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Quantum Spaces and
Their Noncommutative

Topology
Joachim Cuntz

N
oncommutative geometry studies the
geometry of “quantum spaces”. Put a 
little more prosaically, this means the
“geometric properties” of noncommu-
tative algebras (say, over the field C

of complex numbers). Such algebras include, for 
instance,

• algebras of pseudodifferential operators, 
algebras of leafwise differential operators on
foliated manifolds, algebras of differential
forms, group algebras or convolution algebras
for groupoids;

• noncommutative or “quantized” versions of 
familiar algebras such as algebras of functions
on spheres, on tori, on simplicial complexes,
or on classifying spaces;

• genuinely new noncommutative algebras, 
for instance, ones motivated by quantum 
mechanics.

The underlying philosophy is based on the ob-
servation that various categories of spaces can be
completely described by the (commutative) algebras
of functions on them (a locally compact space by
the algebra of continuous functions, a smooth
manifold by the algebra of smooth functions, an
affine algebraic variety by its coordinate ring). The
idea then is that a noncommutative algebra can 
be viewed as an algebra of functions on a virtual
“noncommutative space”. This approach is very
flexible: for instance, it covers the algebra of 
functions on a manifold, the algebra of pseudo-

differential operators, and the algebra of differential
forms all on the same footing.

Now, what is a “geometric” property of a non-
commutative algebra? How can one describe 
characteristic classes or additional structures 
like a Riemannian metric for a noncommutative 
algebra? These questions are what noncommuta-
tive geometry is all about; see the fascinating book
by Connes [5].

The two fundamental “machines” of noncom-
mutative geometry are cyclic homology and 
(bivariant) topological K-theory. Cyclic theory can
be viewed as a far-reaching generalization of 
the classical de Rham cohomology, while bivariant
K-theory includes the topological K-theory of
Atiyah-Hirzebruch as a very special case.

Bivariant K-theory was first defined and devel-
oped by Kasparov on the category of C∗-algebras,
thereby unifying and decisively extending previous
work by Atiyah-Hirzebruch, Brown-Douglas-
Fillmore, and others. Kasparov also applied his 
bivariant theory to obtain striking positive results
on the Novikov conjecture. Very recently, it was 
discovered that bivariant topological K-theories
can be defined on a wide variety of topological 
algebras ranging from discrete algebras and very
general locally convex algebras to Banach algebras
or C∗-algebras.

Cyclic theory is a homology theory developed
independently by Connes and by Tsygan, who were
motivated by different aspects of K-theoretic con-
structions. It was immediately realized that cyclic
homology has close connections with de Rham
theory, Lie algebra homology, group cohomology,
and index theorems.
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It is important to note that the new theories are
by no means simply generalizations of classical
constructions. In fact, in the commutative case
they provide a new approach and a quite unex-
pected interpretation of the well-known classical
theories. Essential properties of the two theories
become visible only in the noncommutative cate-
gory. For instance, both theories have certain 
universality properties in this setting.

Let us have a look at the kind of geometric infor-
mation that the two theories give us for a number of
simple “quantum spaces”. The formal definition of
the cyclic and K-theory classes mentioned in these
examples will be explained in the subsequent section.
The technical definition is not necessary for an 
intuitive grasp of the situation.
1. The space with n points and noncommuta-

tive connections. This space has n points and
arrows between every two points. As an alge-
bra it is described by the algebra Mn(C) of
n× n -matrices (the functions on the n points
corresponding to the diagonal matrices). Both

K-theory and cyclic theory see one even co-
homology class and no odd classes. In both the-
ories the nontrivial even class is 0-dimensional,
and there are no higher cohomology classes.
Since there is one class representing the 
equivalence class of the n points and no higher
dimensional classes, Mn(C) looks like a con-
nected 0-dimensional space.

This is the simplest case of a convolution
algebra for a groupoid. In general a (topolog-
ical) groupoid consists of a space of objects and
a family of (invertible) arrows which can be con-
sidered as above as noncommutative paths
between the objects. For the noncommutative
homology theories, different points connected
by an arrow will be homologous. Higher ho-
mology classes can also arise from configura-
tions of arrows (like a loop of arrows), from
mixed configurations involving arrows and
objects, or even from linear combinations of
such things. Consider, for instance, the alge-
bra determined by linear combinations of all

possible paths in the following graph. It 
possesses, besides the 0-dimensional class
given by the equivalence class of the points, a
one-dimensional class coming from the path
around the circle (contrary to the case of
Mn(C) , we assume here that this path is 
different from the trivial path).

