
NOVEMBER 2001 NOTICES OF THE AMS 1151

The Cooley-Tukey FFT
and Group Theory

David K. Maslen and Daniel N. Rockmore

Pure and Applied Mathematics—Two Sides of a
Coin
In November of 1979 there appeared in the Bulletin
of the AMS a paper by L. Auslander and R. Tolim-
ieri [3] with the delightful title “Is Computing with
the Finite Fourier Transform Pure or Applied Math-
ematics?” This rhetorical question was answered
by showing that in fact the finite Fourier transform
and the family of efficient algorithms used to com-
pute it (the Fast Fourier Transform (FFT), a pillar
of the world of digital signal processing) are of in-
terest to both pure and applied mathematicians.

Auslander had come of age as an applied math-
ematician at a time when pure and applied math-
ematicians still received much the same training.
The ends towards which these skills were then di-
rected became a matter of taste. As Tolimieri retells
it,1 Auslander had become distressed at the de-
velopment of a separate discipline of applied math-
ematics which had grown apart from much of core
mathematics. The effect of this development was
detrimental to both sides. On the one hand, applied
mathematicians had fewer tools to bring to prob-
lems, and, conversely, pure mathematicians were
often ignoring the fertile bed of inspiration pro-
vided by real-world problems. Auslander hoped
their paper would help mend a growing perceived

rift in the mathematical community by showing the
ultimate unity of pure and applied mathematics.

We will show that investigation of finite and fast
Fourier transforms continues to be a varied and in-
teresting direction of mathematical research.
Whereas Auslander and Tolimieri concentrated on
relations to nilpotent harmonic analysis and theta
functions, we emphasize connections between the
famous Cooley-Tukey FFT and group representa-
tion theory. In this way we hope to provide further
evidence of the rich interplay of ideas which can
be found at the nexus of pure and applied math-
ematics.

Background
The finite Fourier transform or discrete Fourier
transform (DFT) has several representation theo-
retic interpretations: either as an exact computa-
tion of the Fourier coefficients of a function on the
cyclic group Z/nZ or a function of band-limit n on
the circle S1, or as an approximation to the Fourier
transform of a function on the real line. For each
of these points of view there is a natural group-
theoretic generalization and also a corresponding
set of efficient algorithms for computing the quan-
tities involved. These algorithms collectively make
up the Fast Fourier Transform or FFT.

Formally, the DFT is a linear transformation
mapping any complex vector of length n, f =
(f (0), . . . , f (n− 1))t ∈ Cn, to its Fourier transform,

f̂ ∈ Cn . The k th component of f̂ , the DFT of
f at frequency k , is

(1) f̂ (k) =
n−1∑
j=0

f (j)e2πijk/n,

where i =
√−1, and the inverse Fourier transform

is

(2) f (j) =
1
n

n−1∑
k=0

f̂ (k)e−2πijk/n.

David K. Maslen is a mathematician at Susquehanna
International Group LLP. His e-mail address is
david@maslen.net.

Daniel N. Rockmore is professor of mathematics and com-
puter science at Dartmouth College and on the external
faculty of the Santa Fe Institute. His e-mail address is
rockmore@cs.dartmouth.edu. He is supported in part
by NSF PFF Award DMS-9553134, AFOSR F49620-00-1-
0280, and DOJ 2000-DT-CX-K001. He would also like to
thank the Santa Fe Institute and the Courant Institute for
their hospitality during some of the writing. Pieces of the
introduction are similar to his paper “The FFT—an
algorithm the whole family can use”, which appeared
in Computing in Science & Engineering, January 2000,
pp. 62–67.
1Private communication.

fea-maslen.qxp 10/15/01 10:03 AM Page 1151

1152 NOTICES OF THE AMS VOLUME 48, NUMBER 10

Thus, with respect to the standard basis, the DFT
can be expressed as the matrix-vector product
f̂ = Fn · f, where Fn is the Fourier matrix of order
n whose j, k entry is equal to e2πijk/n . Computing
a DFT directly would require n2 scalar operations.2

Instead, the FFT is a family of algorithms for com-
puting the DFT of any f ∈ Cn in O(n logn) opera-
tions. Since inversion can be framed as the DFT of
the function f̌ (k) = 1

n f̂ (−k), the FFT also gives an
efficient inverse Fourier transform.

