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Introduction
In 1917 S. Kakeya posed the Kakeya needle prob-
lem: What is the smallest area required to rotate
a unit line segment (a “needle”) by 180 degrees in
the plane? Rotating around the midpoint requires
π/4 units of area, whereas a “three-point U-turn”
requires π/8. In 1927 the problem was solved by
A. Besicovitch, who gave the surprising answer
that one could rotate a needle using arbitrarily
small area.

At first glance, Kakeya’s problem and Besicov-
itch’s resolution appear to be little more than
mathematical curiosities. However, in the last three
decades it has gradually been realized that this type
of problem is connected to many other, seemingly
unrelated, problems in number theory, geometric
combinatorics, arithmetic combinatorics, oscilla-
tory integrals, and even the analysis of dispersive
and wave equations.

The purpose of this article is to discuss the in-
terconnections between these fields, with an em-
phasis on the connection with oscillatory integrals
and PDE. Two previous surveys ([7] and [1]) have
focused on the connections between Kakeya-type
problems and other problems in discrete combi-
natorics and number theory.

These areas are very active, but despite much
recent progress our understanding of the problems
and their relationships to each other is far from
complete. Ideas from other fields may well be
needed to make substantial new breakthroughs.

Kakeya-Type Problems
Besicovitch’s solution to the Kakeya needle 
problem relied on two observations. The first 
observation, which is elementary, is that one 
can translate a needle to any location using 
arbitrarily small area; see Figure 1. The second 
observation is that one can construct open subsets
of R2 of arbitrarily small area which contain a 
unit line segment in every direction. A typical way
to construct such sets (not Besicovitch’s original
construction) is sketched in Figure 2; for a more
detailed construction see [7].

For any n ≥ 2 define a Besicovitch set to be a sub-
set of Rn which contains a unit line segment in
every direction. For any such n the construction
of Besicovitch shows that such sets can have ar-
bitrarily small Lebesgue measure and can even be
made to have measure zero. Intuitively this means
that it is possible to compress a large number of
nonparallel unit line segments into an arbitrarily
small set.

In applications one wishes to obtain more quan-
titative understanding of this compression effect
by introducing a spatial discretization. For
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instance, one can replace
unit line segments by 1× δ
tubes for some 0 < δ¿ 1
and ask for the optimal
compression of these
tubes. Equivalently, one can
ask for bounds of the vol-
ume of the δ-neighbour-
hood of a Besicovitch set.

Rather surprisingly,
these bounds are logarith-
mic in two dimensions. It is
known that the δ-neigh-
bourhood of a Besicovitch
set in R2 must have area at
least C/ log(1/δ);1 this ba-
sically follows from the
geometric observation that
the area of the intersection
of two 1× δ rectangles
varies inversely with the
angle between the long axes
of the rectangles. Recently,
U. Keich has shown that
this bound is sharp.

This observation can be
rephrased in terms of the
Minkowski dimension of the
Besicovitch set. Recall that
a bounded set E has
Minkowski dimension α or
less if and only if for every
0 < δ¿ 1 and 0 < ε¿ 1
one can cover E by at most
Cεδ−α+ε balls of radius δ.
From the previous discus-
sion we thus see that Besi-
covitch sets in the plane
must have Minkowski di-
mension 2.

It is unknown if the anal-
ogous property holds in Rn.
In one of its principal for-
mulations, the Kakeya con-
jecture states that every
Besicovitch set in Rn has
Minkowski dimension n. (There is also a corre-
sponding conjecture for the Hausdorff dimension,
but for simplicity we shall not discuss this variant.)

Equivalently, the Kakeya conjecture asserts that
the volume of the δ-neighbourhood of a Besicov-
itch set in Rn is bounded below by Cn,εδε for any
ε > 0 and 0 < δ¿ 1.

The Kakeya conjecture is remarkably difficult.
It remains open in three and higher dimensions,
although rapid progress has been made in the last
few years. The best-known lower bound for the
Minkowski dimension at this time of writing is

max
(n + 2

2
+ 10−10,

4n + 3
7

)
,

although I expect further improvements to follow
very soon.

One can discretize the conjecture. Let Ω be a
maximal δ-separated subset of the sphere Sn−1 (so
that Ω has cardinality approximately δ1−n), and for
each ω ∈ Ω let Tω be a δ× 1 tube oriented in the
direction ω. The Kakeya conjecture then asserts
logarithmic-type lower bounds on the quantity
|⋃ω∈Ω Tω|.

