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In its March 29, 1999, issue TIME magazine 
provided its picks for the twenty greatest “scien-
tists and thinkers” of the twentieth century. Kurt
Gödel was on the list along with his good friend
Albert Einstein. Alan Turing was the other math-
ematician among the twenty. Since we may agree
that Einstein should be regarded primarily as a
physicist, it turns out that the mathematicians
TIME selected as the great thinkers of the past
century were a pair of logicians! Whatever one
may think about these two, the work of the 
overwhelming majority of mathematicians has
been quite unaffected by what they accomplished.

Turing’s main influence on most mathematicians,
and indeed on the population at large, stems from
his role as progenitor of the computer (see [1]), and
it was for this role that TIME selected him.

In Douglas Hofstadter’s TIME article on Gödel,
John von Neumann is quoted proclaiming that
Gödel’s “achievement…is singular and monu-
mental…a landmark which will remain visible far
in space and time.…” Although Gödel did a num-
ber of other very important things, it is the
“achievement” to which von Neumann referred,
Gödel’s incompleteness theorem, that has caught
the imagination of the educated public. Indeed, Hof-
stadter himself played an important part in bring-
ing Gödel’s work to the attention of a general au-
dience by writing his Pulitzer Prize-winning book
[5], a whimsical, artful work, full of amusing dia-
logues and connections with music, art, and arti-
ficial intelligence.

Kurt Gödel was a very strange man, and his life
is as interesting as his scientific work. Both of the
books under review bring the two together but
are intended for quite different audiences. John
Dawson explains in his preface that although he
has not “presumed any acquaintance with modern
mathematical logic,” he has assumed that his 
readers “possess a modicum of mathematical 
understanding.” In fact, his book would likely be
tough going for anyone who had not studied 
mathematics at the graduate level. John L. Casti 
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and Werner DePauli, on the other hand, have 
directed their book at a general audience. How
well they have succeeded will be discussed later.

John Dawson faced a formidable task when he
began writing his definitive biography of Kurt

Gödel. He needed to tell the story
of a very peculiar and eccentric
man in a way that did not mini-
mize his peculiarities but did not
sensationalize them either and that
placed his story in the
context of his time and his re-
markable accomplishments. As
Dawson himself puts it in his pref-
ace, “The problem is to make the
ideas underlying his work com-
prehensible to non-specialists with-
out lapsing into oversimplification
or distortion, and to reconcile his
personality with his achievements.”
As the official cataloger of the huge
mass of documents of various
kinds that Gödel left behind and as
coeditor of his Collected Works,
Dawson was uniquely suited for
this responsibility. It also helped
that his wife, Cheryl Dawson, had
gone to the trouble of learning the
obscure “Gabelsberger” shorthand
that Gödel used for his personal
notes.

Dawson begins with Kurt as an
inquisitive child, forever asking
“Why?”—in his family he was “Herr
Warum” (“Mr. Why”). In Brno (then
part of the Austro-Hungarian Em-
pire, today in the Czech Republic)
Kurt maintained perfect grades in
the German-language schools he
attended. After his bout with
rheumatic fever, which left him
convinced that his heart had been
impaired, he became a lifelong
hypochondriac. For his university

education he was drawn to Vienna, 68 miles south
of Brno, where he soon decided on mathematics
as his field of study.

Interrupting the biography with a chapter pro-
viding a capsule history of mathematical logic to
1928, Dawson continues with a discussion of
Gödel’s dissertation. The problem Gödel chose
had to do with the basic rules of logical deduction
used in mathematical proofs, rules that had first
been worked out by Gottlob Frege in his Begriffs-
schrift of 1879. Frege’s key discovery was that in
addition to the propositional connectives—usu-
ally written ¬∨∧ and ⊃—whose rules had been
found by Boole, it was necessary to use the exis-
tential and universal quantifiers—written nowadays
∃ and ∀—to uncover the logical structure of

mathematical propositions. The basic steps in a
mathematical proof then can be seen as amount-
ing to applying appropriate rules for manipulat-
ing these symbols. Of course, for very good rea-
sons proofs are not presented at that level of
detail. But in principle they could be. These rules
can be given in various equivalent ways, and we
needn’t worry about the details. Roughly speaking,
the quantifiers get in the way of taking the steps
called for by the propositional connectives. So one
way of thinking of the rules (logicians call this
natural deduction) is that the rules specify how to
remove quantifiers safely and how to restore them.
Mathematicians do this all the time, proceeding in-
tuitively, and don’t need to know the rules. But it
becomes crucial to be precise about them when one
is proving theorems about what can or cannot be
proved.