2. The phase space in quantum mechanics. This
is described by the unital algebra A(p, q) gen-
erated by two generators p and q satisfying the
Heisenberg relation pq − qp = 1 (sometimes
this is called the Weyl algebra). There is at
present no calculation of the K-theory for this
algebra (or its C∞-completion). The cyclic the-
ory sees one two-dimensional cohomology
class and no classes in dimensions different
from 2. Thus we have here a noncommutative
space that is two-dimensional (say, looks like
a 2-plane). However, not only does this “space”
have no points, it does not even have any
equivalence class of a point.

3. The noncommutative 2-torus. This is the 
involutive unital algebra Aθ given by power 

fea-cuntz.qxp  8/2/01  9:03 AM  Page 794



SEPTEMBER 2001 NOTICES OF THE AMS 795

dimension of a cyclic cohomology class for CΣ
is, however, much larger than the dimension
d of the corresponding commutative homol-
ogy class (it is of the order of 3d). There is also
a degree filtration on the K-homology for lo-
cally convex algebras. The K-homology degree
of a K-homology class for CΣ is the same as
the dimension of the corresponding commu-
tative homology class.

In these examples the K-theory and the cyclic
classes have been used to describe the “shape” of
a noncommutative space. This is by no means the
only function of these invariants. They also are the
main tool to describe other topological informa-
tion, such as gluing data in extensions and indices
of operators.

In this article we sketch a uniform approach to
cyclic theory and bivariant K-theory, which in fact
can be made to work for many different categories
of algebras. This approach emphasizes the analogy
of cyclic theory with de Rham theory and the con-
nection between K-theory and extensions. It leads
in a natural way to the fundamental properties of
both theories. We will also explain the construction
of the bivariant Chern-Connes character taking 
bivariant K-theory to bivariant cyclic theory. The
existence of this multiplicative transformation has
been obtained in full generality only very recently
(important special cases had been considered 
by Connes and others, e.g., [4], [12]) as a result of
progress both on the cyclic homology side and on
the K-theory side [9], [6]. It is a vast generalization
of the classical Chern character in differential
geometry and allows one to associate “character-
istic classes” with K-theoretic objects.

I am indebted to my sons, Nicolas and Michael,
for the illustrations to the examples above. Since
these pictures have no technical meaning, they
are only meant to provide a kind of suggestive 
visualization of the corresponding quantum spaces.

series with rapidly decreasing coefficients 
in two generators u and v satisfying the rela-
tions uu∗ = u∗u = vv∗ = v∗v = 1 and vu =
e2πiθuv for a fixed real number θ ∈ [0,1] .
Each pair {u,u∗} and {v, v∗} of generators
generates a commutative subalgebra isomor-
phic to the algebra of C∞-functions on the 
circle. If θ = 0, then these subalgebras com-
mute and Aθ will be isomorphic to the alge-
bra of C∞-functions on the 2-torus S1 × S1.
The K-theory for Aθ contains two even- and
two odd-dimensional classes. The cyclic the-
ory shows more precisely that one of the even
classes is 0-dimensional and the other one is
2-dimensional. The two odd classes are both
1-dimensional (and are represented by the
1-forms u−1du and v−1dv). Thus, from this
point of view the noncommutative torus looks
exactly like an ordinary 2-torus.

4. Noncommutative simplicial complexes. Let Σ
be a finite simplicial complex given by its set
of vertices V and by its simplices, represented
by finite subsets F of V . We can associate with
Σ a noncommutative algebra CΣ in the fol-
lowing way. Let CΣ be the unital algebra given
by power series with rapidly decreasing coef-
ficients in generators hs (s ∈ V) satisfying the
following relations:

• 
∑
s∈V hs = 1;

• if {s0, s1, . . . , sn} is not in Σ , then the 
product hs0hs1 . . . hsn is zero.