The above formulation is reminiscent of exist-
ing results in combinatorics concerning the
number of incidences between lines and points,

1Throughout this article, the letter C denotes a constant
which varies from line to line.

R

R

Figure 1. To translate a needle, slide it by R units, rotate by roughly 1/R, slide it back,
and rotate back. This costs O(1/R) units of area, where R is arbitrary.

Figure 2. The iterative construction of a Besicovitch set. Each stage consists of the
union of triangles. To pass to the next stage, the triangles are bisected and shifted
together to decrease their area.
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although a formal connection cannot be made be-
cause the nature of the intersection of two δ× 1
tubes depends on the angle between the tubes,
whereas the intersection of two lines is a point
regardless of what angle the lines make. However,
it is plausible that one can use the ideas from com-
binatorial incidence geometry to obtain progress
on this problem. For instance, it is fairly straight-
forward to show that the Minkowski dimension of
Besicovitch sets is at least (n + 1)/2 purely by using
the fact that given any two points that are a dis-
tance roughly 1 apart, there is essentially only one
δ× 1 tube which can contain them both.

In the 1990s, work by J. Bourgain, T. Wolff, 
W. Schlag, A. Vargas, N. Katz, I. Laba, the author,
and others pushed these ideas further. For in-
stance, the lower bound of (n + 2)/2 for the
Minkowski dimension was shown in 1995 by 
Wolff and relies on the δ-discretized version of the
geometric statements that every nondegenerate
triangle lies in a unique two-dimensional plane
and every such plane contains only a one-parameter
set of directions. However, there appears to be a
limit to what can be achieved purely by applying
elementary incidence geometry facts and standard
combinatorial tools (such as those from extremal
graph theory). More sophisticated geometric analy-
sis seems to reveal that a counterexample to the
Kakeya conjecture, if it exists, must have certain
rigid structural properties (for instance, the line
segments through any given point should all lie in
a hyperplane). Such ideas have led to a very small
recent improvement in the Minkowski bound to
(n + 2)/2 + 10−10, but they are clearly insufficient
to resolve the full conjecture.

The Kakeya problem is a representative mem-
ber of a much larger family of problems of a

similar flavour (but with more technical formula-
tions). For instance, one can define a β -set to be a
subset of the plane which contains a β -dimensional
subset of a unit line segment in every direction. It
is then an open problem to determine, for given β ,
the smallest possible dimension of a β -set. Low-
dimensional examples of such sets arise in the work
of H. Furstenberg, and it seems that one needs to
understand these generalizations of Besicovitch
sets in order to fully exploit the connection be-
tween Kakeya problems and oscillatory integrals,
which we discuss below. Other variants include 
replacing line segments by circles or light rays, 
considering finite geometry analogues of these 
problems, or replacing the quantity |⋃ω Tω| by the
variant ‖∑ω χTω‖p (the relevant conjecture here is
known as the Kakeya maximal function 
conjecture). Another interesting member of this fam-
ily is the Falconer distance set conjecture, 
which asserts that whenever E is a compact one-
dimensional subset of R2 , the distance set
{|x− y| : x, y ∈ E} is a one-dimensional subset of R.
The discrete version of this is the Erdős distance prob-
lem—what is the least number of distances 
determined by n points?—and is also unsolved. For
a thorough survey of most of these questions, we refer
the reader to [7]; see also [3].

The Connection with Arithmetic
Combinatorics
The Kakeya problem looks very geometrical, and
it is natural to apply elementary incidence geom-
etry to bear on this problem. Although this
approach has had some success, it does not seem
sufficient to solve the problem.

In 1998 Bourgain introduced a new type of 
argument, based on arithmetic combinatorics (the
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Figure 3. The left picture depicts six tubes Tω pointing in different directions and the three discretized slices A0 ,
A1/2 , A1 , which in this case are three-element sets. The right picture depicts the set G associated to this collection

of tubes. Note that the maps (a, b) → a, (a, b) → b, (a, b) → a + b have small range (mapping to A0 , A1 , and 2A1/2
respectively), but the map (a, b) → a− b is one-to-one.
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combinatorics of sums and differences), which
gave improved results on this problem, especially
in high dimensions. The connection between
Kakeya problems and the combinatorics of addi-
tion can already be seen by considering the
analogy between line segments and arithmetic pro-
gressions. (Indeed, the Kakeya conjecture can be
reformulated in terms of arithmetic progressions,
and this can be used to connect the Kakeya con-
jecture to several difficult conjectures in number
theory, such as the Montgomery conjectures for
generic Dirichlet series. We will not discuss this 
connection here, but refer the reader to [1].)

