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Thomas H. Wolff, a leading analyst and a win-
ner of the Salem and Bôcher Prizes, was killed
in an automobile accident on July 31, 2000,

when he was forty-six years old.
Tom was raised in a mathematical environment.

His uncle, Clifford Gardner, was a professor at
NYU’s Courant Institute of Mathematics for many
years, and Tom’s mother, Lucile, was a technical
editor of volume 1 of the English translation of the
celebrated book Methods of Mathematical Physics
by Courant and Hilbert.

Tom was an undergraduate at Harvard, where,
he once told me, he regularly played poker with a
fellow student named Bill Gates. After graduating
from Harvard in 1975, Tom went to Berkeley, where
he got his Ph.D. under Don Sarason in 1979. Tom
then spent one year at the University of Washing-
ton and two at the University of Chicago before
coming to Caltech in the fall of 1982 as an assis-
tant professor.

Tom spent most of the rest of his career at Cal-
tech, although, for personal reasons, he resigned
twice, spending two years (1986–88) at Courant and
three (1992–95) at Berkeley. His promotion or 
appointment to a professorship at Caltech three
times is a record for our institution.

Tom is survived by his widow, Carol Shubin, a
mathematics professor at California State Univer-
sity, Northridge; two sons (aged three and five at
his death); his parents; and two sisters.

—Barry Simon

Lennart Carleson

Harmonic analysis has a position in mathe-
matics comparable to that of the theory of the
atom in physics. By understanding what goes on
at the micro level, we can understand large-scale
phenomena (even such as meteorology). By Fourier
expansions we can analyze and understand global
functions, arithmetic problems, or differential
equations. As physics has a miracle method in
quantum mechanics, we use the theory of analytic
functions, and of course, in a deeper sense, all
this comes together as one piece. These methods
are efficient when the number of variables n is 
either small or very large (where the theories be-
come probability). In the intermediate range, say
10 < n < 100, physicists and chemists have been
more successful than we mathematicians, and it
remains an important challenge for the future to
develop relevant harmonic analysis in this range.

The problems in harmonic analysis (of few vari-
ables) today, after two hundred years of research,
are very combinatorial and very complicated. Tom
Wolff had a unique talent and a profound knowl-
edge in the area. The fundamental problems that
he considered required long preparation, deep
concentration, and an ability to keep a very com-
plicated set of arguments simultaneously active
and available in his mind. Two quotations come to
mind. The first is Newton’s answer to how he
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found the law of gravitation: “By constantly think-
ing about it,” and the second is Tom’s remark
when he was awarded the Bôcher Prize in 1999: “It’s
never been easy for me.” Nobody else could have
done what he did.

Let me highlight some of Tom’s most striking
results, all coming from combinatorial harmonic
analysis. Tom’s thesis and early work were in the
direction of complex analysis. (His thesis is de-
scribed below by D. Sarason.) While working on his
thesis Tom found a new proof of the corona the-
orem for H∞ of the unit disk. Here he managed to
summarize the combinatorics in a beautiful lemma
on bounded solutions, u of ∂u = f . As first pointed
out by Hörmander, one should first solve the rel-
evant equations in a nonanalytic way and then
modify the solution to make it analytic bounded,
which leads to the above equation. To get the
boundedness of the solutions, the old combina-
torics came back, and this is where Tom’s lemma
works; see [4].

This lemma has had a large impact, although
Tom never published it. He did not return much
to function algebras. I can mention a joint paper
with Alan Noell (1989) which gives an almost com-
plete description of sets E on |z| = 1 where an an-
alytic function f (z) in |z| < 1, satisfying
|f (z)− f (w )| ≤ C|z −w|α , |f (z)| ≤ 1, f (0) = 0 , can
be = 1 (so-called peak sets). This is surprisingly
hard!

From function algebras Tom turned to potential
theory, where his most important work in the 1980s
can be found. The first fundamental result [5] is
from 1983. L. I. Hedberg had proved that if Ω is an
open set in Rn, then C∞0 (Ω) is dense in all higher-
order Sobolev spaces Wm,p

0 (Ω) when p > 2− m
n .

