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I
n Part I of this article we introduced “lattices”
L ⊂ Rn and described some of their relations
with other branches of mathematics, focus-
ing on “theta functions”. Those ideas have a
natural combinatorial analogue in the theory

of “linear codes”. This theory, though much more
recent than the study of lattices, is more accessi-
ble, and its numerous applications include the
construction and analysis of many important lat-
tices.

A lattice L is a special kind of subgroup of the
additive group Rn; in Part I we associated to L a
theta function, which is a generating function for
the lengths of the vectors of L. A linear code C , to
be defined below, is a subgroup of a finite addi-
tive group Fn. Analogous to the theta functions of
lattices are “weight enumerators” of codes, which
are generating functions for the coordinates of el-
ements of C . We shall see how most of the uses
and properties of theta functions that we described
in Part I have counterparts in the setting of weight
enumerators. In particular, just as the theta func-
tion θL(τ) associated to a “self-dual lattice” L is in-
variant under certain fractional linear transfor-
mations of the variable τ, we shall encounter
“self-dual codes” C with weight enumerators in-
variant under certain linear transformations of
the variables. This invariance yields much infor-
mation about C , and about an associated self-dual
lattice LC and its theta function.

As was true of Part I, there is little if any of the
mathematics described herein for whose discov-
ery I can claim credit. The one possible exception
is the use of theta functions near the end to relate
the occurrences of the groups SL2(Z/pZ) and
SL2(Z) in the functional equations for weight enu-
merators and lattices respectively; I know of no
published statement of this observation, though
it may well be common knowledge in some circles.
All other results and ideas I have attributed when
their source is known to me, and I apologize in ad-
vance for any mis- or missing attribution.

Sphere Packing in Hamming Space: Error-
correcting Codes
Most of the problems and ideas concerning sphere
packing have natural, and often more tractable, dis-
crete analogues in the theory of error-correcting
codes (ECCs). Though easier in many ways than the
sphere-packing problem, the theory of ECCs is
much more recent: its systematic development
began only with R. W. Hamming’s 1947 paper.1 In
our digital age, ECCs are ubiquitous wherever there
is information to reliably store or transmit; appli-
cations range from the familiar compact disc in
one’s computer or stereo to close-up photographs
of Jovian moons sent back to Earth with a trans-
mitter too weak to power a lightbulb. The theo-
retical study of ECCs has also led to surprisingly
varied and deep mathematics, including for in-
stance orthogonal polynomials and arithmetic
algebraic geometry. In the present exposition we
concentrate on the connections with sphere pack-
ings, particularly as regards theta functions and
their discrete analogues.

Noam D. Elkies is professor of mathematics at Harvard
University. His e-mail address is elkies@math.
harvard.edu.

Part I of this article—concerning lattices, lattice packings
of spheres, theta functions, and modular forms—appeared
in the November 2000 issue of the Notices, pages
1238–1245.

1Hamming’s work is discussed in the memorial article
about him in the September 1998 Notices.
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To see ECCs as discrete sphere packings, we
must specify the metric space containing our
spheres. The space will be Fn, i.e., the set of ordered
n-tuples of elements of a finite set F , for some
choice of F and n. In the ECC context, such
n-tuples are often called words of length n, with
letters drawn from an alphabet F . To assure that
|Fn| > 1 (so that a word contains some informa-
tion), we assume |F| > 1 and n > 0. The set Fn
itself is called Hamming space and is given a met-
ric structure by the Hamming distance d( · , · ) de-
fined thus: The distance between words
a = (a1, . . . , an) and b = (b1, . . . , bn) is

d(a, b) := #{i | 1 ≤ i ≤ n, ai 6= bi}.
That is, d(a, b) is the number of single-letter
changes (“errors”) one must make to get from a
to b. A code is then just a nonempty subset C ⊆ Fn.
The minimal (nonzero) distance of a code is

δ(C) := min
a,b∈C
a 6=b

d(a, b).

In the degenerate case |C| = 1, we set δ(C) = n + 1.
In the standard application to error-resistant

data storage or transmission, the words that can
be stored or transmitted are those in C , rather
than arbitrary words in Fn. A code C with minimal
distance δ is then said to detect δ− 1 errors, and
to correct b(δ− 1)/2c errors. This is because if
some information is stored or sent as a word of C ,
and this word is changed in at most δ− 1 coordi-
nates, the resulting word cannot be in C , and thus
cannot be the word originally intended; moreover,
if at most b(δ− 1)/2c letters were changed, then the
original word is still uniquely determined, else by
the triangle inequality C would contain two words
at distance at most δ− 1. Equivalently, an e-error-
correcting code is a code C such that the (closed)
Hamming spheres Be(a) := {x ∈ Fn | d(a, x) ≤ e} of
common radius e about the codewords a ∈ C are
pairwise disjoint. Such a code detects 2e errors and
has minimal distance at least 2e + 1.

The basic problem of error-correcting codes is:
what is the maximum size of a code if its length,
the size of the alphabet, and a lower bound on the
minimal distance are given? That is, how efficiently
can we encode information while detecting or cor-
recting a given number of errors? This is also a nat-
ural mathematical problem, asking how many
points can be packed into Fn without any two com-
ing closer than δ to each other. Naturally, the
smaller δ is, the larger C can get, and conversely.
At the extreme ends are C = Fn itself (maximal ef-
ficiency but no error correction), and |C| = 1 (max-
imal δ but no information). Other simple examples
are the repetition code, consisting of the |F| words
all of whose letters are the same (with δ = n), and
the parity check code, for which F is {0,1} and C
consists of the 2n−1 words a with an even

number of 1’s (equivalently, such that 
∑n
i=1 ai is

even; here δ = 2). A more interesting example is the
extended Hamming code H8, in which F = {0,1}
again, n = 8, and H8 consists of the words

00000000, 00001111, 00110011, 00111100,
01010101, 01011010, 01100110, 01101001,

and their ones’ complements

11111111, 11110000, 11001100, 11000011,
10101010, 10100101, 10011001, 10010110.

