rules are just as real as trees and electrons,
though not metaphysically real. To say that they
are real is just to say that under ideal conditions
theories involving abstract entities are confirmed
in the same way any other theory is confirmed.
Thus Platonism is like scientific realism. Both can
be taken in the internal realist way and be sharply
distinguished from metaphysical realism.”

It may not be much of a compliment to a 
natural number to say that it is just as real as an
electron. After all, in quantum mechanics an 
electron does not even have a position until it is
observed. (Could one take great pride in being an
electron?) It is thus amusing that a crucial step in
Brown’s defense of Platonism depends on quan-
tum mechanics. This step arises in dealing with 
the following problem. According to one plausible
theory of knowledge, there must be a causal 
connection between the object known and the
knower. However, since abstract objects exist 
outside space and time, they cannot interact
causally with us, and so we can never know them.

To save Platonism, Brown must first refute this
causal theory of knowledge. This refutation can be
accomplished if he can give even a single example
where knowledge is obtained in a noncausal way.
His argument involves quantum mechanics. Two
particles in a state with total spin zero are care-
fully separated and moved to distant locations. For
each particle and each axis there is a way of 
setting up an experiment to measure the spin 
component of the particle along the axis. This
component can have only two values, a plus value
and a minus value. Each of these values for one 
particle has the same probability, that is, one half.
However, the values for the two particles are 
correlated. In fact, when the components for the
two particles are along the same axis, they always
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have opposite signs. When different axes are used,
the components are still highly correlated, though
no longer perfectly.

A first physicist is to measure a spin component
of the first particle. A second physicist at the 
distant location is to measure a spin component
of the second particle. Since the measurements are
simultaneous and the locations are distant, there
is no direct causal connection that links the results.
However, according to the famous analysis of Bell,
the correlations are so strong that they also have
no common cause in the past. (The details of 
this analysis may be found, for instance, in the 
appendix to David Wick’s book [7]). In the case
when the two physicists use the same axis, the 
second physicist can measure the second particle
and gain instantaneous knowledge of what the
first physicist found with the first particle. This
knowledge is gained reliably, but at least one link
in the process proceeds without any kind of causal
connection.

Of course, in some other theory of knowledge
it may be enough to obtain knowledge by a reliable
mechanism, even if it is not causal. This poses the
question of whether it is possible to devise a 
reliable mechanism for acquiring knowledge of
the Platonic realm. In any case, what Brown argues
is that the causal theory of knowledge presents no
obstacle to perception of the Platonic universe.
One would still like a detailed account of how this
perception takes place. But never mind. The vision
is there: Platonic paradise. The natural numbers 
(infinitely many of them) exist outside of space and
time; we know them and their properties, but this
knowledge is not caused. The spirit of this is 
captured in a literary image [2]:

The belief is handed down in Beersheba:
that, suspended in the heavens, is an-
other Beersheba, where the city’s most
elevated virtues and sentiments are
poised, and that if the terrestrial Beer-
sheba will take the celestial one as its
model the two cities will become one.
The image propagated by tradition is
that of a city of pure gold, with silver
locks and diamond gates, a jewel-city,
all inset and inlaid, as a maximum of
laborious study might produce when
applied to materials of the maximum
worth. True to this belief, Beersheba’s
inhabitants honor everything that sug-
gests for them the celestial city: they ac-
cumulate noble metals and rare stones,
they renounce all ephemeral excesses,
they develop forms of composite
composure.
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