The problem that Gödel took as his dissertation
topic, proposed by Hilbert in 1928, was to show
that Frege’s rules are complete, that by their means
any valid inference could be justified. In the dis-
sertation the proof of completeness used familiar
methods but in a daring way. However, Gödel’s
epochal paper on undecidability, which also dealt
with a completeness problem proposed by Hilbert,
used entirely novel methods. The second problem
in Hilbert’s famous 1900 list asked for a consis-
tency proof for arithmetic. Working with Hilbert’s
ideas, such researchers as Ackermann, von Neu-
mann, and Herbrand had been attempting to find
such a proof for a system based on Frege’s rules
of logic, with a language appropriate for the 
arithmetic of positive integers and with formal
versions of Peano’s postulates as axioms. In an 
address in Bologna in 1928, Hilbert asked for a
proof that this system is complete in the sense that
any proposition expressible in its language would
be provable or refutable from the axioms. What
Gödel proved was that not only are these systems
incomplete but there is no hope for achieving 
arithmetic completeness by means of more pow-
erful systems. Finally, he dealt a mortal blow to 
the efforts to prove the consistency of arithmetic
by proving that formal systems were generally 
incapable of proving their own consistency.

One result of the sensation created by Gödel’s
incompleteness theorem was an invitation to visit
the newly established Institute for Advanced Study
in Princeton. Gödel arrived in the fall of 1933,
three years after he had announced that theorem.
In December of that year he delivered an address
entitled “The present situation in the foundations
of mathematics” at a joint meeting of the Mathe-
matical Association of America and the AMS in
Cambridge, Massachusetts (Dawson, p. 100; [4],
vol. III, pp. 45–53). In this talk he maintained that
the problem of giving an adequate foundation for
the whole of mathematics that avoided the famil-
iar paradoxes (like Bertrand Russell’s class of all
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those classes not members of themselves) had
found a unique solution. This was to think of the
sets needed for mathematics as occurring in lev-
els or types. Beginning with a set of “individuals”
(for example, the natural numbers), one can form
the set consisting of these individuals together
with all of the sets of these same individuals. At
each new level, one can adjoin to the elements of
the previous level all sets whose members are in
that previous level. In this manner one obtains
types V0, V1, . . .. But, as Gödel emphasized, there
is no reason to stop there. One can go on to
Vω =

⋃∞
n=0 Vn and continue the process. Although

Gödel did not pause to mention the fact, it turns
out that there is no loss in generality in beginning
the process with the empty set, and that has 
become the standard practice. Moreover, if one
proceeds in that manner, one can define each 
subsequent type V ′ to be simply the power set of
the previous type, V , that is, the set of all subsets
of V . Writing “P” for the power set operation, i.e.,

P(x) = {y | y ⊆ x},
one has:

V0 =∅; Vn+1 = P(Vn); Vω =
∞⋃

n=0

Vn.

(It is not difficult to see by induction that for
n = 0,1, . . . , Vn ⊆ Vn+1.) But there is still no need 
to stop. One can go on to Vω+1 = P(Vω) , etc. Con-
temporary set theorists work with the cumulative
hierarchy

V0 =∅; Vα+1 = P(Vα);

Vλ =
⋃

α<λ
Vα (λ a limit ordinal).

Gödel explained that a suitable foundation for
mathematics consists of axioms for this hierarchy
of types, with Frege’s rules of logical inference
being used to obtain theorems from the axioms.
(It may be mentioned in passing that this set-
theoretic foundation for mathematics has been
widely accepted, as can be seen in the introductory
sections on sets and mappings in typical beginning
graduate-level textbooks.) A system of axioms for
set theory, he further explained, can be under-
stood as consisting of closure properties (i.e., prop-
erties that enable one to proceed from the existence
of given sets to the existence of other sets formed
from them). By forming the least set closed under
those operations, one obtains a set belonging to
the hierarchy; however, the very existence of that
set cannot be proved from those axioms. (This is
because one could use the existence of this set 
to prove the consistency of the given axioms from
those axioms, which Gödel had shown to be 
impossible.) This set “can be considered as a 
new domain of individuals and used as a 
starting point for creating still higher types.” He 

continued, explaining the relationship between
this situation and his incompleteness theorem:

…we are confronted by a strange situ-
ation. We set out to find a formal sys-
tem [of axioms] for mathematics and in-
stead of that found an infinity of
systems, and whichever system you
choose …, there is one…whose axioms
are stronger.