One of the main practical implications of the FFT
is that it allows any cyclically invariant linear op-
erator to be applied to a vector in only O(n logn)
scalar operations. Indeed, the DFT diagonalizes
any cyclic group-invariant operator, making pos-
sible the following algorithm: (1) Compute the
Fourier transform (DFT). (2) Multiply the DFT by
the eigenvalues of the operator, which are also
found using the Fourier transform. (3) Compute the
inverse Fourier transform of the result. This tech-
nique is the basis of efficient digital filter (i.e.,
convolution) and is also used for the efficient nu-
merical solution of partial differential equations.
Some History
Since the Fourier matrix is effectively the character
table of a cyclic group, it is not surprising that some
of its earliest appearances are in number theory, the
subject which gave birth to character theory. Con-
sideration of the Fourier matrix goes back at least as
far as to Gauss, who was interested in its connec-
tions to quadratic reciprocity. In particular, Gauss
showed that for odd primes p and q,

(3)

(
p
q

)(
q
p

)
=

Trace(Fpq)
Trace(Fp)Trace(Fq)

,

where
(
p
q

)
denotes the Legendre symbol. Gauss

also established a formula for the quadratic Gauss
sum Trace(Fn), which is discussed in detail in [3].

Another early appearance of the DFT occurs in
the origins of representation theory in the work of
Dedekind and Frobenius on the group determi-
nant. For a finite group G , the group determinant
ΘG is defined as the homogeneous polynomial in
the variables xg (for each g ∈ G) given by the de-
terminant of the matrix whose rows and columns
are indexed by the elements of G with g, h-entry
equal to xgh−1 . Frobenius showed that when G is
abelian, ΘG admits the factorization

(4) ΘG =
∏
χ∈Ĝ

(∑
g∈G

χ(g)xg

)
,

where Ĝ is the set of characters of G . The linear
form defined by the inner sum in (4) is a “generic”
DFT at the frequency χ.

In the nonabelian case, ΘG admits an analo-
gous factorization in terms of irreducible polyno-
mials of the form

ΘD(G) = det

(∑
g∈G

D(g)xg

)
,

where D is an irreducible matrix representation
of G . The inner sum here is a generic Fourier trans-
form over G . See [12] for a beautiful historical
exposition of these ideas.

Gauss’s interests ranged over all areas of math-
ematics and its applications, so it is perhaps not
surprising that the first appearance of an FFT can also
be traced back to him [10]. Gauss was interested in
certain astronomical calculations, a recurrent area
of application of the FFT, needed for interpolation
of asteroidal orbits from a finite set of equally spaced
observations. Surely the prospect of a huge labori-
ous hand calculation was good motivation for the de-
velopment of a fast algorithm. Making fewer hand
calculations also implies less opportunity for error
and hence increased numerical stability!

Gauss wanted to compute the Fourier coeffi-
cients ak and bk of a function represented by a
Fourier series of bandwidth n,

(5) f (x) =
m∑
k=0

ak cos 2πkx +
m∑
k=1

bk sin 2πkx,

where m = (n− 1)/2 for n odd and m = n/2 for n
even. He first observed that the Fourier coeffi-
cients can be computed by a DFT of length n
using the values of f at equispaced sample points.
Gauss then went on to show that if n = n1n2, this
DFT can in turn be reduced to first computing n1
DFTs of length n2, using equispaced subsets of
the sample points, i.e., a subsampled DFT, and
then combining these shorter DFTs using various
trigonometric identities. This is the basic idea
underlying the Cooley-Tukey FFT.