The exceptions 1 < p ≤ 2− m
n had their origin in

potential theory and more precisely in the miss-
ing Kellogg lemma on the size of the set of thin
boundary points outside that range. Tom closed
this gap by a clever construction. Today more
streamlined approaches exist.

Tom next turned to harmonic measure. Let Ω
be a domain in the plane containing ∞, and sup-
pose that we can solve the Dirichlet problem in Ω
for arbitrary continuous f on ∂Ω. The value of the
solution at ∞ is given by integrating f against a
positive probability measure ω in the plane sup-
ported on ∂Ω. This is called harmonic measure and
is also the hitting probability on ∂Ω of a Brown-
ian particle in Ω, starting at ∞. From this inter-
pretation, it is natural to surmise that most mea-
sure lies in the exposed parts of ∂Ω. The harmonic
measure should therefore be 1-dimensional; more
precisely: ∃?E of dimension ≤ 1 on ∂Ω with
ω(E) = 1 . By using the Riemann map, N. G.
Makarov proved this in 1985 in a very precise
sense for simply connected domains. For general
domains it is much more complicated. The main
difficulty comes from those parts of ∂Ω where

ω > 0, but barely so. Consider, for example, Ω =
complement of disjoint disks 

Dνµ : |z − aνµ| ≤ τνµ, aνµ =
ν
N

+ i
µ
N
,

0 < |ν|, |µ| ≤ N,
and choose τνµ so that ω(Dνµ) = 1

4N2 for all ν and

µ. The radii in the outer part of the square must
be very small, but a proof is not easy and the 
precise size of τνµ is not known (to me). It was a
tour de force when Tom and Peter Jones in 1988
proved the statement about dim(E) ≤ 1 in full 
generality [6], and Tom even proved (published 
in 1993 but from the same time) that E can be 
chosen of σ-finite length. In the above example,
Tom’s method proves that 

∑
τνµ ≤ C, |aνµ| ≥ 1/2.

There is a natural conjecture for the analogous
problem in higher dimension n (Øksendal 1981)
that E ⊂ ∂Ω can be chosen of dimension n− 1. In
1987 Tom produced a counterexample to this 
conjecture for n = 3. This was a sensation not 
only because of its complexity but also because it
simultaneously disproved two other conjectures.
It was published only in 1991 [11].

The construction is based on the following
lemma: For each unit vector e in R3, there is a har-
monic function u in x3 > 0, vanishing at ∞, so
that

(*)
∫
R2

log |e +∇u|dx1dx2 < 0.

This fails in two dimensions by subharmonicity.
This entropy-type of integral is relevant because
the counterexample domain Ω is obtained in a 
dynamic way by a snowflake construction where
almost independent products of gradient vectors
as above occur. (A result by Bourgain tells us that
dim(E) ≤ n− δn is possible, but the correct δn is
not known.) Tom’s construction also solves (par-
tially) a problem of Bers: There is u harmonic in
x3 > 0, C1+α up to x3 = 0 , such that u = |∇u| = 0
on a set of positive measure on x3 = 0 . Here α is
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a fixed number, but it is not known if we can take,
say, α = 1 (most likely not!). The construction also
disproves a third conjecture which I omit. In more
recent work, the explicit and painful construction
(∗ ) has been simplified and extended to certain
powers of |e +∇u| , but a complete picture is still
missing.

During the early part of the 1990s, Tom’s 
research was focused on “unique continuation”
(UC). In its simplest form this concerns differen-
tial inequalities such as |∆u| ≤ V0(x)|u(x)| or
|∆u| ≤ V1(x)|∇u| . If we know that u vanishes to 
infinite order at a point (x = 0) (strong UC, SUC) or
in an open set (UC), under which conditions on Vi
can we conclude that u ≡ 0? This has obvious im-
plications for uniqueness of solutions to PDE. All
work here originates in a paper by T. Carleman
from the 1930s. One studies norms of functions
such as |x|−t |u| or exp(k · x)|u| as the parameter
t or k grows. For V0 and SUC, Jerison-Kenig proved
in dimension d that V0 ∈ Ld/2 suffices, which is the
optimal exponent, and Tom proved the analogous
statement for V1 ∈ Ld, d = 3,4. He also proved
that 3d−4