Thus |H8| = 16, and one may check that δ = 4. All
these codes are known to have maximal size for
their respective F , n, and δ. We shall again en-
counter each of these important codes, and espe-
cially H8, several times.

Linear Codes
The discrete analogue of a lattice is a linear code.
A linear code is a vector subspace of Hamming
space Fn. For Fn to have the structure of a vector
space, F must be a (finite) field, such as Z/pZ for
some prime p.2 For instance, if in the previous
paragraph F is always chosen to be a field (so that
in particular {0,1} is identified with Z/2Z), and {0}
is chosen for the single-word code, then each of
the codes in that paragraph is linear. Henceforth
F will denote a finite field.

The powerful framework of linear algebra makes
it possible to work with codes much larger than
would be accessible otherwise, since a linear code
of size |F|k can be specified by only k basis words.
The minimal distance δ also simplifies somewhat:
for any a, b ∈ Fn, we have d(a, b) = d(a− b,0) ; if
a, b are in a linear code, then so is a− b, whence
δ is the minimum of d(c,0) over all nonzero c ∈ C.
For any c ∈ Fn, the distance d(c,0) is the number
of nonzero coordinates of c, a number known as
the Hamming weight of c and denoted by wt(c).
Thus for a linear code δ is the minimum (nonzero
Hamming) weight. The basic problem for linear
ECCs thus becomes: what is the maximum dimen-
sion of a linear code if its length, the size of the al-
phabet, and a lower bound on the minimum weight
are given?

As is the case for sphere packings, for most val-
ues of (|F|, n, δ) one cannot at present hope to
solve the problem exactly or even asymptotically,
only to give upper and lower bounds. Many of the
bounds for codes are analogous to sphere-packing

2It is a fundamental theorem of E. H. Moore that a set of
q > 1 elements can be given the structure of a field if and
only if q is a power of a prime; in the vast majority of “real-
world” applications of ECCs, q is a power of 2, often ei-
ther 2 itself or 256 = 28,  but other choices of q are also
important in the mathematical theory. A finite field of q
elements is often called “GF (q)”; the “GF” stands for
“Galois field” , in tribute to Galois who first studied finite
fields in this generality.
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bounds. For instance, the Minkowski bound be-
comes the Gilbert-Varshamov bound, and can be
proved in the same simple way: increase C by one
word at a time subject to the condition that no two
words come closer than δ. Once no room is left,
the open balls of radius δ centered at C must
cover Fn. Each of these balls contains the same
number of points, say Vδ. Thus |C| ≥ |F|n/Vδ .

Warning: the formula

Vδ =
δ−1∑
r=0

(
n
r

)
(|F| − 1)r

for the size of an open ball of radius r in Hamming
is more complicated than the formula for the vol-
ume of a ball in Euclidean space. Thus the result-
ing lower bound Ve/V2e for the packing density of
radius-e Hamming spheres does not simplify to
2−n. One can, however, use Stirling’s formula to ob-
tain asymptotic formulas for Ve/V2e for large n.

In the setting of sphere packings, we reported
in Part I that the Minkowski bound also holds for
lattice packings, and indeed for average lattice
packings. Likewise here the Gilbert-Varshamov
bound holds for linear codes, and indeed for a
positive proportion of linear codes. (Here there
are only finitely many C for each choice of
(F, n,dimC) , so there is no difficulty in defining
this average.) It is even rather easy to prove that
a randomly chosen code satisfies the Gilbert-
Varshamov bound with positive probability. But,
again as with lattice packings, it is easy to choose
a “random” code that almost certainly comes within
a small factor of satisfying the Gilbert-Varshamov
bound, but hard to prove such an estimate be-
cause no computationally feasible way is known
to find the minimal weight of a general linear code.
For linear codes over a fixed field F , unlike sphere
packings, one can do much better than random for
arbitrarily large n, as long as |F| = q2

1 for an inte-
ger q1 ≥ 7 and δ/n ∈ (a(q1), b(q1)) for certain
a(q1), b(q1) ∈ (0,1). These are the famed “Goppa
codes” , obtained by applying V. D. Goppa’s
construction to “modular curves” over F ; again
considerable machinery from number theory and
algebraic geometry is needed to prove that these
codes improve on the Gilbert-Varshamov bound.
These matters are discussed in [TV], esp. pages
350ff. But when (|F|, δ/n) is outside the range
where Goppa codes are known to improve on the
Gilbert-Varshamov bound, we face the same em-
barrassment that afflicted us in the sphere-
packing context. For instance, if F = Z/2Z and
δ = n/4 for some large n, it is known that there
exist linear codes whose dimension is at least
( 3
4 log2 3− o(1))n = (.1887 . . .− o(1))n , but we can-

not exhibit one and prove that it works, even
though a randomly chosen code of that dimension
has minimum weight ≥ n/4 with probability
almost 1.

Weight Enumerators
Once more in analogy with the sphere-packing sit-
uation, we can gain some understanding of the dif-
ficult problem of the minimal weight of a linear
code by introducing generating functions for the
much harder problem of the distribution of the
weights or coordinates of all the codewords. These
generating functions are called weight enumera-
tors, and are homogeneous polynomials of degree
n in several variables. The complete weight enu-
merator is a polynomial cweC with integer coeffi-
cients in |F| variables Xa , with a ∈ F and Xa ∈ C.
It is defined as follows:

cweC(X) :=
∑
c∈C

( n∏
i=1

Xci
)
.