Unfortunately, this reduction never appeared
outside of Gauss’s collected works. Similar ideas,
usually for the case n1 = 2, were rediscovered in-
termittently over the succeeding years. Notable
among these is the doubling trick of Danielson and
Lanczos (1942), performed in the service of x-ray
crystallography, another frequent employer of FFT
technology. Nevertheless, it was not until the pub-
lication of Cooley and Tukey’s famous paper [7]
that the algorithm gained any notice. The story of
Cooley and Tukey’s collaboration is an interesting
one. Tukey arrived at the basic reduction while in
a meeting of President Kennedy’s Science Advisory
Committee, where among the topics of discus-
sions were techniques for offshore detection of
nuclear tests in the Soviet Union. Ratification of a
proposed United States/Soviet Union nuclear test
ban depended upon the development of a method
for detecting the tests without actually visiting
the Soviet nuclear facilities. One idea required the

2At this point we must come clean about how we count
operations. Our count is either the number of complex ad-
ditions or the number of complex multiplications,
whichever is greater.

fea-maslen.qxp 10/15/01 10:03 AM Page 1152

NOVEMBER 2001 NOTICES OF THE AMS 1153

analysis of seismological time series obtained from
offshore seismometers, the length and number of
which would require fast algorithms for comput-
ing the DFT. Other possible applications to
national security included the long-range acoustic
detection of nuclear submarines.

R. Garwin of IBM was another of the partici-
pants at this meeting, and when Tukey showed him
this idea, Garwin immediately saw a wide range of
potential applicability and quickly set to getting this
algorithm implemented. Garwin was directed to
Cooley, and, needing to hide the national security
issues, told Cooley that he wanted the code for an-
other problem of interest: the determination of the
periodicities of the spin orientations in a 3-D crys-
tal of He3. Cooley had other projects going on,
and only after quite a lot of prodding did he sit
down to program the “Cooley-Tukey” FFT. In short
order Cooley and Tukey prepared their paper,
which, for a mathematics/computer science paper,
was published almost instantaneously—in six
months! This publication, Garwin’s fervent pros-
elytizing, as well as the new flood of data available
from recently developed fast analog-to-digital con-
verters, did much to help call attention to the ex-
istence of this apparently new fast and useful al-
gorithm. In fact, the significance of and interest in
the FFT was such that it is sometimes thought of
as having given birth to the modern field of analy-
sis of algorithms. See also [6] and the 1967 and
1969 special issues of the IEEE Transactions in
Audio Electronics for more historical details.

The Fourier Transform and Finite Groups
One natural group theoretic interpretation of the
Fourier transform is as a change of basis in the space
of complex functions on Z/nZ . Given a complex
function f on Z/nZ , we may expand f in the basis
of irreducible characters {χk} defined by χk(j) =
e2πijk/n . By (2) the coefficient of χk in the expan-
sion is equal to the scaled Fourier coefficient
1
n f̂ (−k) , whereas the Fourier coefficient f̂ (k) is the

inner product of the vector of function values of
f with those of the character χk .

For an arbitrary finite group G there is an anal-
ogous definition. The characters of Z/nZ are the
simplest example of a matrix representation, which
for any group G is a matrix-valued function ρ(g)
on G such that ρ(ab) = ρ(a)ρ(b) and ρ(e) is the
identity matrix. Given a matrix representation ρ of
dimension dρ and a complex function f on G , the
Fourier transform of f at ρ is defined as the ma-
trix sum

(6) f̂ (ρ) =
∑
x∈G

f (x)ρ(x).

Computing f̂ (ρ) is equivalent to the computation
of the d2

ρ scalar Fourier transforms at each of the
individual matrix elements ρij,

(7) f̂ (ρij) =
∑
x∈G

f (x)ρij (x).

A set of matrix representations R of G is called
a complete set of irreducible representations if and
only if the collection of matrix elements of the rep-
resentations, relative to an arbitrary choice of basis
for each matrix representation in the set, forms a
basis for the space of complex functions on G . The
Fourier transform of f with respect to R is then
defined as the collection of individual transforms,
while the Fourier transform on G means any Fourier
transform computed with respect to some com-
plete set of irreducibles. In this case, the inverse
transform is given explicitly as

(8) f (x) =
1
|G|

∑
ρ∈R

dρTrace(f̂ (ρ)ρ(x−1)).