2 suffices. For UC, Tom proved that expo-
nents d/2 for V0 and d for V1 suffice, but here it
is not at all clear if these exponents are relevant:
e.g., L1 may suffice. His method is an impressively
detailed analysis of the sets where real Laplace
transforms ∫

exp(k · x)dµ(x)

of positive measures are of maximal size [10].
Tom’s main interest during the last years of his

life was “Kakeya sets”. The methods here had the
right mix of classical harmonic analysis, geometry,
and combinatorics to fit his unique talents. As a
problem in harmonic analysis, it goes back to

Charles Fefferman’s solution of the “ball-multi-
plier-problem” (1971). If f̂ (ξ), ξ ∈ Rd , d ≥ 2, is the
Fourier transform of f ∈ Lp , p > 1, is f̂ , restricted
to |ξ| ≤ 1, the Fourier transform of some g ∈ Lp?
This is true for d = 1 (Hilbert transform) and for
p = 2 and all d, but Fefferman gave a counterex-
ample for all other p and d. The obstruction comes
from thin layers 1− δ ≤ |ξ| ≤ 1 which contain long
(∼ δ1/2) rectangles of width δ of all directions. In
this way the counterexample comes from Besi-
covitch’s 1928 construction (as a solution of a
problem of Kakeya’s concerning “sets where you
can turn a needle”) of a compact set in R2 of zero
measure that contains a line segment of length 1
in every direction. (For this classical theory see
[3].) It is rather easy to see that the Hausdorff di-
mension of a Kakeya set is 2. The corresponding
conjecture in Rn concerning needles in any direc-
tion is open. One can also study restriction prob-
lems of f̂ (ξ) to |ξ| = 1 (Stein 1976). Kakeya prob-
lems for circles (the dimension of a compact set
in R2 that contains a circle of every small radius)
are similarly related to these restriction problems.
Bourgain introduced the idea of fattening the seg-
ments and circles to have width δ and then look-
ing for the size of the constant C(δ) in Lp-estimates
of the corresponding maximal functions (δ-
method).

Here Tom contributed very important new ideas
and incorporated methods from combinatorial
geometry. The most striking is the proof (1997)
(using the δ-method; here an L3-estimate is rele-
vant; see [12]) that a Kakeya set for circles in R2

has dimension 2. For the needle case in Rn, the 

dimension estimate n+1
2 is easy, but Tom proved

(1995) n+2
2 . A growth rate better than 1

2 × n as

n →∞ has been proved by Bourgain.

Much remains here, and we are still hoping for
a deeper understanding of how lower-dimensional
objects fit into higher dimension. There is little
doubt that this type of mathematics is of great im-
portance for the analysis of the 3-dimensional
structure of molecules and therefore of, for ex-
ample, polymers.

What I have summarized here is a sample of
Tom’s work. The common denominator is combi-
natorial harmonic analysis, and it was here that he
had his unique talent. Where most of us would give
up because of the complexity, he would organize
the facts and concentrate for a very long time until
the goal was reached. He had, however, wide in-
terests in mathematics and was always eager to 
understand and discuss. This resulted in papers
on interpolation spaces, Hardy spaces, geometry,
and, let me finally mention, a nice joint paper with
Barry Simon on spectra for self-adjoint operators.

Tom Wolff at his desk in Luminy in the summer of 1994.
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Donald Sarason

It was my good fortune that Tom Wolff became
interested in my area and decided to write his dis-
sertation with me. He worked on some questions
in one-variable function theory with which I was
then involved.

Tom’s graduate school years (1975–79) came 
toward the beginning of the BMO era, initiated
around 1972 by Charles Fefferman and Elias Stein.
Fefferman’s duality theorem for the space of func-
tions of bounded mean oscillation, a high point in
the program to develop real-variable methods in
harmonic analysis, was having a large impact in the
complex realm as well.