Bourgain’s argument relies on the following
“three-slice” idea. Let Ω and Tω be as in the pre-
vious section. We may assume that the tubes Tω
are contained in a fixed ball. Suppose that
|⋃ω∈Ω Tω| is comparable to δα for some con-
stant α; our objective is to give upper bounds on
α and eventually to show that α must be zero.

By choosing an appropriate set of coordinates,
one can ensure that each of the three slices

Xt :=
{
x ∈ Rn−1 : (x, t) ∈

⋃
ω∈Ω

Tω
}
,

t = 0,1/2,1, has measure comparable to δα . Be-
cause of the δ-discretized nature of the problem,
one can also assume that the discrete set

At := Xt ∩ δZn−1

has cardinality comparable to δα+1−n for
t = 0,1/2,1.

Morally speaking, every tube Tω intersects each
of the sets A0, A1/2 , A1 in exactly one point.
Assuming this, we see that every tube Tω is asso-
ciated with an element of A0 ×A1. Because two
points determine a line, these elements are es-
sentially disjoint as ω varies. Let G denote the set
of all pairs of A0 ×A1 obtained this way. Thus G
has cardinality about δ1−n .

The sum set

{a + b : (a, b) ∈ G}
of G is essentially contained inside a dilate of the
set A1/2; this reflects the fact that the intersection
of Tω with A1/2 is essentially the midpoint of the
intersection of Tω with A0 and A1. In particular,
the sum set is quite small, having cardinality only
δα+1−n . On the other hand, the difference set

{a− b : (a, b) ∈ G}
of G is quite large, because the tubes Tω all point
in different directions. Indeed, this set has the
same cardinality as G , i.e., about δ1−n .

Thus, if α is nonzero, there is a large discrep-
ancy in size between the sum set and difference
set of G . In principle this should lead to a bound
on α, especially in view of standard inequalities
relating the cardinalities of sum sets and difference
sets, such as

|A− B| ≤ |A + B|3
|A||B| .

(A summary of such inequalities can be found in
[5].) However, these arguments (which are mostly
graph-theoretical) do not seem to adapt well to the
Kakeya application, because we are working with
only a subset G of A0 ×A1 rather than all of
A0 ×A1.

To overcome this problem, Bourgain adapted a
recent argument of W. T. Gowers which allows one
to pass from arithmetic information on a subset
of a Cartesian product to arithmetic information
on a full Cartesian product. A typical result is:

Theorem. Let A,B be finite subsets of a torsion-free
abelian group with cardinality at most N, and sup-
pose that there exists a set G ⊂ A× B of cardinal-
ity at least αN2 such that the sum set
{a + b : (a, b) ∈ G} has cardinality at most N. Then
there exist subsets A′, B′ of A , B respectively such
that A′ − B′ has cardinality at most α−13N and A′,
B′ have cardinality at least α9N .

Roughly speaking, this theorem states that if
most of A + B is contained in a small set, then by
refining A and B slightly, one can make all of
A− B be contained in a small set also. Such results
are reminiscent of standard combinatorial theo-
rems concerning the size of sum and difference
sets, but the innovation in Gowers’s arguments is
that the control on A′ and B′ is polynomial in α.
(Previous combinatorial techniques gave bounds
which were exponential or worse, which is not 
sufficient for Kakeya applications.)

Recently [2] Katz and the author have obtained
the bound (4n + 3)/7 by using control on both the
sum set A0 +A1 and the variant A0 + 2A1 , which
corresponds to the slice A2/3.

These results have remarkably elementary
proofs. Apart from some randomization argu-
ments, the proofs rely mainly on standard combi-
natorial tools such as the pigeonhole principle and
Cauchy-Schwarz inequality, as well as on basic
arithmetic facts such as

a + b = c + d ⇐⇒ a− d = c − b,
a− b = (a− b′)− (a′ − b′) + (a′ − b),

and

a0 + 2b0 = a1 + 2b1, b′0 = b′1
=⇒ a1 − b′1 = 2(a0 + b0)− 2b1 − (a0 + b′0).