Equation (8) shows us a relation between the group
Fourier transform and the expansion of a function
in the basis of matrix elements. The coefficient of
ρij in the expansion of f is the Fourier transform
of f at the dual representation [ρji(g−1)] scaled by
the factor dρ/|G|.

Viewing the Fourier transform on G as a sim-
ple matrix-vector multiplication leads to some sim-
ple bounds on the number of operations required
to compute the transform. The computation clearly
takes no more than the |G|2 scalar operations re-
quired for any matrix-vector multiplication. On
the other hand, the column of the Fourier matrix
corresponding to the trivial representation is all
1s, so at least |G| − 1 additions are necessary. One
main goal of this finite group FFT research is to
discover algorithms which can significantly re-
duce the upper bound for various classes of groups
or even all finite groups.
The Current State of Affairs for Finite
Group FFTs
Analysis of the Fourier transform shows that for
G abelian, the number of operations required is
bounded by O(|G| log |G|) . For arbitrary groups G ,
upper bounds of O(|G| log |G|) remain the holy
grail in group FFT research. In 1978 A. Willsky
provided the first nonabelian example by showing
that certain metabelian groups have an
O(|G| log |G|) Fourier transform algorithm [20].
Implicit in the big-O notation is the idea that a fam-
ily of groups is under consideration, with the size
of the individual groups going to infinity.

Since Willsky’s initial discovery, much progress
has been made. U. Baum has shown that the su-
persolvable groups admit an O(|G| log |G|) FFT,
while others have shown that symmetric groups
admit O(|G| log2 |G|) FFTs (see the section below
on symmetric groups). Other groups for which
highly improved (but not O(|G| logc |G|)) algo-
rithms have been discovered include the matrix
groups over finite fields and, more generally, the
Lie groups of finite type. See [15] for pointers to

fea-maslen.qxp 10/15/01 10:03 AM Page 1153

1154 NOTICES OF THE AMS VOLUME 48, NUMBER 10

the literature. There is much work to be done
finding new classes of groups which admit fast
transforms and improving on the above results. The
ultimate goal is to settle or make progress on the
following conjecture.

Conjecture. There exist constants c1 and c2 such
that for any finite group G there is a complete set
of irreducible matrix representations for which
the Fourier transform of any complex function on
G may be computed in fewer than c1|G| logc2 |G|
scalar operations.

The Cooley-Tukey Algorithm
Cooley and Tukey showed [7] how the Fourier
transform on the cyclic group Z/nZ , where n = pq
is composite, can be written in terms of Fourier
transforms on the subgroup qZ/nZ ∼= Z/pZ .
The trick is to change variables so that the
one-dimensional formula (1) is turned into a
two-dimensional formula which can be computed
in two stages. Define variables j1, j2, k1, k2 through
the equations

j = j(j1, j2) = j1q + j2,
0 ≤ j1 < p, 0 ≤ j2 < q;(9)

k = k(k1, k2) = k2p + k1,
0 ≤ k1 < p, 0 ≤ k2 < q.(10)

It follows from (9) and (10) that (1) can be rewrit-
ten as

(11) f̂ (k1, k2) =
q−1∑
j2=0

e2πij2(k2p+k1)/n
p−1∑
j1=0

e2πij1k1/pf (j1, j2).

We now compute f̂ in two stages:
• Stage 1: For each k1 and j2 compute the inner

sum

(12) f̃ (k1, j2) =
p−1∑
j1=0

e2πij1k1/pf (j1, j2).

This requires at most p2q scalar operations.
• Stage 2: For each k1 and k2 compute the outer

sum

(13) f̂ (k1, k2) =
q−1∑
j2=0

e2πij2(k2p+k1)/n f̃ (k1, j2).

This requires an additional q2p operations.
Thus, instead of (pq)2 operations, the above algo-
rithm uses (pq)(p + q) operations.