In the study of Toeplitz operators there had
arisen a certain function space known as QC (for
quasicontinuous). It consists of the bounded func-
tions on the unit circle in the complex plane
writable as sums of continuous functions and
Hilbert transforms of continuous functions. The
space turns out, for nonobvious reasons, to be
closed both under the essential supremum norm
and under multiplication, thus is a Banach subal-
gebra of the algebra L∞ (on the circle). From 
Fefferman’s theorem one can derive an alternative
description of QC : it consists of the bounded 
functions on the circle that have vanishing mean
oscillation. A related algebra is QA , consisting of
the functions in QC that are boundary functions
of bounded holomorphic functions in the unit
disk.

A basic problem about QCwhich had stumped me
was that of characterizing its zero sets. I had been
unable even to formulate a plausible conjecture.
While I did not assign Tom this problem specifically,
he seems to have gravitated to it instinctively. He
eventually solved it in a very imaginative and unex-
pected way.

Tom came into my office at one point rather dis-
couraged, feeling he wasn’t getting anywhere. I
forget exactly what I said to him, but undoubtedly
it consisted of the usual reassuring words about
how nearly every mathematics Ph.D. student has
a similar experience, about how a mathematician
working on a hard problem can expect to be 
stuck for long periods, about how progress would
come if he just kept at it. It was not too many 
days later that he reappeared in my office, this time
to announce his beautiful resolution of the zero
set problem. He in fact simultaneously resolved 
several other questions about QC. Needless to say,
such a moment is a dissertation supervisor’s ulti-
mate gratification.

Tom’s basic theorem states that every function 
in L∞ can be multiplied into QC by a nonzero 

function in QA . Since nonzero functions in QA
are in fact nonzero almost everywhere, it follows
immediately that every measurable subset of the
circle is the zero set of a function in QC, a result
that surprised me.

Tom’s proof of the theorem involved an 
insightful application of BMO techniques. The 
theorem was unexpected because QC functions
possess a sort of average continuity that general
L∞ functions lack. The theorem says that, in some
sense, the set of discontinuities of a general L∞
function is smaller than we had imagined. Tom
showed that a Banach algebra perspective enables
one to make this statement precise.

Everyone who knew Tom during his student
days in Berkeley recognized his intelligence. It 
was not until that day he came to my office with
his breakthrough that I appreciated his remarkable
talent.

Tom’s dissertation is somewhat removed from
the main currents in harmonic and complex analy-
sis. It is thus not widely known, despite its elegance
and beauty. After completing it, but while still a
Berkeley student, Tom made another breakthrough.
Word of his work on the corona problem spread
quickly and made him famous.

Sun-Yung Alice Chang

I first met Tom Wolff in April 1979, the year he
finished his Ph.D. at UC Berkeley. We both had
written our thesis under the supervision of Donald
Sarason. The topics of our theses—the study of the
behavior of functions defined on some subalgebra
between H∞ (bounded analytic functions) and L∞
of the unit circle on the plane—are closely related.
I was an assistant professor at the University of
Maryland, College Park, where Lennart Carleson
was visiting during the special year in harmonic
analysis. Tom came to give a lecture on his simple,
elegant re-proof of Carleson’s result on the Corona
problem. It was a striking experience to see this shy,
humble young man talking about his work in front
of the world’s leading expert on the subject. The
beauty of Tom’s proof and the sharpness of his
mind left a deep impression.

Later on we had many occasions to meet in con-
ferences and to have joint seminars together while
he was at Caltech and I was at UCLA. Tom had a 
comprehensive and incisive understanding of many
topics in analysis. Those of us around him all greatly
benefited from the interactions with him. In partic-
ular, during the month of May 1990, while Tom and
I both were visitors at IHÉS (Institut des Hautes
Études Scientifiques), we spent long hours talking.
I got to know and was deeply impressed 
by his work on Bers’ problem, his criticisms—
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unsparing of his own work—of contemporary 
mathematics, his heavy sense of responsibility 
toward his students, and also his point of view 
on politics in the mathematical community and 
society in general.