But…this character of our systems…is
in perfect accord with certain facts
which can be established quite inde-
pendently.…For any formal system you
can construct a proposition—in fact a
proposition of the arithmetic of inte-
gers—which is certainly true if the given
system is free from contradictions but
cannot be proved in the given system.
Now if the system under consideration
(call it S) is based on the theory of types,
it turns out that…this proposition be-
comes a provable theorem if you add
to S the next higher type and the axioms
concerning it ([4], vol. III, pp. 47–48).

In the years immediately following Gödel’s
breakthrough, his life inevitably became entan-
gled in the sinister events developing in Germany
and Austria. In 1940,
when it was almost too
late, he finally decided
to emigrate to America.
By this time he had
made several extensive
visits to the U.S. Suf-
fering from depression,
he had felt forced to
abort one of these vis-
its and had spent some
time in mental institu-
tions. He managed to
keep secret a romance
he had developed with
Adele Porkert, an at-
tractive dancer who had
previously been mar-
ried, so that when he
and Adele married, her
very existence came as a surprise to his friends and
colleagues. Gödel only resolved to leave Vienna
when, to his surprise, he was found fit for “garri-
son duty” in the German army. Leaving was not
easy because World War II had already broken out.
In addition to bureaucratic difficulties on both
sides of the Atlantic, that ocean was no longer
safe. Gödel with his bride traveled across Siberia
(the pact between Germany and the Soviet Union
still being in force), across the Pacific to

Kurt Gödel
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California, and finally by train to Princeton, where
he was to remain for the rest of his life.

In the meantime Gödel had made another 
breakthrough regarding a fundamental problem:
Cantor’s continuum hypothesis (CH). This is the 
assertion that infinite sets of real numbers come
in only two sizes, i.e., that each such set is either
countable or has the same cardinality as the set of
all real numbers. Famously, Cantor had tried very
hard to prove this with no success. The status of
CH was the first problem in Hilbert’s famous list
in his 1900 address. What Gödel was able to prove
was that if the usual systems of axioms for set the-
ory (including, in particular, the so-called Zermelo-
Fraenkel axioms) are consistent, then they remain
consistent if the axiom of choice and CH are added
as additional axioms (Dawson, pp. 115–122). (As
usual we write ZF for the Zermelo-Fraenkel ax-
ioms, and ZFC if the axiom of choice is included.)

The main tool used in the proof is a modifica-
tion of the cumulative hierarchy that was 
discussed above. The language of set theory can
be used not only to express propositions but also
to define sets. For example, the formula

¬(∃y)(y ∈ x)

∨ [(∃y)(y ∈ x)∧ (∀z)(z ∈ x ⊃ ¬(∃y)(y ∈ z))]

can be satisfied only if x is either the empty set or
contains a single element, namely the empty set.
One says that this formula defines the set
{∅, {∅}} . In general, given any set S , one can 
consider subsets of S definable by formulas of
the language of set theory. The formulas used in
these definitions are allowed to contain “parame-
ters” standing for particular elements of S . Thus
if S = {∅, {∅}}, the formula x = {∅} containing
the parameter {∅} defines the subset {{∅}} of S .
Let us write D(S) for the collection of all subsets
of a given set S that can be defined in this man-
ner. Evidently for any set S , D(S) ⊆ P(S). Note that
if S is countably infinite, this inclusion is proper:
P(S) is uncountable (in fact having the cardinality
of the continuum), whereas, because there are only
countably many formulas, D(S) is countable. Now
just as the cumulative hierarchy is defined by in-
definitely iterating the power set operation P,
Gödel defined what he called the constructible sets
as those obtained beginning with ∅ and indefinitely
iterating the D operation. The precise definition
is again by transfinite recursion:

L0 =∅; Lα+1 =D(Lα);

Lλ =
⋃

α<λ
Lα (λ a limit ordinal).