Stage 1 has the form of a DFT on the subgroup
qZ/nZ ∼= Z/pZ , embedded as the set of multiples
of q, whereas Stage 2 has the form of a DFT on a
cyclic group of order q. So if n could be factored
further, we could apply the same trick to these
DFTs in turn. Thus, if N has the prime factoriza-
tion N = p1 · · ·pm, then we reobtain Cooley and

Tukey’s original m-stage algorithm, which requires
N
∑
i pi operations [7].

A Group Theoretic Interpretation
Auslander and Tolimieri’s paper [3] related the
Cooley-Tukey algorithm to the Weil-Brezin map
for the finite Heisenberg group. Here we present
an alternate group theoretic interpretation, origi-
nally due to Beth [4], that is more amenable to gen-
eralization.

The change of variables (9) may be interpreted
as the factorization of the group element j as the
(group) product of j1q ∈ qZ/nZ with the coset
representative j2. Thus, if we write G = Z/nZ ,
H = qZ/nZ, and let Y denote our set of coset rep-
resentatives, (9) can be rewritten as

(14) g = y · h, y ∈ Y, h ∈ H.
The second change of variables (10) can be

interpreted using the notion of restriction of
representations. It is easy to see that restricting a
representation on a group G to a subgroup H
yields a representation of that subgroup. In the
case of qZ/nZ this amounts to the observation that

e2πij1q(k2p+k1)/n = e2πij1k1/p,

which is used to prove (11).
The restriction relations between representa-

tions may be represented diagrammatically using
a directed graded graph with three levels. At level
zero there is a single vertex labeled 1, called the
root vertex. The vertices at level one are labeled
by the irreducible representations of Z/pZ, and the
vertices at level two are labeled by the irreducible
representations of Z/nZ . Edges are drawn from the
root vertex to each of the vertices at level one, and
from a vertex at level one to a vertex at level two
if and only if the representation at the tip restricts
to the representation at the tail. The directed graph
obtained is the Bratteli diagram for the chain of
subgroups Z/nZ > Z/pZ > 1. Figure 1 shows the
situation for the chain Z/6Z > 2Z/6Z ∼= Z/3Z > 1.

In this way the irreducible representations of
Z/nZ are indexed by paths (k1, k2) in the Bratteli
diagram for Z/nZ > Z/pZ > 1. The DFT factoriza-
tion (11) now becomes

(15) f̂ (k1, k2) =
∑
y∈Y

χk1,k2 (y)
∑
h∈H

f (y · h)χk1 (h).

The two-stage algorithm is now restated as first
computing a set of sums that depend on only the
first leg of the paths and then combining these to
compute the final sums that depend on the full
paths.

In summary, the group elements have been in-
dexed according to a particular factorization scheme,
while the irreducible representations (the dual group)
are now indexed by paths in a Bratteli diagram, de-
scribing the restriction of representations. This

fea-maslen.qxp 10/15/01 10:03 AM Page 1154

NOVEMBER 2001 NOTICES OF THE AMS 1155

allows us to compute the Fourier transform in
stages, using one fewer group element factor at
each stage but using paths of increasing length in
the Bratteli diagram.

Fast Fourier Transforms on Symmetric
Groups
A fair amount of attention has been devoted to de-
veloping efficient Fourier transform algorithms
for the symmetric group. One motivation for de-
veloping these algorithms is the goal of analyzing
data on the symmetric group using a spectral
approach. In the simpler case of time series data
on the cyclic group, this approach amounts to
projecting the data vector onto the basis of com-
plex exponentials.

The spectral approach to data analysis makes
sense for a function defined on any kind of group,
and such a general formulation is due to Diaconis
(see, e.g., [8]). The case of the symmetric group cor-
responds to considering ranked data. For instance,
a group of people might be asked to rank a list of
four restaurants in order of preference. Thus, each
respondent chooses a permutation of the original
ordered list of four objects, and counting the num-
ber of respondents choosing each permutation
yields a function on S4. It turns out that the cor-
responding Fourier decomposition of this function
naturally describes various coalition effects that
may be useful in describing the data.