I always enjoyed talking to Tom about the 
mathematics projects each of us was involved in.
Although our interests later diverged, Tom’s 
comments were always insightful and honest. We
also had two joint papers together; each grew out
of discussions where his contribution was so 
significant that I, together with my coauthor, 
invited him to join our work. In [2] we partially 
answered a question posed by Charles Fefferman:
Let v be a nonnegative integrable function on Rd ;
when is it true that∫

Rd
|u|2v dx ≤ c

∫
Rd
|∇u|2 dx

for some constant c? When c = 1, this is equiva-
lent to the positivity of the associated Schrödinger
operator L = ∆− v when L is essentially self-adjoint
on C∞0 . We also answered a question raised by
Elias Stein by showing that if a square function
S(f )—which is a variant of Lusin’s area function—
is bounded, then the function f is in the Orlicz
space exp(L2) and this is the best order. This 
latter result has been useful in the work of Robert
Fefferman, Carlos Kenig, and Jill Pipher; in the
study of Hardy spaces; and also in the work of
Chuck Moore and Michael Wilson. In [1] we gave
examples of sequences on a compact d-dimen-
sional manifold (d ≥ 3) in a fixed conformal class
satisfying a uniform L(d/2) bound on curvature
and a bound on volume that are not compact in a
C0 topology, which indicated that the result in the
thesis of Matt Gursky is sharp.

Our mathematical community has lost a leader
at the prime of his productivity, and many of us
who worked with Tom have lost a friend.

Peter W. Jones

I was a Dickson Instructor at the University of
Chicago when I first heard about Tom Wolff. He
had written an outstanding thesis under the 
direction of Donald Sarason and created quite a stir
with his now celebrated method of proving Lennart
Carleson’s Corona Theorem. At this time the analy-
sis group at Chicago was led by Alberto Calderón,
with Bill Beckner and Bob Fefferman the junior 
professors. Antoni Zygmund was old and infirm,
but made a point of coming in every day and never
missed a seminar. I presented Tom’s results to
Calderón, Beckner, and Fefferman and urged them
to try to bring him to the university. In the spirit

that reigned in the department, the matter was 
discussed for a minute or two, and then Calderón
declared the situation to be obvious: Tom must
come.

At the time Tom arrived the University of
Chicago was an exciting place for Fourier analysts.
The full ramifications of H1-BMO duality, proved
a decade earlier by Charles Fefferman, were still
being worked out. (Tom’s new proof of the Corona
Theorem was very much a product of that program
and is now seen as a model application of those
L2 methods.) Calderón had recently proven the L2

boundedness of the Cauchy Integral on small con-
stant Lipschitz curves, and it was clear that a whole
new area had opened around that result. There
were lots of young analysts who flocked to Chicago
in those years, but virtually from the start it was
clear that Tom had a special brilliance.

Very rapidly after arriving, Tom broadened his
scope and was working on conjectures in many 
different areas. His approach to mathematics was
remarkable and obvious even to those who knew
him only slightly. Tom’s hallmark was to select a
problem where the present tools of harmonic analy-
sis were wholly inadequate for the task. The exact
area was not necessarily so important, but he had
a knack for finding precisely the central problems.
Beginning with almost no background, he would
interview experts at length and devour the litera-
ture. Within a month or two he knew basically
everything that was relevant to the problem and
would then turn in earnest to the attack.

This is the part I remember best: when Tom 
was in full gear. He would enter a period of extreme
concentration, several notches up from his usual
intense state. During this period nothing could
distract him, and he would stay in Eckhart Hall until
late in the night, when he returned the few 
hundred meters to his apartment. In the day he
could be seen pacing the corridors with a cup of
coffee in hand. Other frequent haunts were the 
coffee lounge or the front steps of Eckhart Hall,
where he could be found smoking a cigarette. He
had a very characteristic body language, with his
shoulders hunched slightly forward and a distant
gaze in his eyes. All the time he was calculating 
lemmas or trying out a different tack. Tom was not
always communicative about what he was work-
ing on, even though it was clear that something was
up. I would sneak into his office on these occasions
and look at his voluminous notepads, trying to 
divine the exact nature of the problem. Eventually,
the mathematical door would open a crack as Tom
discovered a new technique, usually of astonish-
ing originality. The end would now be in sight, as
Tom unleashed his tremendous technical abilities
and overcame the remaining difficulties. Tom 
attributed his results solely to hard work, but I
never found this a satisfactory explanation and 
believe the true answer to be a mystery.