The constructible sets are then those belonging to
any one of the Lα . Gödel introduced the proposi-
tion

A: Every set is constructible

and proved the following:

• A is consistent with ZF.
• A implies the axiom of choice.
• A implies CH.
• In fact, A implies that 2ℵα = ℵα+1 (the so-called

“generalized continuum hypothesis”).
In his 1938 announcement in the Proceedings

of the National Academy of Sciences ([4], vol. II,
pp. 26–27), Gödel said:

The proposition A added as a new
axiom seems to give a natural comple-
tion of the axioms of set theory, in so
far as it determines the vague concept
of an arbitrary infinite set in a definite
way.

A decade later in an expository article about CH
([4], vol. II, pp. 176–187), his position was quite 
different. Espousing a “realist” notion of set based
on the cumulative hierarchy, it was clear that he
no longer regarded the notion as “vague”. Re-
garding CH, he predicted that it would be found
to be not only consistent with ZFC, as he had
shown, but actually independent, a prediction that
was fulfilled in 1962 by Paul Cohen. However,
Gödel warned against accepting this independence
as ending the matter. Rather, he concluded with
the daring prediction:

…the continuum problem…will finally
lead to the discovery of new axioms
which will make it possible to disprove
Cantor’s conjecture.

In particular Gödel speculated that the kind of
axiom that could do the trick might be a so-called
large-cardinal axiom, that is, an axiom not prov-
able from the Zermelo-Fraenkel axioms that implies
the existence of levels of the cumulative hierarchy
of enormous size. However, because of the wide
applicability of Paul Cohen’s methods, it became
clear that large-cardinal axioms by themselves
could not settle CH, and Gödel’s prediction seemed
increasingly far-fetched. However, very recently
Hugh Woodin [10] has developed new methods
that do suggest that Gödel was right after all. The
two-part article “The Continuum Hypothesis,” by
Hugh Woodin, appeared in the June/July 2001 and
August 2001 issues of the Notices.

Gödel returned to the theme of his 1933 Cam-
bridge lecture in 1951 when he delivered the
twenty-fifth annual Josiah Willard Gibbs Lecture at
an AMS meeting in Providence.

The phenomenon of the inexhaustibil-
ity of mathematics…always is pre-
sent…all of mathematics is reducible to
abstract set theory.…Now if one attacks
[the] problem [of axiomatizing set the-
ory], the result is quite different from
what one would have expected.…one is
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faced with an infinite series of axioms,
which can be extended further and fur-
ther, without any end being visible…there
can never be an end…because the very
formulation of the axioms up to a cer-
tain stage gives rise to the next axiom. It
is true that in the mathematics of today
the higher levels of this hierarchy are
practically never used.…it is not alto-
gether unlikely that this character of 
present-day mathematics may have
something to do with…its inability to
prove certain fundamental theorems,
such as, for example, Riemann’s hy-
pothesis.…For…the axioms for sets of
high levels…have consequences even
for…the theory of integers. To be more
exact, each of these set-theoretical 
axioms entails the solution of certain
diophantine problems which had been
undecidable from the previous axioms
(Dawson, pp. 197–200; [4], vol. III,
pp. 305–308).

Making use of the work leading to the unsolvabil-
ity of Hilbert’s tenth problem (on Diophantine
equations) [2], one can be very specific about this
last comment:

Theorem. There is a polynomial p(a, x1, . . . , xn)
with integer coefficients having the following
property: Corresponding to any consistent list of
axioms in the language of set theory, there is an
integer z0 such that while the equation

p(z0, x1, . . . , xn) = 0

has no solutions in natural numbers, that fact 
cannot be proved from those axioms.

Here, the word “list” is intended to imply that
if there are infinitely many axioms, then there is
an algorithm that can systematically generate them.
Note that the polynomial p is fixed, so that while
the unprovable fact will become provable if one 
appropriately strengthens the given axioms (for 
example, as Gödel proposed, by proceeding to 
the next level of the cumulative hierarchy), there
will be a new unprovable fact differing from the
previous one only by a change in the value z0 of
the parameter a. It should be noted that all of this
is entirely constructive: the polynomial p can be
given explicitly, and the number z0 can be com-
puted explicitly from the axioms. However, it 
must be admitted that the polynomial p is by 
no means beautiful to behold [6]. Moreover, the 
constant z0, being in effect a numerical encoding
of the axioms, will be enormous.