Further progress has been made by pursuing these
methods, though it seems that we are still quite
far from a full resolution of the Kakeya problem,
and some new ideas are almost certainly needed.

One possibility may be that one would have to
use combinatorial estimates on product sets in
addition to sum sets and difference sets, since
one has control of {a + tb : (a, b) ∈ G} for all
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t ∈ [0,1]. Discrete versions of such estimates exist;
for instance, G. Elekes has recently shown the
bound

max(|A ·A|, |A +A|) ≥ C−1|A|5/4
for all finite sets of integers A . However, these
bounds do not adapt well to the continuous Kakeya
setting because of the difficulty in discretizing
both addition and multiplication simultaneously.
A good test problem in this setting is the Erdős ring
problem: Determine whether there exists a (Borel)
subring of R with Hausdorff dimension exactly
1/2. This problem is known to be connected with
the β -set problem and the Falconer distance set
problem.

Interestingly, the Kakeya problem is also 
connected to another aspect of arithmetic combi-
natorics, namely that of locating arithmetic pro-
gressions in sparse sets. (A famous instance of this
is an old conjecture of Erdős, which is still open,
that the primes contain infinitely many arithmetic
progressions of arbitrary length.) This difficulty
arises in the Hausdorff dimension formulation 
of the Kakeya problem, and also in some more 
quantitative variants, because of the difficulty in 
selecting a “good” set of three slices in arithmetic 
progression in which to run the above argument.
The combinatorial tools developed for that

problem by Gowers and others may well have further 
applications to the Kakeya problem in the future.

Applications to the Fourier Transform
Historically, the first applications of the Kakeya
problem to analysis arose in the study of Fourier
summation in the 1970s.

If f is a test function on Rn , we can define the
Fourier transform f̂ by

f̂ (ξ) :=
∫

Rn
e−2πix·ξf (x) dx.

One then has the inversion formula

f (x) =
∫

Rn
e2πix·ξf̂ (ξ) dξ.

Now suppose that f is a more general function, such
as a function in the Lebesgue space Lp(Rn). The
Fourier inversion formula still holds true in the
sense of distributions, but one is interested in
more quantitative convergence statements. 
Specifically, we could ask whether the partial
Fourier integrals

SRf (x) :=
∫
|ξ|≤R

e2πix·ξf̂ (ξ) dξ

converge to f in, say, Lp norm. (The pointwise con-
vergence question is also interesting, say for L2

functions f, but this seems extremely difficult 
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Figure 4. Four tubes Ti, their shifts T̃i, and the wave packets ψi . The interference between the functions S1ψi will
cause the Lp norm to be large when p > 2.
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to show in two and higher dimensions. In one 
dimension this was proven in a famous paper 
by L. Carleson.) By the uniform boundedness
principle, this is equivalent to asking whether 
the linear operators SR are bounded on Lp(Rn)
uniformly in R. By scale invariance it suffices to
show this for S1:

‖S1f‖Lp(Rn) ≤ C‖f‖Lp(Rn).

The operator S1 is known as the ball multiplier
or (when n = 2) the disk multiplier, because of the
formula

Ŝ1f = χBf̂

where B is the unit ball in Rn . In one dimension it
is a classical result of Riesz that this operator is
bounded on every Lp , 1 < p <∞ , and so Fourier
integrals converge in Lp norm. (Indeed, in one di-
mension S1 is essentially the Hilbert transform.)
In higher dimensions S1 is bounded in L2, thanks
to Plancherel’s theorem; however, the behaviour 
in Lp is more subtle. One has an explicit kernel 
representation which roughly looks like

S1f (x) ≈
∫

e±i|x−y|
(1 + |x− y|)(n+1)/2 f (y) dy ;

to be more precise, one must use Bessel functions
instead of e±i|x−y|. The kernel is in Lp only when
p > 2n

n+1, so it might seem natural by duality argu-
ments to conjecture that S1 is bounded when
2n
n+1 < p <

2n
n−1. In 1971, however, C. Fefferman

proved the surprising

Theorem. If n > 1, then S1 is unbounded on Lp for
every p 6= 2 .

In particular, one does not have Lp convergence
for the Fourier inversion formula in higher di-
mensions unless p = 2.