(Note that when we introduce the additional
relation that the generators commute, we get
an algebra isomorphic to an algebra of C∞
functions on the geometric realization of Σ .)
The K-theory and the periodic cyclic homol-
ogy for CΣ are isomorphic respectively to the
K-theory and the Z/2-graded singular coho-
mology of the geometric realization of Σ . The
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where Ω1A� is the quotient Ω1A/[A,Ω1A] of Ω1A
by commutators, � : Ω1A→ Ω1A� is the quotient
map, and the boundary operators are defined by
δ(x) = �(dx) and β(�(xdy)) = [x, y] .

It is certainly somewhat surprising that the ex-
tremely simple complex X(A) should play the role
of the de Rham complex in noncommutative geom-
etry. In the commutative case it obviously does not
reduce to the de Rham complex. Its analogy with
the de Rham complex will now be explained. This
also leads to a new interpretation for the classical
de Rham theory.

The starting point is that even though taking
traces is a much milder procedure than abelianizing,
it still leads to trivial results for many noncommu-
tative algebras. Indeed, there are natural examples
of algebras A for which no nontrivial traces exist. One
is led to consider also traces on algebras related to
A via an extension. An extension of A is an algebra
E that admits A as a quotient (by an ideal I) or, in
short, an exact sequence

0 −→ I −→ E −→ A −→ 0,

where the arrows are algebra homomorphisms.
Extensions play a fundamental role in noncom-
mutative geometry.

An algebra A is called quasi-free if in any ex-
tension of A where the ideal I is nilpotent (that is,
Ik = 0 for some k ), there is a homomorphism
A→ E that is a left inverse for the quotient map
E → A. This condition is formally nearly identical
to the condition of smoothness introduced for
commutative algebras and algebraic varieties by
Grothendieck. Any free algebra is quasi-free.

The periodic cyclic cohomology HP∗(A) of an
algebra A , where ∗ = ev/od , is obtained by rep-
resenting A as a quotient of a quasi-free algebra
T by an ideal I and then writing

HP∗(A) = lim−−→n
HX∗(T/In).

It is an important fact that this definition does not
depend on the choice of the quasi-free
resolution T. The homology HX∗(T/In) is essen-
tially the (non-periodic) ordinary cyclic cohomol-
ogy HC2n+∗(A) .

It is not very difficult to see that one can alter-
natively obtain HP∗ by the formula

(1) HP∗(A) = lim−−→n
HX∗+1(In)

where ev + 1 = od and vice versa. In this picture a
cyclic cocycle (of dimension 2n− 1) is described
by a trace on the n-th power of the ideal in an 
extension of A .

This definition of cyclic homology is manifestly
quite different from the original definition by
Connes or Tsygan. The proof that both definitions
give the same result is nontrivial. Note that any 

The Noncommutative de Rham Complex—
or How to Extract Commutative
Information from a Quantum Space
Any noncommutative algebra A can be abelianized
by dividing out the ideal generated by all com-
mutators. This procedure, however, destroys the
relevant information in nearly all interesting cases.
In fact, the abelian quotient typically is zero (this
is the case in examples 1, 2, and 3 above).

A more promising approach consists in divid-
ing only by the linear space of commutators or, 
dually, in considering traces on A . A trace is by 
definition a linear functional f on A such that

f (xy) = f (yx)

for all x and y in A . To describe topological infor-
mation, the strategy then is to consider homotopy
classes of traces. What is homotopy for traces, and
how can this be formulated algebraically?

An answer is provided by the simple X-complex
introduced by Quillen [14] in connection with 
differential graded algebras and then used system-
atically in [7], [8], [9].

Let A be an algebra. The space Ω1A of abstract
1-forms over A is defined as the bimodule 
consisting of linear combinations of expressions
of the form xd(y) with x ∈ Ã and y ∈ A , where Ã
is the unitization of A . The bimodule structure is
given by the rules

a(xdy) = axdy (xdy)a = xd(ya)− xyda, a ∈ A
(that is, one introduces the relation d(xy) =
xdy + d(x)y ). A trace on Ω1A is a linear functional
f such that f (aω) = f (ωa) for a ∈ A and ω ∈ Ω1A.

The (dual) X-complex X′(A) is the Z/2-graded
complex

{functionals on A}
β−→←−
δ
{traces on Ω1A}.

The boundary operators are defined by (δf )(x) =
f (dx) and (βf )(xdy) = f ([x, y]) . It is straightforward
to check that βδ = δβ = 0.