In his Gibbs lecture, Gödel was quite willing 
to stick his neck out and to predict emphatically
that “Some kind of set-theoretical number theory,
still to be discovered, would certainly reach much
further” than what can be accomplished with 

“analytic number theory.” Alas, forty years later this
“set-theoretical number theory” still remains “to
be discovered,” and the working lives of number
theorists remain almost entirely unaffected by
Gödel’s discoveries.

Two areas where one might claim that Gödel’s
vision of the effectiveness of axioms going 
beyond ZFC has been vindicated are descriptive set
theory and finite combinatorics. The hierarchy of
projective sets in Euclidean space can be defined
as follows: one begins with the Borel sets in n
dimensions (for arbitrary n) and iterates the 
operations of projection to a lower-dimensional
space and complementation (i.e., for E ⊆ Rn , 
forming Rn − E). Investigations of the projective 
hierarchy between the world wars (mostly in 
Eastern Europe) came to a dead end with problems
that seemed utterly out of reach. Work in the 1960s
made it clear that these problems were indeed 
beyond the scope of the Zermelo-Fraenkel axioms.
However, it turned out that a very plausible axiom
(“projective determinacy”) resolved all of these
problems in a very satisfactory manner ([8], [7],
Chap. 6). Finally it has been shown that this axiom
is itself a consequence of large-cardinal axioms, 
axioms that assert the existence of levels of the 
cumulative hierarchy of enormous size [9].

In finite combinatorics it was in the context of
Ramsey theory that examples of genuine mathe-
matical interest were found that required “the
higher levels” of the cumulative hierarchy for their
proof. Harvey Friedman has found examples that
even go beyond ZFC (see his paper [3], which also
has references to previous work). Most recently, he
has used large-cardinal axioms to obtain some
particularly striking results.

As usual, let Z be the set of integers. Friedman
calls a subset of Z bi-infinite if it has infinitely 
many positive elements as well as infinitely many
negative elements. Given A,B,C ⊆ Z, one says that
A,B disjointly cover C if

A∪ B ⊇ C and A∩ B =∅.
For x ∈ Zn, say x = (x1, . . . , xn), write

|x| = max1≤i≤n |xi|.
Friedman considers multivariate functions on the
integers, i.e., functions that map Zn into Z for
some n. For such a function f and for A ⊆ Z, he
writes

fA = {f (x1, . . . , xn) | x1, . . . , xn ∈ A}
and says that f is of expansive linear growth if for
some p, q > 1, the inequalities p|x| ≤ f (x) ≤ q|x|
hold for all sufficiently large |x| . Friedman has
shown that although the following proposition is
not provable from ZFC, it can be proved using a
large-cardinal axiom:
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Bi-infinite Disjoint Cover Theorem. Let f , g be mul-
tivariate functions on Z of expansive linear growth.
Then there exist bi-infinite A,B,C ⊆ Z such that
C,gB disjointly cover fA and C,gC disjointly cover
fB.

Among the various possible variants of this 
theorem, it might be worth mentioning that the
proof of the proposition obtained by simply 
replacing “C,gB” by “B, gB” not only requires no
large-cardinal axiom but in fact can be carried out
using axioms far weaker than ZF. Friedman sees

propositions like these in
the context of a general
development he calls
Boolean Relation Theory,
which he predicts will
have wide ramifications, 
intersecting many disci-
plines, with the use of 
large-cardinal axioms fre-
quently being necessary.

Gödel’s friends and
colleagues in Princeton
could see that he suf-
fered from eccentricity
bordering on paranoia.
On more than one occa-
sion he seriously endan-
gered his life by stub-
bornly refusing to accept
medical advice. Finally,
when Adele was ill and
unable to prepare food
he considered safe, he
stopped eating and liter-
ally starved himself to
death. He died on Janu-
ary 14, 1978, at the age of

seventy-two. Although Dawson gives a full account
of these matters, he always preserves an appro-
priate tact. In addition to the aspects of Gödel’s
work discussed in this review, Dawson’s masterly
biography doesn’t omit Gödel’s other important sci-
entific contributions: in particular, his functional-
based semantics for intuitionistic logic and his
novel solution of the equations of general relativ-
ity.