Roughly speaking, the idea is as follows. By 
duality it suffices to consider the case p > 2. Let
R be a large number, and let T be a cylindrical 
tube in Rn with length R and radius 

√
R and 

oriented in some direction ωT . Let ψT be a bump
function adapted to the tube T, and let T̃ be a
shift of T by 2R units in the ωT direction. Then a
computation shows that

|S1(e2πiωT ·xψT (x))| ≈ 1

for all x ∈ T̃ .
To exploit this computation, one uses the Besi-

covitch construction to find a collection {T} of
tubes as above which are disjoint but whose 
shifts T̃ have significant overlap. More precisely,
we assume that∣∣∣∣∣∣⋃T T̃

∣∣∣∣∣∣ ≤ 1
K

∑
T
|T |

for some K which grows in R (the standard con-
struction in Figure 2 gives K ∼ log(R)/ log log(R)).
Then we consider the function

f (x) =
∑
T
εT e2πiωT ·xψT (x),

where εT = ±1 are randomized signs. Using
Khinchin’s inequality (which roughly states that 
one has the formula |∑T εT fT | ∼ (

∑
T |fT |2)1/2

with very high probability), one can eventually
compute that

‖S1f‖p ≥ C−1K
1
2 ( 1

2− 1
p )‖f‖p.

Since K is unbounded, we thus see that S1 is 
unbounded.

Fefferman’s theorem is an example of how a
geometric construction can be used to show the
unboundedness of various oscillatory integral 
operators. The point is that while the action of
these operators on general functions is rather com-
plicated, their action on “wave packets” such as
e2πiωT ·xψT (x) is fairly easy to analyze. One can
then generate a large class of functions to test 
the operator on by superimposing several wave
packets together and possibly randomizing the
coefficients to simplify the computation.

The counterexample provided by the Besicov-
itch construction is very weak (only growing log-
arithmically in the scale R) and can be eliminated
if one mollifies the disk multiplier slightly. For 
instance, the counterexample does not prohibit
the slightly smoother Bochner-Riesz operator Sε1,
defined by

Ŝε1(ξ)f = (1− |ξ|)εχB(ξ)f̂ (ξ),

from being bounded for ε > 0, because the analo-
gous computation gives

|Sε1(e2πiωT ·xψT (x))| ≈ R−ε
for all x ∈ T̃ . Indeed, the Bochner-Riesz conjecture
asserts that Sε1 is indeed bounded on Lp for all
ε > 0 and 2n/(n + 1) < p < 2n/(n− 1). (For other
values of p one needs ε > n| 1

p − 1
2 | − 1

2 .) This
conjecture was proven by L. Carleson and P. Sjölin
in 1972 in two dimensions, but the higher-
dimensional problem is quite challenging, and 
only partial progress has been made so far. This
conjecture would imply that the partial Fourier
integrals will converge in Lp if one uses a Cesàro
summation method (such as the Fejér summation
method, which corresponds to ε = 1).

The Bochner-Riesz conjecture would be dis-
proved if one could find a collection of disjoint
tubes T for which the compression factor K had
some power dependence on R as opposed to 
logarithmic, i.e., if K ≥ C−1Rε for some ε > 0. A
more precise statement is known, namely, that
the failure of the Kakeya conjecture would imply
the failure of the Bochner-Riesz conjecture. (More
succinctly, Bochner-Riesz implies Kakeya.)

In 1991 Bourgain introduced a method in which
these types of implications could be reversed, so
that progress on the Kakeya problem would (for
instance) imply progress on the Bochner-Riesz
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conjecture. The key observation is that every func-
tion can be decomposed into a linear combination
of wave packets by applying standard cutoffs both
in physical space (by pointwise multiplication) and
in frequency space (using the Fourier transform).
After applying the Bochner-Riesz operator to the
wave packets individually, one has to reassemble
the wave packets and obtain estimates for the
sum. Kakeya estimates play an important role in
this, since the wave packets are essentially sup-
ported on tubes; however, this is not the full story,
since these packets also carry some oscillation, and
one must develop tools to deal with the possible
cancellation between wave packets. The known
techniques to deal with this cancellation, mostly
based on L2 methods, are imperfect, so that even
if one had a complete solution to the Kakeya con-
jecture, one could not then completely solve the
Bochner-Riesz conjecture. Nevertheless, the 
best-known results on Bochner-Riesz (e.g., in three
dimensions the conjecture is known [6] for
p > 26/7 and for p < 26/19) have been obtained
by utilizing the best-known quantitative estimates
of Kakeya type.