That is, cweC is the polynomial whose 
∏
a∈F X

na
a

coefficient is the number of codewords with n0
zero coordinates, n1 coordinates of 1, etc. Other
weight enumerators can be obtained as special-
izations of cweC . For instance, for the weight dis-
tribution of C we are concerned only with the
number of zero and nonzero coordinates in each
codeword. We thus introduce the Hamming weight
enumerator hweC(X,Y ). This is the homogeneous
polynomial of degree n in two variables obtained
from cweC by setting Xa = Y for each nonzero
a ∈ F and by setting X0 = X. Equivalently,

hweC(X,Y ) :=
∑
c∈C

Xn−wt(c)Ywt(c)

=
n∑
m=0

Nm(C)Xn−mYm,

where Nm(C) is the number of codewords of weight
m.

We illustrate these definitions with the weight
enumerators of the codes introduced earlier:

• if C = {0} then cweC(X) = Xn0 and
hweC(X,Y ) = Xn ;

• if C = Fn then cweC(X) = (
∑
a∈F Xa)n and

hweC(X,Y ) = (X + (|F| − 1)Y )n ;
• if C is the repetition code in Fn then

cweC(X) =
∑
a∈F Xna and hweC(X,Y ) =

Xn + (|F| − 1)Yn .
If F = Z/2Z then the complete and Hamming
weight enumerators are the same polynomial with
the variables differently named; we call this poly-
nomial simply WC . We then have:

• The weight enumerator of the parity-check
code of length n is ((X + Y )n + (X − Y )n)/2;

• the extended Hamming code H8 has weight
enumerator WH8 (X,Y ) = X8 + 14X4Y4 + Y8 .

In Part I of this article, we associated to any lat-
tice L ⊂ Rn a similar generating function ΘL en-
coding the squared lengths of lattice vectors. This
generating function, called the theta function of L,
is defined by
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ΘC(z) :=
∑
x∈C

z(x,x) = 1 +
∑
m>0

Nm(C)zm.

We noted various identities satisfied by theta func-
tions. Weight enumerators of codes satisfy analo-
gous identities. Like theta functions, they are
multiplicative: the direct sum of any two linear
codes C1 ⊆ Fn1 and C2 ⊆ Fn2 is a linear code
C1 ⊕C2 ⊆ Rn1+n2 , with complete weight enumera-
tor given by

cweC1⊕C2 (X) = cweC1 (X) cweC2 (X).

The same relation thus holds for the Hamming
weight enumerators of C1, C2, and C1 ⊕C2. The
identity relating the theta functions of a lattice with
its dual also has an analogue here, obtained by
F. J. MacWilliams; it relates the weight enumerators
of a code C with its dual code

C⊥ := {a ∈ Fn | (a, c) = 0 for all c ∈ C}.
Here ( · , · ) is the nondegenerate symmetric bilin-
ear pairing on Fn taking values in F , defined by

(a, c) :=
n∑
i=1

aici.

Thus C⊥ is a linear code of dimension n− dimC ,
with (C⊥)⊥ = C . For example, the codes {0} and Fn
are each other’s dual; over Z/2Z, so are the repe-
tition and parity-check codes of the same length,
while H8 is its own dual. There is a discrete ana-
logue of the Poisson summation formula that re-
lates the sum over C of a function f : Fn → C with
the sum over C⊥ of the “discrete Fourier transform”
f̂ of f. For instance, if F = Z/pZ with p prime, then
we may define f̂ by

f̂ (a) :=
∑
c∈Fn

f (c)e2πi(a,c)/p,

and discrete Poisson summation is the identity∑
c∈C

f (c) =
1
|C⊥|

∑
a∈C⊥

f̂ (a).

Now cweC(X) is just 
∑
c∈C f (c) for the choice

f (c) :=
∏n
i=1Xci . Then f̂ (a) =

∏n
i=1 X̂ai where

X̂a :=
∑

cmodp
e2πiac/pXc.

From discrete Poisson summation, we deduce the
MacWilliams identity for complete weight enu-
merators:

cweC(X) =
1
|C⊥| cweC⊥ (X̂),

from which follows the MacWilliams identity for
Hamming weight enumerators:

hweC(X,Y ) =
1
|C⊥| hweC⊥ (X + (|F| − 1)Y, X − Y ).

(This identity can be proved even when F is a fi-
nite field other than Z/pZ; the cweC identity also
has a generalization to arbitrary finite fields.) Note
that the weight enumerators we obtained for {0}
and Fn, and for the repetition and parity-check
codes over Z/2Z, do in fact satisfy these identities;
so does WH8 (X,Y ) = X8 + 14X4Y4 + Y8 , which is
multiplied by 24 under the linear transformation
(X,Y ) 7→ (X + Y,X − Y ) .

Applications of the MacWilliams identity in-
clude upper bounds on |C| for given n and δ. The
coefficients Nm(C) of hweC are constrained on the
one hand by Nm(C) ≥ 0, N0(C) = 1, and Nm(C) = 0
for positive m < δ, and on the other hand by
Nm(C⊥) ≥ 0. For C of given size |C| ,  the
MacWilliams identity expresses each Nm(C⊥) as a
linear combination of the Nm(C) . If δ is large
enough the resulting linear constraints cannot all
be simultaneously satisfied. For instance, if
(|F|, n, |C|) = (2,8,16) , one can calculate that
δ ≤ 4, with equality only if Nm(C) = Nm(H8) for
each m. These inequalities, generalized by J. Del-
sarte to nonlinear codes, are the source of most
of the best upper bounds known on |C| for large
n and δ.