To get some feel for this, notice that the Fourier
transform at the matrix element ρij (π) of the (re-
ducible) defining representation counts the num-
ber of people ranking restaurant i in position j . If
instead ρ is the (reducible) permutation repre-
sentation of Sn on unordered pairs {i, j}, then for
each choice of {i, j} and {k, l} the individual
Fourier transforms count the number of respon-
dents ranking restaurants i and j in positions k
and l. See [8] for a more thorough explanation.

The first FFT for symmetric groups (an
O(|G| log3 |G|) algorithm) is due to M. Clausen. In

what follows we summarize recent improvements
on Clausen’s result.
Example: Computing the Fourier Transform on S4
The fast Fourier transform for S4 is obtained by
mimicking the group theoretic approach to the
Cooley-Tukey algorithm. More precisely, we shall
rewrite the formula for the Fourier transform using
two changes of variables: one using factorizations
of group elements, and the other using paths in a
Bratteli diagram. The former comes from the re-
duced word decomposition of g ∈ S4, by which g
may be uniquely expressed as

(16) g = s4
2 · s4

3 · s4
4 · s3

2 · s3
3 · s2

2 ,

where sji is either e or the transposition (i i − 1),
and sji1 = e implies that sji2 = e for i2 ≤ i1 . Thus any
function on the group S4 may be thought of as a
function of the six variables s4

2, s4
3, s4

4, s3
2, s3

3, s2
2.

To index the matrix elements of S4, paths in a
Bratteli diagram are used, this time relative to the
chain of subgroups S4 ≥ S3 ≥ S2 ≥ S1 ≥ 1. The
irreducible representations of Sn are in one-
to-one correspondence with partitions of the
integer n, with restriction of representations
corresponding to deleting a box in the Young
diagram. The corresponding Bratteli diagram is
called Young’s lattice and is shown in Figure 2.

Paths in Young’s lattice from the empty partition
φ to β4, a partition of 4, index the basis vectors
of the irreducible representation corresponding
to β4. Matrix elements, however, are determined
by specifying a pair of basis vectors, so to index
the matrix elements, we must use pairs of paths
in Young’s lattice, starting at φ and ending at the
same partition of 4. Since there are no multiple
edges in Young’s lattice, each path may be de-
scribed by the sequence of partitions φ, β1, β2, β3,
β4 through which it passes.

Before we can state a formula for the Fourier
transform analogous to (11) and (15), we must
choose bases for the irreducible representations
of S4 in order to define our matrix elements. Effi-
cient algorithms are known only for special choices
of bases, and our algorithm uses the representa-
tions in Young’s orthogonal form, which is equiv-
alent to the following equation (17) for the Fourier
transform in the new sets of variables.

Figure 1. The Bratteli diagram for
Z/6Z > 2Z/6Z > 1. The representation χk of
Z/mZ is defined by χk(l) = e2πikl/m .

Figure 2. Young’s lattice up to level 4.

fea-maslen.qxp 10/15/01 10:03 AM Page 1155

1156 NOTICES OF THE AMS VOLUME 48, NUMBER 10

The functions Pi
sji

in equation (17) are defined

below, and for each i, the variables βi , γi , ϕi, ηi
are partitions of i satisfying the restriction rela-
tions described by Figure 3. A solid line between
partitions means that the right-hand partition is
obtained from the left-hand partition by removing
a box.

The relationship between (17) and Figure 3 is ex-
tremely close: we derived the diagram from the re-
duced word decomposition first and then read the
equation off the diagram. Each 2-cell in Figure 3
corresponds to a factor in the product of P func-
tions in (17), and the labels on the boundary of each
cell give the arguments of Pi

sji
. The sum in (17) is

over those variables occurring in the interior of
Figure 3. Thus, the variables describing the Fourier
transformed function are exactly those appearing
on the boundary of the figure.