These techniques apply to a wide range of os-
cillatory integrals. A typical question, the (adjoint)
restriction problem, concerns Fourier transforms
of measures. Let dσ be surface measure on, say,
the unit sphere Sn−1. The Fourier transform d̂σ
of this measure can be computed explicitly using
Bessel functions and decays like |x|−(n−1)/2 at in-
finity. In particular, it is in the class Lp(Rn) for all
p > 2n/(n− 1). The restriction conjecture asserts
that the same statement holds if d̂σ is replaced
by f̂ dσ for any bounded function f on the sphere.
This question originally arose from studying the
restriction phenomenon (that a Fourier transform
of a rough function can be meaningfully restricted
to a curved surface such as a sphere, but not 
to a flat surface like a hyperplane); it is also related
to the question of obtaining Lp estimates on 
eigenfunctions of the Laplacian on the torus 
(although the eigenfunction problem is far more
difficult due to number theoretic issues), as well
as Lp estimates on solutions to dispersive PDE, as
we shall see below.

The restriction conjecture is logically implied by
the Bochner-Riesz conjecture and is slightly easier
to deal with technically. It has essentially the same
amount of progress as Bochner-Riesz; for instance,
it is completely solved in two dimensions and is
known to be true [6] for p > 26/7 in three dimen-
sions. One uses the same techniques, namely wave
packet decomposition of the initial function f,
Kakeya information, and L2 estimates to handle the
cancellation, in order to obtain these results.

There is an endless set of permutations on these
types of oscillatory integral problems: more
general phases and weights, square function and
maximal estimates, more exotic function spaces,

bilinear and multilinear variants, etc. There are
some additional rescaling arguments available in
the bilinear case, as well as some L2-based esti-
mates, but apart from this there are few effective
tools known outside of Bourgain’s wave packet
analysis to attack these types of problems.

One variant of the above problems comes from
replacing Euclidean space by a curved manifold.
There are some interesting three-dimensional ex-
amples of C. Sogge and W. Minicozzi showing that
the Kakeya conjecture can fail on such manifolds,
which then implies the corresponding failure of 
oscillatory integral conjectures such as the natural
analogue of Bochner-Riesz. This may shed some
light on the robustness of Kakeya estimates and
their applications in variable coefficient situations.
Certainly the arithmetic and geometric techniques
used currently to attack Kakeya problems do not
adapt well to curved space.

Applications to the Wave Equation
In the previous section we saw how Kakeya-type
problems are related to oscillatory integrals. There
is also a similar, and in some sense more natural,
connection between Kakeya problems and linear
evolution equations such as the free Schrödinger,
wave, and Airy equations.

For brevity of exposition we shall restrict our
attention to the solutions of the free wave equa-
tion

utt (t, x) = ∆u(t, x); u(0, x) = f (x), ut (0, x) = 0

with initial position f and initial velocity zero.
However, much of our discussion has analogues
for other linear evolution equations such as the
Schrödinger equation.

One can solve for u explicitly using the formula

u(t) = cos(t
√
−∆)f ,

but this does not reveal much information about
the size and distribution of u. On the other hand,
this formula does show that the wave equation is
connected to the oscillatory integral problems
mentioned earlier. For instance, the disk multi-
plier S1 can be rewritten as

S1f = χ[−2π,2π ](
√
−∆)f ,

since S1 preserves those Fourier modes e2πix·ξ
which are (generalized) eigenfunctions of 

√−∆
with eigenvalue in [−2π,2π ] and eliminates all
others. In particular, we have the Fourier repre-
sentation

S1f =
∫∞
−∞

sin(2πt)
πt

cos(t
√
−∆)f dt

=
∫∞
−∞

sin(2πt)
πt

u(t) dt

of the disk multiplier in terms of wave evolution
operators.
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A general class of problems is the following:
given size and regularity conditions on the initial
data f, what type of size and regularity control does
one obtain on the solution?

From integration by parts (or from the above 
explicit formula), one has energy conservation∫

1
2
|∇u(t, x)|2 +

1
2
|ut (t, x)|2 dx =

∫
1
2
|∇f (x)|2

for all time t . This conservation law and its gen-
eralizations show that u has as much regularity as
f when measured in L2-based spaces. However, L2

control by itself does not reveal whether u
focuses or disperses. To obtain better quantitative
control on u, one needs other estimates, such as
Lp estimates.