Self-dual Binary Codes and Their Weight
Enumerators
As with lattices, it is for self-dual codes such as H8
that the MacWilliams identity gives the most de-
tailed information on Nm(C) . Consider for instance
the case F = Z/2Z . We saw in this case that cweC
and hweC are the same polynomial, and called this
polynomial WC . If C⊥ = C then |C| = 2n/2 . Thus
the identity between WC and WC⊥ becomes the
statement that WC is invariant under the linear
transformation (X,Y ) ↔ 2−1/2(X + Y,X − Y ) ,
which reflects (X,Y ) about the line Y = (tanπ/8)X
(since it rotates (X,Y ) counterclockwise by π/4
and then reflects about the line X = Y). Since C is
self-dual, (c, c) = 0 for each word c ∈ C, and thus
the weight of each word c is even.3 Therefore WC
is invariant also under the reflection
(X,Y ) ↔ (X,−Y ) in the Y-axis. These two reflec-
tions generate the 16-element dihedral group D16 .
A. M. Gleason determined the ring of polynomials
in (X,Y ) invariant under this group: it is generated
by two homogeneous polynomials, the quadratic
X2 + Y2 and the degree-8 polynomial
(XY (X2 − Y2))2 vanishing to order 2 on each of the
four lines Y/X = tankπ/4, k ∈ Z/4Z . See Figure 1.
Thus we have Gleason’s theorem for self-dual codes
C over the two-element field: WC must be a
weighted-homogeneous polynomial in X2 + Y2 and
(XY (X2 − Y2))2. For example, X2 + Y2 is the enu-
merator of the repetition code of length 2 (which
is also the parity check code of the same length,

3We remark parenthetically that c has even weight if
and only if it is orthogonal to the all-1’s word 1n , whence
1n ∈ C⊥ = C .
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and is thus self-dual), while WH8 can be written as
(X2 + Y2)4 − 4(XY (X2 − Y2))2 .

The code H8 satisfies a further constraint: all
its codewords have weight divisible by 4. Such a
code over Z/2Z is said to be doubly even. For any
self-dual code C (or a code contained in its dual)
over Z/2Z, the map ν : c 7→ 1

2wt(c) mod 2 is a ho-
momorphism from C to Z/2Z, and the code is
doubly even if and only if ν is the zero homo-
morphism, a condition that can be checked on
generators of the code.4 In terms of WC , the con-
dition that C be doubly even is
WC(X,Y ) = WC(X, iY ) . Thus if C is also self-dual
then WC must be invariant under the group G1 gen-
erated by (X,Y ) 7→ (X, iY ) together with D16 .

This group can no longer be visualized in the
real plane R2, so instead we consider its action on
the ratio z = Y/X in the complex plane C1. The lin-
ear transformation (a bc d ) ∈ G1 acts on z by the
fractional linear transformation z 7→
(az + b)/(cz + d) . Since the denominator may
vanish, we must consider z as an element of the
Riemann sphere S = C∪ {∞} .5 Each generator of

G1 is a unitary linear transformation, pre-
serving the Hermitian form |X|2 + |Y |2; thus G1
is contained in the unitary group U2(C) , and the
corresponding transformations z 7→
(az + b)/(cz + d) act on S by orientation-pre-
serving isometries. The generators
z 7→ (1 + z)/(1− z) and z 7→ ikz of G1 each per-
mute the real axis, the imaginary axis, and the
unit circle |z| = 1; thus the same is true of G1.
On the Riemann sphere S , the two axes and the
unit circle become three pairwise orthogonal
great circles. Thus G1 acts on S as a subgroup
of the group of orientation-preserving sym-
metries of the regular octahedron whose ver-
tices are the pairwise intersections of these
great circles. See Figure 2. It is known that
these symmetries constitute a group isomor-
phic with the symmetric group Sym4 on 4 let-
ters.6 One readily checks that the resulting ho-
momorphism from G1 to Sym4 is surjective.
The kernel of the map G1 → Sym4 is the group
of scalar matrices in G1. Since the determi-
nant of each element of g is a power of i (again
this can be checked on the generators), these
scalars must be 8-th roots of unity, and again

one can check that each 8-th root occurs. Thus G1
is a group of order 8 · 4! = 192.

Since G1 contains the 8-th roots of unity, any
polynomial invariant under G1 must have degree
divisible by 8. Thus the length n of any doubly even
self-dual code is a multiple of 8. The ring of all G1-
invariant polynomials was again determined by
Gleason. It too is generated by two homogeneous
polynomials, this time WH8 and (XY (X4 − Y4))4.
Geometrically, the points z = Y/X where WH8 van-
ishes are the centers of the 8 faces of our octahe-
dron, which are vertices of a cube inscribed in S ,
while (XY (X4 − Y4))4 has quadruple zeros at the
six vertices of the octahedron. So, for instance, a
doubly even self-dual code C with minimal distance
at least 8 must have length n ≥ 24, and if n = 24
then

WC = W3
H8
− 42(XY (X4 − Y4))4

= X24 + 759X16Y8 + 2576X12Y12

+ 759X8Y16 + Y24.

In particular, C must contain exactly 759 words of
its minimal weight 8.

It turns out that such a code exists, and is
unique up to coordinate permutations: the re-
markable extended Golay code G24 ,7 found by

4In Part I an integral lattice was defined to be a lattice L
such that (x, y) is an integer for all x and y in L. Such
a lattice was defined to be even if the length of every vec-
tor is the square root of an even integer. The role of
“even” in this situation mirrors that of “doubly even” for
linear codes. In particular, an integral lattice is even if and
only if it is generated by vectors the square of whose
length is even.
5The Riemann sphere arises naturally as the complex
projective line P1(C) = (C2 − {0})/C∗ , since linear
transformations act linearly on C2 and commute with the
multiplicative group C∗ .

6The four objects permuted are the opposite pairs of faces
of the octahedron; the homomorphism Sym4 → Sym3 is
then obtained from the permutation action on the three
great circles, or equivalently on the three opposite pairs
of vertices of the octahedron.
7More properly, the “extended binary Golay code”, since
there is also an “extended ternary Golay code”
G12 ⊂ (Z/3Z)12, which we shall encounter later.