This complex has only two homology groups,
namely, the even and the odd homology. The even
homology HXev is the space of traces—linear 
functionals on A that vanish on commutators—
divided by the space of “derivatives” of traces—
linear functionals of the form f ◦ d, where f is a trace
on Ω1A. This quotient can be considered rightfully
as the space of homotopy classes of traces on A . 
Arguing similarly for the odd homology, we obtain

HXev (A) = {homotopy classes of traces on A}
HXod(A) = {classes of closed traces on Ω1A}

where a trace f is closed if f ◦ d = 0.
There is a natural complex X(A) for which X′(A)

is the dual: namely,

A
δ−→←−
β
Ω1A�
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algebra A has a canonical quasi-free (even free) 
resolution given by the tensor algebra TA over A .

There is a striking analogy between periodic
cyclic homology and Grothendieck’s notion of in-
finitesimal homology which describes the topology
of nonsmooth varieties in algebraic geometry. In
this analogy quasi-free algebras play the role, in
the noncommutative category, of smooth varieties,
and the X-complex corresponds to the de Rham
complex.

In fact, in algebraic geometry the infinitesimal
cohomology is defined by writing the coordinate
ring A of the variety as a quotient S/I of the co-
ordinate ring of a smooth variety S and by taking
the de Rham cohomology of the completion
Ŝ = lim←−−n

S/In . It can be shown that this does not 

depend on the choice of the embedding into a
smooth variety. This procedure is exactly analogous
to the definition of periodic cyclic cohomology
above, where we write A as a quotient of a quasi-
free algebra T and then take the homology HX∗(T̂ ).

Given two algebras A1 and A2, we can also de-
fine the bivariant periodic cyclic theory HP∗(A1, A2),
where ∗ = 0,1, as the homology of the Hom-
complex between the X-complexes associated with
quasi-free extensions for A1 and A2 . There is a 
natural composition product

HPi(A1, A2)×HPj (A2, A3) −→ HPi+j (A1, A3).

Any algebra homomorphism α : A→ B determines
an element HP (α) in HP0(A,B).

The periodic cyclic theory HPi(A1, A2) has very
good properties. It can be shown that it is invari-
ant under differentiable homotopies and under
Morita invariance in both variables. Moreover, by
[9] it satisfies “excision” in the following sense.

Let D be any algebra. Every extension

0→ I i→ A
q→ B → 0 induces exact sequences in

HP∗(D, · ) and HP∗( · ,D) as follows:

HP0(D, I) ·HP (i)−→ HP0(D,A)
·HP (q)−→ HP0(D,B)

↑ ↓
HP1(D,B)

·HP (q)←− HP1(D,A)
·HP (i)←− HP1(D, I)

and

HP0(I,D)
HP (q)·←− HP0(A,D)

HP (i)·←− HP0(B,D)

↓ ↑
HP1(B,D)

HP (i)·−→ HP1(A,D)
HP (q)·−→ HP1(I,D)

Special cases of these exact sequences had been
obtained before in [10] and [16]. They are one of
the main tools in the computation of the cyclic 
homology invariants.

Embedding Quantum Spaces into Smooth
Spaces—Extensions and K-Theory
Over the years (see, e.g., [3], [11], [4], [6]) it has 
become evident that the single most important
notion in noncommutative topology is the one 
of an extension. As already mentioned above, an
extension of an algebra A is an exact sequence

0 −→ I −→ E −→ A −→ 0

where the arrows are algebra morphisms. Dually,
and intuitively, such an extension corresponds to
embedding the quantum space corresponding to
A into the quantum space corresponding to E.

To illustrate the kind of topological information
contained in an extension, we mention that the 
content of the Atiyah-Singer index theorem [1]
may be viewed as the determination of the class
of the extension defined by the pseudodifferential
operators on a compact manifold. Other index 
theorems are concerned with more complicated 
extensions.

We are now going to sketch a general con-
struction, based on extensions, of (bivariant) 
topological K-theory that works for many cate-
gories of noncommutative algebras and fits 
nicely with the definition of cyclic theory outlined
above. As a result there will be a natural transfor-
mation, the bivariant Chern-Connes character,
from topological K-theory to cyclic theory.