Because Gödel’s work on undecidability is of
such general interest, treatments of his life and
work intended for a general audience are very 
desirable. The book by Casti and DePauli is an 
effort in this direction. Unfortunately it is deeply
disappointing, being marred by serious errors 
sure to confuse the novice.

In order to explain the idea of proof in mathe-
matics, the authors tell the charming tale of how
Gauss as a schoolboy is said to have summed the
numbers from 1 to 100 by writing the numbers

1 2 … 50
100 99 … 51

and noting that each column adds up to 101. They
then show how the same method can be used to
sum the numbers from 1 to n yielding the formula
n(n + 1)/2 (with the caveat that for n odd, 0 must
be included). Astonishingly, readers are then 
told that this proof “is not a proof that the 
formula holds for every positive integer n; it’s 
just a proof for any fixed number.…” This nonsense
is followed by a very brief explanation of mathe-
matical induction as the “usual” way the formula
is proved. Next comes a piece of utterly gratuitous
misinformation:

There are some philosophers of mathe-
matics who argue that such noncon-
structive and/or infinitary principles of
inference as mathematical induction
should not be admitted into mathemat-
ics as a tool of proof.

Of course constructivists have no quarrel with
mathematical induction. Perhaps the authors 
were confusing the finitary rule of inference 
of mathematical induction with the infinitary 
nonconstructive ω-rule. The former obtains the
conclusion (∀n)A(n) from the two premises

A(0) and (∀n)[A(n) ⇒A(n + 1)],

while the latter obtains that same conclusion from
the infinite set of premises:

A(0),A(1),A(2), . . ..
The ω-rule is an interesting thing for logicians to
study, but as stated it is not a practical rule of
proof—a mathematician ordinarily has that infinite
set of premises available only when the desired con-
clusion has already been obtained some other way.

Unfortunately, the authors’ confusion is not
limited to this one example. Pages could be filled
listing and correcting the errors in this book. 
Probably the worst is the misstatement of Gödel’s
incompleteness theorem. As Gödel was at great
pains to emphasize and has been explained above,
it is a question of relative incompleteness: the
statement found to be undecidable in a given 
system is seen to be true in a more comprehensive
system obtained using a natural construction. But
over and over again the authors give the impres-
sion that it is a matter of absolute undecidability.
Thus, here is their version of what can be inferred
from the work on Hilbert’s tenth problem:

There exists a Diophantine equation
having no solution—but no theory of
mathematics can prove this.

Pages could be
filled listing and
correcting the
errors in [Casti
and DePauli’s]
book. Probably
the worst is the
misstatement of

Gödel’s
incompleteness

theorem.
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No such Diophantine equation is known. A correct
statement (involving a system-dependent para-
meter) was stated above.

Although Casti and DePauli include Dawson’s
excellent biography in their list of references, there
are many inaccuracies concerning Gödel’s life and
thought. The example that annoyed me most was
the assertion that Gödel “first described himself
as a mathematical realist in 1925.” What is true is
that in 1975, in replies to a questionnaire, he 
asserted that he had been a mathematical realist
(that is, one who accepts mathematical entities
such as sets as “real”) since 1925. To serious Gödel
scholars this is a crucial difference, since there 
are good reasons to doubt that his assertion 
was true. For example, Gödel’s suggestion in 1938
that his statement “A” (to the effect that all sets
are constructible) was a reasonable completion of
the “vague” notion of set is not what a “realist”
would say. (See also the introductory notes in [4],
vol. III, by Solomon Feferman, pp. 36–44, and by
me, pp. 156–163.)

To end on a positive note: Casti and DePauli
spend some time discussing Gödel’s interesting 
unsuspected solution of the equations of general
relativity. In the universe specified by this solution,
time travel to the past is possible in principle. I 
believe their discussion is accurate and interest-
ing. The book concludes with an illuminating 
exposition of Gregory Chaitin’s information-
theoretic form of Gödel’s theorem.
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