Figure 1. The graph of the function (XY (X2 − Y2))2 with domain the
unit disk. The lines of the zero locus are shown in bold. The graph is

invariant under the 16-element symmetry group of a regular octagon.
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M. J. E. Golay in 1954. This code can be defined
in various ways; for example, G is generated
by its 759 minimal words, whose supports
constitute the Steiner system of 8-element sub-
sets (octads) of a 24-element set, such that
each 5-element subset is contained in a unique
octad. It is known that this (5,8,24) Steiner
system is unique, and its automorphism group
is the quintuply transitive group M24, the largest
of Mathieu’s sporadic simple groups; M24 is
thus also the group of permutations preserving
G24. By ignoring any one of the 24 coordinates
we obtain Golay’s code G23, which has length
23, dimension 12, and minimal distance 7. Thus
G23 is a 3-error-correcting code. In (Z/2Z)23 ,
a Hamming sphere of radius 3 contains∑3
r=0

(
23
r

)
= 2048 words, i.e., exactly 211 =

|(Z/2Z)23|
/
|G23| . Therefore |G23| comprises

the centers of a perfect packing of (Z/2Z)23 by
radius-3 Hamming spheres! One explicit recipe
for G23 is the span of the cyclic shifts of the
word

11110101100110010100000,

in which the i-th coordinate is 1 if and only if
i is a nonzero square mod 23. The code G24 can
be recovered from G23 by appending a “check
digit” to each word of G23 to make its weight even.

Each of D16 and G1 is a finite subgroup of
GLn(C) whose ring of invariant polynomials is gen-
erated by n polynomials. Such a group G ⊂ GLn(C)
is said to have free invariant ring (because a set
of generators for the G-invariant polynomials is al-
gebraically independent if and only if it has size
n.) Other familiar examples are:

• {±1} ⊂ GL1(C) , with invariant ring generated
by X2;

• more generally, the m-th roots of unity in
GL1(C), with invariants generated by Xm ; and

• the group of permutation matrices in GLn(C) ,
whose invariants are generated by the ele-
mentary symmetric functions in the coordi-
nates of Cn.

Once n > 1, most finite subgroups of GLn(C) do not
have free invariant rings; already for n = 2, the in-
variant ring of the 2-element group {±1} ⊂ GL2(C)
requires 3 generators to account for X2, XY , and
Y2. The classification of finite G ⊂ GLn(C) with
free invariant rings was completed in 1954 by
J. C. Shephard and J. A. Todd, who combined the-
oretical insights with explicit computation. As a
consequence of their theorem, it followed that a
finite group G ⊂ GLn(C) has free invariant ring if
and only if it is generated by complex reflections,
i.e., r ∈ GLn(C) such that ker(1− r ) has dimension
n− 1. For instance, the automorphism group of the
root lattice E8 has free invariant ring, because it is
generated by reflections in the hyperplanes or-
thogonal to the roots of E8. The complex reflection

groups in the Shephard-Todd list, and their in-
variant rings, arise with some frequency in some
branches of mathematics. We have already en-
countered two of the groups in identities satisfied
by weight enumerators of certain self-dual codes.
Several others also occur in this way, as we shall
see in the next section.

Some Direct Connections between Weight
Enumerators and Theta Functions
The analogy we have drawn between lattices and
linear codes seems particularly tight between self-
dual lattices and self-dual codes over Z/2Z, and
between even self-dual lattices and doubly even
self-dual codes over Z/2Z. The analogy extends
even to the theta series and weight enumerators.
For instance, in the (doubly) even case, the theta
series is in the ring of modular forms for SL2(Z),
whose generators have weights corresponding to
lattices of dimensions 8 and 24; and the weight
enumerator is in the ring of G1-invariant polyno-
mials, whose generators again have degrees 8 and
24. This apparent coincidence is explained by
N. J. A. Sloane’s “Construction A”, which associates
to any linear code C ⊆ (Z/2Z)n a lattice LC ⊂ Rn ,
whose density, dual lattice, minimal (Euclidean)
length,8 and theta function are predictable from
the corresponding invariants of C . We devote this

Figure 2. Under stereographic projection the images of the real axis,
the imaginary axis, and the unit circle are three orthogonal great
circles on the Riemann sphere. The six intersection points are the
vertices of a regular octahedron.

8Inevitably the word “length” is used for both the length
|v| of v ∈ Rn and the dimension of the finite vector
space Fn containing C . It will always be clear from con-
text which kind of length is meant at each use of the
word.
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section to that construction and some of its con-
sequences and variations.

The lattice LC comes from integer vectors that
reduce mod 2 to codewords. To make this con-
sistent with duality, we scale the lattice to multi-
ply all the inner products by 1/2:

LC := {2−1/2v | v ∈ Zn, v mod 2 ∈ C}.
We then have:

• the density of LC is 2−n/2|C|;
• the dual lattice of LC is the lattice LC⊥ associ-

ated with the dual code.
In particular, LC is self-dual if and only if C is, and
LC is even if and only if C is doubly even. For ex-
ample, if C is the repetition code of length 2, then
LC is a self-dual lattice in R2, and thus9 isometric
with Z2, as can also be seen directly. Likewise LH8

is an even self-dual lattice in R8 , and thus iso-
metric with E8. This gives a different construction
of the E8 lattice. (In this case it is not entirely triv-
ial to see that the two constructions yield isomet-
ric lattices!)

The theta series of LC can be obtained from the
weight enumerator WC as follows: define Θ0(z)
and Θ1(z) by

Θ0(z) :=
∞∑

k=−∞
z2k2

= 1 + 2(z2 + z8 + z18 + · · · ),

Θ1(z) :=
∞∑

k=−∞
z2(k+ 1

2 )2

= z1/2(1 + z4 + z12 + z24 + · · · );

then

ΘLC = WC(Θ0,Θ1).

This is not hard to see from the fact that Θ0 is the
theta series of 21/2Z while Θ1 can be viewed as the
theta series of 21/2(Z + 1

2 ) . Special cases of this
identity are

Θ2
0 +Θ2

1 = ΘZ2 = Θ2
Z,

Θ8
0 + 14Θ4

0Θ
4
1 +Θ8

1 = ΘE8 .