Peter W. Jones is professor and chairman of mathematics
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It was my fortune to write two papers with Tom.
One of these, also coauthored by Donald Marshall,
showed that (e.g.) if given corona data in the disk
algebra, one could find corona solutions with one
of the functions invertible. This was not too 
hard, but the other problem we tackled was tough
to crack. Øksendal had conjectured that for an 
arbitrary domain in Rn, the harmonic measure
was supported on a set of (Hausdorff) dimension
at most n− 1. N. G. Makarov first proved a very
sharp version of this for simply connected planar
domains. Tom’s paper with me solved the problem
for general planar domains, using a delicate 
geometric construction. It was during this time
that I got to see first-hand all of Tom’s amazing
talents, both conceptual and technical. Later, Tom
disproved Øksendal’s conjecture for n ≥ 3, and
this has deep physical significance. It is not much
of an exaggeration to say that this explains why
lungs work! Perhaps the most astonishing thing
about that particular paper is that Tom also 
solved two other well-known, only philosophically
related, conjectures. It took quite some time for
Tom to write up that paper. I recall him explain-
ing that the problem-solving phase was exciting 
but the writing was drudgery.

Time after time, Tom Wolff would pick a cen-
tral problem in an area and solve it. After a few
more results, the field would be changed forever.
Tom would move on to an entirely new domain of
research, and the rest of the analysts would spend
years trying to catch up. In the mathematical com-
munity, the common and rapid response to these
breakthroughs was that they were seen, not just
as watershed events, but as lightning strikes that
permanently altered the landscape.

Peter D. Lax

I have known Tom’s parents for over fifty years.
I met them through Tom’s maternal uncle, Clifford
Gardner, an outstanding applied mathematician
whose accomplishments have been recognized by
a Norbert Wiener Prize, awarded jointly by the
AMS and SIAM (Society for Industrial and Applied
Mathematics). Clifford was the first to arouse
Tom’s interest in mathematics. The second was 
Jürgen Moser. Their paths crossed at Loon Lake,
an isolated spot in Franklin County in northern-
most New York State, where the Mosers and the
Wolffs have had vacation homes since 1970. 
Jürgen and young Tom were drawn together by
their love of hiking (although Jürgen liked well-
mapped footpaths, while Tom loved to bushwhack,
which made my sons dub Tom “the Viking”), a

love of the cello, and a joint project to build—with
their bare hands—a log cabin in the woods, a 
retreat from the madding crowd. All this gave
ample chance for them to discuss mathematics.

When Tom’s affairs brought him to settle on the
East Coast, we at the Courant Institute jumped at
the chance to appoint him to the faculty. We were
very enthusiastic about his research, but a little 
apprehensive about his teaching because of his 
shyness. We needn’t have worried; within a short
time he became the most popular teacher in the
department because of the clarity of his lectures
and the wholehearted support he offered his 
students. We were very sorry to lose him when 
another change in his life brought him back to his
beloved California.

When news of the accident that took Tom’s life
reached Loon Lake this past summer, it was a
thunderbolt from a sunny sky. “As flies to wanton
boys are we to the gods, they kill us for their
sport.”

Nikolai Makarov

The first time I heard of Tom Wolff was in the
early 1980s when the news of his amazing new
proof of the Corona Theorem reached Leningrad.
I still remember the excitement we felt as the proof
was presented in the analysis seminar. Before long,
several other spectacular results by Tom followed.
For us working in Leningrad on problems in 
linear and complex analysis, his name became 
almost legendary.

In the course of his career Wolff deeply influ-
enced various fields of modern analysis. He 
made groundbreaking discoveries in harmonic and
complex analysis, potential theory, and differen-
tial equations. In the last, exceptionally productive,
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Wolff with his uncle Clifford Gardner (November 1994).
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years of his life, the Kakeya problem techniques
became his main topic, and Wolff made great
progress in some of the most fundamental prob-
lems of harmonic analysis related to geometric
measure theory. His work had remarkable depth
and breadth.