To be more specific, we will assume from now
on that all our algebras are topological algebras
with a complete locally convex structure given 
by a family of seminorms (pα) satisfying
pα(xy) ≤ pα(x)pα(y) for all x and y in the algebra.
For any such locally convex algebra A , the algebraic
tensor algebra A⊕A⊗2 ⊕A⊗3 ⊕ . . . has a natural
completion TA which is a locally convex algebra.
There is a canonical algebra homomorphism
TA→ A mapping x1 ⊗ . . .⊗ xn to the product
x1x2 . . . xn. We denote the kernel by JA, so that we
get a free resolution for A of the form

0 −→ JA −→ TA −→ A −→ 0,

which can be viewed as an embedding of the quan-
tum space corresponding to A into the smooth
quantum space corresponding to TA . The ideal 
corresponds to the complement of the image of the
quantum space for A . Since JA is again a locally
convex algebra, we can iterate the construction
and form J2A = J(JA) and, inductively, JnA =
J(Jn−1A).

With a locally convex algebra B, we can also 
associate the algebra M∞(B) of infinite matrices
(bij )i,j∈N with rapidly decreasing matrix elements
in B. The corresponding quantum space looks like
the one in example (1) of the introduction. It has 
infinitely many points, which are labeled by N,
and arrows between the points, which are labeled
by all possible elements of B. A fundamental 
extension, using pseudodifferential operators on
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The pseudodifferential operators on a smooth
compact manifold give rise to an extension

0 −→ Ψ−1 −→ Ψ0 −→ C∞(S∗M) −→ 0,

where Ψ−1 and Ψ0 denote the algebras of pseudo-
differential operators of order −1 and 0, respec-
tively, and C∞(S∗M) denotes the algebra of smooth
functions on the cosphere-bundle of M . The 
problem solved by the Atiyah-Singer index 
theorem is exactly the determination of the class
in kk1(C∞(S∗M),Ψ−1) defined by this extension.

The Bivariant Chern-Connes Character
The most important ingredient in the construction
of a bivariant multiplicative transformation from
kk∗ to the bivariant theory HP∗ on the category
of locally convex algebras is the universality prop-
erty of kk0 mentioned at the end of the preceding
section.

Since HP0 satisfies the properties for which kk0
is universal, we immediately obtain a transforma-
tion

ch : kk0(A,B) −→ HP0(A,B)

which is compatible with the product.
In trying to extend this to a multiplicative trans-

formation from the Z/2-graded theory kk∗ to
HP∗ , one faces the problem that the product of two
odd classes is defined differently in kk∗ and in
HP∗ . It turns out that one has to introduce (some-
what arbitrarily) a factor of 

√
2πi . With this 

proviso one does then obtain a transformation

ch : kk∗(A,B) −→ HP∗(A,B)

which is multiplicative in full generality.
Both the cyclic cohomology HP∗(A) and the K-

homology kk∗(A,C) have a natural (dimension)
filtration due to their definitions as inductive 
limits. This dimension filtration was alluded to in
the examples in the introduction.

The behaviour of these filtrations under the
Chern-Connes character is well understood due 
to a very delicate analysis of the boundary map 
in the cyclic homology long exact sequence by 
M. Puschnigg and by R. Meyer. Given an element
α in kk∗(A,C), the dimension of ch(α) is bounded
by 3d, where d is the K-theoretic dimension of α.
This estimate is optimal.

To close this article, we want to emphasize that
despite their seemingly abstract definition, the
cyclic theory and K-theory invariants can be 
computed very explicitly for a large variety of 
noncommutative algebras. Some typical examples
were described in the introduction.
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About the Cover
The image on this month's cover arose from

Joachim Cuntz's effort to render into visible art
his own internal vision of a noncommutative
torus, an object otherwise quite abstract. His
original idea was then implemented by his son
Michael in a program written in Pascal.  More
explicitly, he says that the construction started
out with a triangle in a square, then translated
the triangle by integers times a unit along a line
with irrational slope; plotted the images thus
obtained in a periodic manner;  and stopped
just before the figure started to seem clut-
tered.

Many mathematicians carry around inside
their heads mental images of the abstractions
they work with, and manipulate these objects
somehow in conformity with their mental im-
agery. They probably also make aesthetic judge-
ments of the value of their work according to
the visual qualities of the images. These pre-
sumably common phenomena remain a rarely
explored domain in either art or psychology.

—Bill Casselman (covers@ams.org)
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