A consequence either of the formula for ΘLC or of
the definition of LC is that

• the minimal length of LC is the square root of
min

(
2, 1

2δ(C)
)

.
What then of the Poisson and MacWilliams iden-

tities? Let z = eπiτ as in Part I, with τ ∈H and

θL(τ) := ΘL(eπiτ ), θi(τ) := Θi(eπiτ ).

The Poisson identity relates θL(τ) with θL∗ (−1/τ).
Applying this identity to the sums defining θi(τ) ,
we find

(τ/i)−1/2θ0(−1/τ) = 2−1/2
(
θ0(τ) + θ1(τ)

)
,

(τ/i)−1/2θ1(−1/τ) = 2−1/2
(
θ0(τ)− θ1(τ)

)
.

That is, the involution φ(τ) ↔ (τ/i)−1/2φ(−1/τ)
acts on (θ0, θ1) exactly as the MacWilliams invo-
lution (X,Y ) ↔ 2−1/2(X + Y,X − Y ) does! More-
over, the translation τ 7→ τ + 1 takes (θ0, θ1) to
(θ0, iθ1). Thus if W (X,Y ) is any homogeneous poly-
nomial then W (θ0, θ1) is a modular form for SL2(Z)
if and only if W is invariant under those two lin-
ear transformations, and thus under the group G1
generated by them. Moreover, W (θ0, θ1) is a mod-
ular form for the congruence subgroup Γ generated
by τ ↔ −1/τ and τ 7→ τ + 2 if and only if W is in-
variant under the dihedral group D16 generated by
(X,Y ) ↔ 2−1/2(X + Y,X − Y ) and (X,Y ) ↔
(X,−Y ). This explains the “coincidence” involving
dimensions 8 and 24: the basic modular forms
are obtained from the basic D16 or G1 invariants
by substituting for X,Y the forms θ0, θ1 of weight
1/2. We have already seen this for the theta series
of Z2 and E8; we also have δ24 =
θ4

0θ
4
1(θ4

0 − θ4
1)4/16 .

Construction of the Leech Lattice
Construction A also figures in Leech’s original con-
struction of L24, a lattice described but not defined
in Part I. There we asserted the existence of a
unique even self-dual lattice L24 ⊂ R24 with all
nonzero vectors of length strictly greater than 

√
2,

and reported that this important lattice is, among
other things, central to the classification of sim-
ple finite groups. The lattice L24 cannot be LC for
any code C , because LC has minimal length at
most 

√
2. But LG24 comes close: it is a self-dual even

lattice in R24, and since G24 has minimal weight
8, the only vectors of length < 2 in LG24 are the
scaled unit vectors ±21/2ei . Let L′, then, be the
index-2 sublattice of LG24 consisting of those
2−1/2v ∈ LG24 for which 

∑24
i=1 vi is a multiple of 4.

(This sum 
∑24
i=1 vi is already even for all

v ∈ 21/2LG24 because every word in G24 has even
weight.) Then L′ is a lattice of minimal length at
least 2, and in fact exactly 2 because it contains
vectors of the form 

√
2 times the sum of two unit

vectors. The density of L′ is 1/2. Now let v1 ∈ R24

be the vector (−3,1,1,1, . . . ,1)/
√

8 of length 2.
We can check that (v, v1) ∈ Z for all v ∈ L′, and
that 2v1 ∈ L′ while v1 /∈ L′. We can now define

L24 := L′ ∪ (L′ + v1).

Let us see that L24 is unimodular of minimal
length 2. It is unimodular because it has density 1.
Since L24 is an even lattice, it is enough to show
that it has vectors of length 2 but has no vectors
of length 

√
2. We know already that L′ has vectors

of length 2 but not of length 
√

2. Thus we need only
check that if v ∈ L′ + v1 then |v| > √2. But each
coordinate of v is an odd integer divided by 

√
8,

9As reported in Part I, for every n< 8 every self-dual lat-
tice in Rn is isometric with Zn.
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so (v, v) ≥ 24/8 > 2. Therefore L24 has minimal
nonzero length 2, as claimed. This construction of
L24 shows that the Mathieu group M24 is involved
in the group Co0 = Aut(L24) of isometries of the
Leech lattice; Conway used further properties of
G24 to construct the full group of isometries and
prove that Co0/{±1} is a sporadic simple group.

Construction Ap, for p = |F|, an Odd Prime
Construction A can be generalized and varied in
many ways; the dozen that appear in the index of
[CS] under “Construction” are a large but not ex-
haustive sample. The simplest variation is “Con-
struction Ap”, which replaces Z/2Z by Z/pZ for
some odd prime p. To a linear code C ⊆ (Z/pZ)n,
this construction associates the lattice

LC := {p−1/2v | v ∈ Zn, v mod p ∈ C}
in Rn, with density p−n/2|C| and dual lattice LC⊥.
The theta series of LC can be obtained from the
complete weight enumerator of C :

ΘLC = cweC(Θ(p)
0 ,Θ(p)

1 , . . . ,Θ(p)
p−1),

where for m mod p we have

Θ(p)
m (z) :=

∑
k∈Z

k≡mmodp

zk
2/p.

Under our usual substitution z = eπiτ , each of
these Θ(p)

m becomes a modular form θ(p)
m of weight

1/2 for the congruence subgroup Γp ⊂ SL2(Z) con-
sisting of matrices in Γ congruent to ±( 1 0

0 1 ) mod p .
By summing over −k instead of k we may see that
Θ(p)
m = Θ(p)

−m. Thus if p = 3 the theta series of LC still
depends only on the Hamming weight enumerator
of C :

ΘLC = hweC(Θ(3)
0 ,Θ

(3)
1 ).

For any p, the generators of Γ behave nicely on the
modular forms θ(p)

m : since each exponent k2/p is
congruent to m2/p mod 1, we have

θ(p)
m (τ + 2) = e

2πi
p m

2
θ(p)
m (τ);

and Poisson summation yields

(τ/i)−1/2θ(p)
m (−1/τ)

= p−1/2
∑

jmodp
e2πijm/p θ(p)

j (τ).