One part of Wolff’s legacy that I can appreciate
the most was his work concerning harmonic 
measure in the complex plane and in higher 
dimensions. I had been working on related prob-
lems, and when I first saw Tom’s results, they
looked like a miracle to me. He proved (with Peter
Jones) a long-standing conjecture that harmonic

measure in the plane lives
on a set of dimension at
most one. He also showed
that a similar fact 
does not hold in higher di-
mensions. The latter is a
stunning example of how
one person can change the
whole subject. By con-
structing beautiful and
rather surprising coun-
terexamples, Tom dis-
proved all conjectures that
existed in this area and
showed that the most
basic facts about harmonic
functions in the plane fail
in dimension three or
greater. At the same time,
he indicated new direc-
tions in the study of the
higher-dimensional case.

Tom never wasted time
on finding all possible applications of his ideas.
After solving the problem, he would move on to a
different subject, leaving it to other people to fully
implement his inventions. Some of his arguments
(such as his proof of the Corona Theorem) im-
press with elegant simplicity. But more often his
argument would be of the “hard analysis” type, and
Tom was a genius of “hard analysis”. His typical
proof would be based on some very complicated
and incredibly clever combinatorial construction
of a geometric nature.

Reading Wolff’s papers is a difficult task, 
though he put great effort into writing his papers
meticulously. It usually takes a long time to fully
understand the depth of his ideas, but the upshot
is very rewarding for the reader. Tom had great 
success in raising graduate students. Part of the
reason, I believe, was that by merely studying his
constructions, the students were able to discover
new ideas and master all the latest technologies.

Tom commanded unanimous respect and 
admiration. He was a perfect colleague: very 
generous with his insights and ideas, uncompro-
misingly honest, extremely respectful of other 

people. He had friends all over the world. Many 
analysts are deeply indebted to him for his advice
and support. I had the privilege of working with
Tom at Caltech for several years. He was a fine 
person, invariably friendly, reliable, and helpful.
Talking mathematics with him was always thrilling
and inspiring.

Most people would agree that Tom Wolff was
one of the greatest analysts of our time. Those of
us who were lucky enough to have known him
personally feel a tremendous sense of loss of 
someone very special.

Barry Simon

I was a colleague and admirer of Tom. Three 
aspects of Tom’s personality were especially 
noticeable. The first was his passion and intensity.
Tom was not only passionate about mathematics,
he was passionate about mathematicians and went
out of his way to help young mathematicians all
over the world, both with their mathematics and
with making sure they got the recognition they 
deserved. As for his intensity, Tom was a fixture
on campus pacing outside the department, lost in
thought. The most common comment I got after
Tom’s death—from Caltech’s provost to a delega-
tion of undergrads—was that they missed him
when they came in in the morning and didn’t see
him pacing there.

The second was his honesty. Tom didn’t wave
his hands and didn’t let others get away with 
waving their hands. The third was his shyness,
which was so strong that one could see him 
overcome it when dealing with others.

Tom was not only a deep thinker in mathe-
matics but also a technical master. My own joint
work with him arose when I was thinking about the
implication of some ideas of Kotani for localiza-
tion in random quantum systems. I realized that
one could base things on rank one perturbation
generalities if only I could prove a certain fact
about measures. After a week of trying, I called in
Tom. We spent several hours trying to crack it
with no success, but the next morning Tom walked
in with the needed result in hand. Our subsequent
talks led to a simple way of avoiding the problem
totally and resulted in our localization criterion [9].

As a side benefit of our joint work, Tom got 
interested in problems of localization and returned
to the subject ten years later in a beautiful joint
paper with Shubin and Vakilian [8] and, just prior
to his death, a joint work with Klopp [7]. Typically,
these papers exploited subtle ideas from harmonic
analysis. In particular, Tom’s insight on the role of

Tom Wolff with family in Mammoth,
CA, on his 45th birthday (July 1999).
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uncertainty principle inequalities in the subject is
a significant contribution.

Tom was a gentleman and a gentle man. I miss
him.

Markus Keel

I first met Tom Wolff four years ago when he’d
visit the UCLA analysis seminar, but got to know
him better while a postdoc at Caltech these past
two years. From his research, to his teaching, 
to his day-to-day scientific interactions, Tom’s 
unflinching honesty had as much to do with 
his impact on me and my generation as did his 
incredible analytical strength.