The energy estimate is a fixed time estimate: it
controls the solution at a specified time t . In the
Lp setting, fixed time estimates exist but require
a lot of regularity for the initial data and therefore
have limited usefulness. A typical estimate is the
decay estimate

‖u(t)‖L∞(Rn) ≤ C(1 + |t|)−(n−1)/2
∑

0≤k≤s
‖∇kf‖L1(Rn)

whenever s > (n + 1)/2 is an integer. The necessity
of this many derivatives is demonstrated by the 
focussing example, in which the initial data is
spread out near a sphere of radius 1 and the 
solution u focuses (with an extremely high L∞
norm) at the origin at time t = 1.

However, one can obtain much better estimates,
requiring far fewer derivatives, if one is willing to
average locally in time. The intuitive explanation
for this is that it is difficult for a wave to maintain

a focus point (which would generate a large Lp
norm for p > 2) for any length of time. This
phenomenon is known as local smoothing. A very
useful class of local smoothing estimates is 
known collectively as Strichartz estimates. A 
typical example of a Strichartz estimate is

‖u‖L4
x,t (R3+1) ≤ C‖(

√
−∆)1/2f‖L2

x(R3)

in three spatial dimensions. Without the averaging
in time, one would require 3/4 of a derivative on
the right-hand side rather than 1/2; this can be 
seen from the Sobolev embedding theorem. 
These Strichartz estimates are usually proven by
combining the energy and decay estimates with
some orthogonality arguments.

However, even Strichartz estimates lose some
regularity. One may ask if there are Lp estimates
other than the energy estimate which do not lose
any derivatives at all. Unfortunately, even if one
localizes in time and assumes L∞ control on the
initial data, one still cannot do any better than L2

control, as the following result of Wolff shows:

Theorem. If n > 1 and p > 2, then the estimate

‖u‖Lp([1,2]×Rn) ≤ C‖f‖L∞(B(0,1))

cannot hold for all bounded f on the unit ball.

The argument proceeds similarly to Fefferman’s
disk multiplier argument. Let {T} be a collection
of disjoint tubes arranged using the Besicovitch set
construction as in Fefferman’s argument, except
that we rescale the tubes to have dimensions
1× R−1/2 rather than R ×√R . On each of these

-1

T 2

1 R
-1/2

R

Figure 5. A schematic depiction of the Wolff example at time zero. Because of the zero initial velocity, the wave
trains will move in two opposite directions.
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tubes T we place a “wave train”, which is basically
eiRx·ωT times a bump function adapted to T. Let f
be the sum of all these wave trains (although 
we may randomize the signs of these trains to
simplify computations).

At time zero, the function f has low L∞ norm.
However, as time evolves, each wave train T splits
as the superposition of two pulses, one moving in
the direction ωT and the other in the direction
−ωT. For times 1 ≤ t ≤ 2 a large portion of the
wave train at T now lives in the shifted tube T̃ . 
Because of the large overlap of these tubes, the 
Lp norm of u is large for all 1 ≤ t ≤ 2; as with 

Fefferman’s argument, it is about K
1
2 ( 1

2− 1
p ). By 

letting R →∞, one can make K unbounded, and
this gives the theorem.

Because the Besicovitch construction has a 
logarithmic compression rate, one could get 
around this obstruction by requiring an epsilon of
regularity on the initial data. The local smoothing
conjecture of C. Sogge asserts that no further loss
of regularity occurs or, more precisely, that

‖u‖Lp([1,2]×Rn) ≤ Cp,ε‖(1 +
√
−∆)εf‖Lp(Rn)

for all ε > 0, n( 1
2 − 1

p )− 1
2, and 2 ≤ p ≤ ∞ . This

conjecture is easy when p = 2 or p =∞ ; the most
interesting case is when p = 2n/(n− 1) .