So, as with p = 2 , we see that φ(τ) ↔
(τ/i)−1/2φ(−1/τ) acts on the θ(p)

m as p−1/2 times
the discrete Fourier transform, i.e., by the linear
transformation that leaves cweC invariant if C is
self-dual (MacWilliams again). Also, τ 7→ τ + 2 acts 
on the θ(p)

m by the diagonal linear transformation
Xm 7→ e2πim2/p Xm , which again fixes cweC be-
cause 

∑n
i=1 c

2
i = (c, c) = 0 for each c ∈ C.

When p = 3, this condition still depends only on
wt(c) because a2 = 1 for both nonzero choices of
a ∈ Z/3Z, and we find that the Hamming weight
enumerator hweC(X,Y ) is invariant under the
group G3 generated by

(X,Y ) 7→ 3−1/2(X + 2Y,X − Y )

and (X,Y ) 7→ (X, e2πi/3Y ).

Both these linear maps preserve |X|2 + 2|Y |2, and
are thus contained in U2(C) and act by orientation-
preserving isometries on the Riemann sphere pa-
rametrized by z = 21/2Y/X. We find that G3 acts
on the sphere by the group of orientation-
preserving symmetries of the regular tetrahedron
with vertices z =∞ and z = −e2πik/3/

√
2 for

k = 0,1,2. This group is isomorphic with the al-
ternating group Alt4 (each even permutation of the
vertices arises uniquely), and the kernel of
G3 → Alt4, which is the group of scalar matrices
in G3, is the group of 4-th roots of unity. Thus if
C ⊂ (Z/3Z)n is a self-dual code then n is a multi-
ple of 4. It turns out that G3, like G1, is a complex
reflection group, this time with invariant ring gen-
erated by polynomials of degrees 4 and 12. Once
more, Gleason gave explicit generators: X4 + 8XY3 ,
with simple zeros at the vertices of our tetrahedron,
and Y3(X3 − Y3)3 , with triple zeros at the vertices
z = 0 and z = e2πik/3√2 of the dual tetrahedron.
Recall that in the case of self-dual doubly even
codes in (Z/2Z)n the Gleason generators were
nicely explained by the Hamming and Golay codes
H8 and G24. There are analogous self-dual codes
in (Z/3Z)n . The “tetracode”, generated by 1110
and 0121, has weight enumerator X4 + 8XY3 . If a
self-dual code C ⊂ (Z/3Z)n has minimal distance
6 then n must be at least 12, and if n = 12 then
hweC must be

(X4 + 8XY3)3 − 24Y3(X3 − Y3)3

= X12 + 264X6Y6 + 440X3Y9 + 24Y12.

Once more Golay found a code G12 with this weight
enumerator; like the tetracode, it is unique up to
signed coordinate permutations. There is a strong
analogy between the codes G12 and G24: the sup-
ports of the minimal nonzero words in G12 con-
stitute a Steiner (5,6,12) system, whose
automorphism group is Mathieu’s quintuply tran-
sitive sporadic Mathieu group M12. Ignoring any
one coordinate yields a code G11 of length 11, di-
mension 6, and minimal distance 5. Thus G11 is a
2-error-correcting code. As with G23, the resulting
packing of Hamming spheres is perfect, since each
radius-2 sphere contains exactly 

∑2
r=0 2r

(
11
r

)
=

243 = 35 = |(Z/3Z)11|
/
|G11| words. A. Tietäväinen

and J. H. van Lint showed that G11 and G23 are the
only perfect linear e-error correcting codes for
e > 1 except for trivial codes of size 1 and the only
slightly less trivial repetition code in (Z/2Z)n for
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n = 2e + 1.10 The G12 is generated by the rows of
a Hadamard matrix of order 12, i.e., a 12× 12 ma-
trix H each of whose entries is ±1, and whose
rows are pairwise orthogonal (equivalently, a ±1
matrix such that HHT = 12I12 ). It is known that
such a matrix of order 12 exists and is unique up
to signed permutations of the rows and columns.
One choice is



+ + + + + + + + + + + +
+ − + − + + + − − − + −
+ − − + − + + + − − − +
+ + − − + − + + + − − −
+ − + − − + − + + + − −
+ − − + − − + − + + + −
+ − − − + − − + − + + +
+ + − − − + − − + − + +
+ + + − − − + − − + − +
+ + + + − − − + − − + −
+ − + + + − − − + − − +
+ + − + + + − − − + − −


with the diagonals of +1’s determined by the
nonzero squares mod 11. The span of the rows of
H mod 3 generates G12.

We return now to self-dual codes C ⊂ (Z/pZ) for
a general odd prime p. Once p > 3, the condition
(c, c) = 0 no longer constrains wt(c), so we con-
sider the complete weight enumerator cweC . We
have seen already that C must be invariant under
Xm 7→ e2πim2/p Xm as well as the normalized dis-
crete Fourier transform Xm 7→ p−1/2X̂m. If more-
over C contains the all-1’s word 1 then (c,1) = 0
for each c ∈ C, whence cweC is invariant also under
Xm 7→ e2πim/p Xm. Thus cweC is invariant under
the group generated by these three unitary linear
transformations of Cp; call this group Wp ⊂ Up(C) .
It turns out that Weil had already extensively in-
vestigated this group in another context [W]. Per-
haps surprisingly, this group is finite. Weil shows
this finiteness by proving that conjugation by el-
ements of Wp permutes the Heisenberg group
Hp ⊂ Up(C). This Hp is the non-commutative group
of order p3 and exponent p generated by
Xm 7→ e2πim/p Xm and the cyclic permutation
Xm 7→ Xm+1 (with subscripts mod p and hence
Xp = X0). The commutator of these two linear
transformations is the scalar e2πi/p . Thus the quo-
tient Hp of Hp by its scalar subgroup is isomor-
phic with (Z/pZ)2, and is normal in the quotient
Wp of Wp by its scalar subgroup. Moreover Wp/Hp
acts on Hp ∼= (Z/pZ)2 , and it turns out that
Wp/Hp ∼= SL2(Z/pZ).