Tom’s utter lack of vanity should be seen first
in the light of his work, the depth and breadth of
which are outlined by the collection of authors
here. Even at the time of his death, Tom’s preprints
were nourishing entire fields. In [13], for example,
he answered (up to an endpoint) a conjecture of
Klainerman and Machedon dealing, roughly, with
the way that two solutions to the wave equation
can interact. Tom’s paper surprised everyone in the
field, and it seems likely that the arguments he in-
troduced there will seriously impact work on the
regularity and stability of nonlinear wave equations.

Tom’s teaching had a similar effect on the 
students and young faculty at Caltech, from his 
undergraduate calculus courses to the advanced
harmonic analysis class he taught here last spring.
Twice a week Tom would speed into the room, 
looking for all the world like he’d just wrestled
about 300 wild cats, half of whom were wielding
squirt guns loaded with coffee. The lecture that 
followed was both terrific and terrifying: he’d 
cover intricate arguments in a way that made them
appear almost inevitable, but a weird unease would
creep over me towards the end of the term. At my
very best, I realized, the mathematics classes I
teach are a lot like taxidermy—the stuffing of a 
cadaver so that if you don’t look too closely or too
long, you might be fooled into believing it’s alive.
Tom, on the other hand, put an intensity and care
into his lectures which made them nothing short
of reanimation. By the end of the course we really
believed that the ideas he had presented were still
vigorous, still steeped in potential.

The way he listened and spoke in informal 
mathematical discussions was similarly unique.
Tom would listen not just to your words, but for
the hidden biases and unacknowledged gaps 
that color most arguments. For example, I once 
kept Tom at a table in the Caltech cafeteria to see
if he had any ideas for a counterexample to an 
estimate which I, and every senior mathematician
I could corner, thought was probably false. Tom

gave a little bit of
advice, but seemed
reluctant to speak
over lunch or
maybe hesitant to
say anything that
was less than ab-
solutely precise.
Five minutes after
I’d returned to my
office I found out
his reticence had
more to do with his
doubting my entire
premise: I an-
swered his light
knock, opened the
door, and in
poured Tom to explain that it’d be a real chore to
produce a counterexample, since the estimate was
actually true. He put the proof on the board, apol-
ogized for interrupting my work, set the chalk
down, and strode right back out again.

Tom Wolff was one of the most potent human
beings I’ve ever met. It was a great thrill to work
in the vicinity of the man.

Wilhelm Schlag

I met Tom Wolff in the fall of 1992 at UC Berke-
ley. I was a first-year graduate student and Tom
had just moved there from Caltech. He taught an
introductory class in harmonic analysis that same
term that left a lasting impression on me. He lec-
tured with great care, paying particular attention
to details that are frequently skipped in classes of
this type. At the same time he would draw our 
attention to the essential points, not allowing the
details to obscure the main line of the argument.
He thus made fundamental results of the subject
completely transparent.

I think it was very clear even to us first-year 
students that he was a master in his field. His 
seriousness about mathematics and his high 
standards made him an ideal, albeit demanding,
advisor. He insisted on seeing his students every
week, and the discussions we had were always
fruitful. It was clear that he also enjoyed discussing
mathematics with us, and he was basically avail-
able at all times.

I think that the most inspiring feature of his 
personality was his uncompromising and relentless
search for the key points of a problem. He would
assemble the main facts and methods and then
combine them in an almost miraculous way that

Markus Keel is Taussky-Todd Research Instructor,
Department of Mathematics, California Institute of
Technology. His e-mail address is keel@its.caltech.edu.

Wilhelm Schlag is assistant professor of mathematics 
at Princeton University. His e-mail address is
schlag@math.princeton.edu.

Wolff “reading math” with son Ricky.
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made everything appear simple. This was true of
his teaching as well as of his research. His command
of the subject as well as his somewhat serious 
appearance could make him intimidating at times.
But this really belied his gentle personality.

I am very lucky to have met Tom, and I regard
it as a privilege to have been his student.
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