The local smoothing conjecture is extremely
strong and would imply many of the known 
estimates on the wave equation. It implies the
Kakeya conjecture, for a counterexample to the
Kakeya conjecture could be used to strengthen
Wolff’s argument to disprove the local smoothing
conjecture. This conjecture also implies the

Bochner-Riesz conjecture; the idea is to write the
Bochner-Riesz multiplier Sε1 in terms of wave 
operators cos(t

√−∆) in the manner briefly dis-
cussed earlier. However, the conjecture is far from
settled; even in two dimensions the conjecture is
completely proven for only p > 74 (due to T. Wolff),
and at the critical exponent p = 4 the conjecture
is known only for ε > 1/8− 1/88 [6], [8]. These 
estimates are all proven via Kakeya methods.
Briefly, the idea is to decompose the initial data f
(and hence the solution u by linearity) into pieces
which are localized in both space and frequency.
This decomposes the solution u into wave pack-
ets, which are oscillatory functions which travel
along light rays. One then uses Kakeya-type argu-
ments to control how many times these light rays
intersect each other, together with orthogonality
arguments to control to what extent the oscillations
of each wave packet reinforce each other. A recently
developed, but apparently quite powerful, tech-
nique here is induction on scales, in which one 
assumes that the desired estimate is already proven
at smaller scales and uses this hypothesis together
with the Kakeya strategy just discussed to obtain
the same estimate at higher scales.

There are several other wave equation estimates
which are related to those discussed here. An 
active area of research is to obtain good bilinear
or even multilinear estimates on solutions to the
wave equation, as opposed to the linear estimates
described here; these estimates have direct appli-
cation to nonlinear wave equations, since one 
can often use techniques such as the method of
Taylor series to write the solution of nonlinear
wave equations as a series of multilinear expres-
sions of solutions to the linear wave equation.
There are some tantalizing hints that these Kakeya
techniques could also be used to handle nonlinear
wave equations directly (or wave equations with
rough metrics, potential terms, etc.), but these
ideas are still in their infancy.

Since u can be written in terms of circular 
averages of f, there is also a close relationship 
between wave equation estimates and estimates 
for circular means. (Such circular means estimates
can then be used, for instance, to make progress
on the Falconer distance problem mentioned 
earlier.) There is also an extremely strong square
function estimate conjectured for the wave 
equation which, if true, would imply the local
smoothing, Bochner-Riesz, restriction, and 
Kakeya conjectures. It would also give estimates 
for other seemingly unrelated objects such 
as the helix convolution operator f 7→ f ∗ dσ , 
where dσ is arclength measure on the 
helix {(cos t, sin t, t) : 0 ≤ t ≤ 2π} in R3 . (The 
connection arises because the Fourier transform 
of dσ is concentrated near the light cone.) 
These estimates are quite difficult, and the 
partial progress which has been made on them 

Figure 6. The Wolff example at a time 1 ≤ t ≤ 2 ; only the
incoming wave trains are shown.
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has proceeded via Kakeya estimates. Although
these deep wave equation estimates have not yet
found significant applications, I am confident that
they will do so in the near future.
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Figure 7. A schematic depiction of how a wave (such as the one drawn on the left) can be written as a superposition
of wave packets or “photons”. These objects are localized in space and also have a localized direction, and
different wave packets are essentially orthogonal. There is no canonical way to perform this decomposition, but
one usually uses a combination of spatial cutoffs and cutoffs in Fourier space.

About the Cover
Around 1926 A. S. Besicovitch showed that there exist planar

regions of arbitrarily small area in which one could rotate a seg-
ment of fixed length, thus solving what is now known as the

Kakeya needle problem. As Terry Tao’s
article explains, even nowadays Besicov-
itch's Theorem and variations on it are a
fruitful source of analysis.

One of the principal steps in
Besicovitch’s proof was the construction
of certain complicated regions of arbi-
trarily small area in the plane containing
needles of a fixed length and a range of
directions. The original construction of
such regions was quite complicated.
Already in the next year’s volume of the
Mathematische Zeitscrift, O. Perron ex-

hibited a simpler one, involving what are now called “Perron
trees”, and in the early 1960s I. J. Schoenberg simplified Perron’s
construction in turn, showing how these trees could be con-
structed recursively by what he called “sprouting”. The cover
illustrates Schoenberg’s construction and demonstrates visu-
ally that the ratio of the areas of the regions in the third and
fourth columns has limit 0.

The Mathematical Association of America received a grant
from the NSF around 1960 to make a film about this topic. What
was essentially a transcript of the film appeared in an often cited
article by Besicovitch (“The Kakeya problem”, volume 70 of the
American Mathematical Monthly, 1963, pp. 697-706). The film 
itself may have been the first professionally produced mathe-
matical animation. Are there any viewable copies of the film left?
Is there anybody still around who took part in that project?

—Bill Casselman (covers@ams.org)
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