What should SL2(Z/pZ) have to do with weight
enumerators of self-dual codes? We return to the
theta function of LC. Since θLC is obtained from

cweC by substituting θ(p)
m for Xm , and since

θ(p)
m = θ(p)

−m, we consider the “symmetrized weight
enumerator” sweC , obtained from hweC by set-
ting Xm = X−m. This is a homogeneous polyno-
mial of degree n in (p + 1)/2 variables. It is invari-
ant under the subgroup of Wp commuting with the
involution Xm ↔ X−m; this subgroup turns out to
be the same as the group generated by the linear
transformations Xm 7→ e2πim2/p Xm and
Xm 7→ p1/2X̂m that we encountered earlier. Up to
scalars, this group is isomorphic with the projec-
tive linear group PSL2(Z/pZ) := SL2(Z/pZ)/{±1} .
Our explanation for the appearance of this group
is the relationship between the congruence groups

for which θLC and the θ(p)
m are modular. For θLC,

that group is Γ; for θ(p)
m , it is the normal subgroup

of Γ consisting of matrices congruent to
±( 1 0

0 1 ) mod p . The quotient of Γ by this subgroup
is generated by τ 7→ τ + 2 and τ ↔ −1/τ, which

acts on the θ(p)
m linearly by transformations pro-

portional to θ(p)
m 7→ e

2πi
p m

2
θ(p)
m and the discrete

Fourier transform; on the other hand, the quo-
tient is obtained by reducing the matrices in Γmod
p ,  and is thus identified with PSL2(Z/pZ) !

We illustrate this for the first two cases p = 3,5,
which are the only ones for which a complex re-
flection group arises.11 For p = 3, the symmetrized
and Hamming weight enumerators coincide. We al-
ready found that hweC is invariant under G3, and
we recognized the quotient of G3 by its scalar sub-
group as Alt4. We can now observe that Alt4 is in
fact isomorphic with SL2(Z/3Z) . For p = 5, we write
the symmetrized weight enumerator as

sweC(X,Y ,Z) = hweC(X,Y ,Z,Z, Y ).

If C ⊂ (Z/5Z)n is self-dual then sweC(X,Y ,Z) is in-
variant under the reflection group G5 generated by
(X,Y ,Z) 7→ (X, e2πi/5Y, e−2πi/5Z) and (by Mac-
Williams) the transformationXY

Z

 7→
1√
5

1 2 2
1 (

√
5− 1)/2 (−√5− 1)/2

1 (−√5− 1)/2 (
√

5− 1)/2


XY
Z

 .
11What of p = 2? Even the anomalous case of doubly even
codes can be explained in a similar way; here instead 
of Γ we have all of SL2(Z), and the normal subgroup 
for which θ0 and θ1 are modular consists of matrices

congruent to ±( 1 0
0 1 ) mod 4. Thus we expect the group

PSL2(Z/4Z), and indeed  PSL2(Z/4Z) is isomorphic with
Sym4, the quotient of G1 by its scalar subgroup.

10The same is believed, but not yet proved, to be the case
for arbitrary codes, not only linear ones; Van Lint and
Tietäväinen prove this only when the alphabet size is a
prime power.
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The simplest example is n = 2, for which C consists
of the multiples of (1,2), and sweC(X,Y ,Z) =
X2 + 4YZ .  For this code, LC ∼= Z2 , whence
(θ(5)

0 )2 + 4θ(5)
1 θ(5)

2 = θ2
Z . Since G5 is a finite group

that fixes the quadratic form X2 + 4YZ, we can re-
gard it after a linear change of variables as a sub-
group of the orthogonal group O3(R). Thus once
more we have a finite group of isometries of the
sphere, though here not all these isometries are ori-
entation preserving. For instance, the above 3× 3
matrix yields a reflection. It turns out that G5 is
the group of isometries of a regular icosahedron,
and is thus isomorphic with {±1} ×Alt5. This is a
reflection group whose invariants are generated by
polynomials of degrees 2, 6, and 10. We have al-
ready seen a degree-2 invariant; for the invariants
of degrees 6 and 10, we may take the products of
linear forms vanishing respectively on the planes
perpendicular to the six opposite pairs of vertices
of the icosahedron and the planes parallel to its
ten opposite pairs of faces. For instance, we have
the degree-6 invariant

X
4∏
k=0

(X + e2πik/5Y + e−πik/5Z)

= X6 − 20X4YZ + 80(XYZ)2 + 32X(Y5 + Z5).

Once p ≥ 5, the θ(p)
m for 0 ≤m ≤ (p + 1)/2, while

linearly independent, are not algebraically inde-
pendent. For p = 5, there is a single dependence,
necessarily invariant under G5; we calculate that
the above degree-6 invariant, evaluated at
(X,Y ,Z) = (θ(5)

0 , θ(5)
1 , θ(5)

2 ), equals θ6
Z , the cube of

our degree-2 invariant. That is, (θ(5)
0 , θ(5)

1 , θ(5)
2 ) sat-

isfy the homogeneous sextic

X4YZ − (XYZ)2 −X(Y5 + Z5) + 2(YZ)3 = 0.

This sextic, considered as a subset of the pro-
jective plane, is an example of a “modular
curve”—but that is a topic for a different ex-
pository article.
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ric Codes, Kluwer, Dordrecht, 1991.

[W] A. WEIL, Sur certaines groupes d’opérateurs uni-
taires, Acta Math. 111 (1964), 143–211.

fea-elkies-2.qxp  10/19/00  2:44 PM  Page 1391