Equation (17) can be summarized by saying
that we take the product over 2-cells and sum on
interior indices in Figure 3. This suggests a gen-
eralization of the Cooley-Tukey algorithm that
corresponds to building up the diagram one cell
at a time. At each stage multiply by the factor cor-
responding to a 2-cell and form the diagram con-
sisting of those 2-cells that have been considered
so far. Then sum over any indices that are in the
interior of the diagram for this stage but were not
in the interior for previous stages. At the end of
this algorithm we have multiplied by the factors
for each 2-cell and summed over all the interior
indices, and have therefore computed the Fourier
transform.

The order in which the cells are added matters,
of course. The order s2

2, s3
2, s3

3, s4
2, s4

3, s4
4 is known

to be most efficient. Here is the algorithm in
detail.

• Stage 0: Start with f (s4
2s

4
3s

4
4s

3
2s

3
3s

2
2) , for all

reduced words.

• Stage 1: Multiply by P2
s2

2
. Sum on s2

2.

• Stage 2: Multiply by P2
s3

2
. Sum on s3

2.

• Stage 3: Multiply by P3
s3

3
. Sum on η1, s3

3.

• Stage 4: Multiply by P2
s4

2
. Sum on s4

2.

• Stage 5: Multiply by P2
s4

3
. Sum on ϕ1, s4

3 .

• Stage 6: Multiply by P3
s4

4
. Sum on ϕ2, s4

4 .

The indices occurring in each stage of the al-
gorithm are shown in Figure 4.

To count the number of additions and multi-
plications used by the algorithm, we must count
the number of configurations in Young’s lattice cor-
responding to each of the diagrams in Figure 4. This
yields a grand total of 130 additions and 130 mul-
tiplications for the Fourier transform on S4.

The generalization to higher-order symmetric
groups is straightforward. The reduced word de-
composition gives the group element factoriza-
tion, Young’s orthogonal form allows us to change
variables, and the formula and algorithm for the
Fourier transform can be read off a diagram gen-
eralizing Figure 3. The diagram for S5, for exam-
ple, is shown in Figure 5.

We have computed the exact operation counts
for symmetric groups Sn with n ≤ 50,3 and a gen-
eral formula seems hard to come by. However,
bounds are easier to obtain.

Theorem 1 [13]. The number of additions (or mul-
tiplications) required by the above algorithm (as gen-
eralized to Sn > Sn−1 > · · · > S1) is exactly

n! ·
n∑
k=2

1
k

k∑
i=2

1
(i − 1)!

Fi,

where Fi is the number of configurations in Young’s
lattice of the form

Furthermore, Fi ≤ 3(1− 1
i)i!, so the number of ad-

ditions (multiplications) is bounded by 34n(n− 1) · n!.

Why stop at Sn? The algorithm for the FFT on
Sn generalizes to any wreath product Sn[G] with

3This would seem to include all cases where the algo-
rithm might ever be implemented, but the same numbers
arise in FFTs on homogeneous spaces, which have far
fewer elements.

Figure 3. Restriction relations for (17).

γ

(18)

(17)

fea-maslen.qxp 10/15/01 10:04 AM Page 1156

NOVEMBER 2001 NOTICES OF THE AMS 1157

the symmetric group. The subgroup chain is re-
placed by the chain

(19)
Sn[G] > Sn−1[G]×G > Sn−1[G]

> · · · > S2[G] > G×G > G,
and the reduced word decomposition is replaced
by the factorization

(20)
x = sn2 · · · snngnsn−1

2 · · · sn−1
n−1g

n−1 · · · s2
s g2g1.

Adapting the Sn argument along these lines gives
the following new result.

Theorem 2. The number of operations needed to
compute a Fourier transform on Sn[G] is at most(

3n(n− 1)
4

|G|d2
G + n

[
tG +

1
4
|G|(hGd2

G − |G|)
])
|Sn[G]|,

where hG is the number of conjugacy classes in G ,
dG is the maximal degree of an irreducible repre-
sentation of G , and tG is the number of operations
required to compute a Fourier transform on G . If
G is abelian, then the inner term hGd2

G − |G| = 0.

The functions Pi
sji

defining Young’s orthogonal

form are defined as follows: For any two boxes b1
and b2 in a Young diagram, we define the axial dis-
tance from b1 to b2 to be d(b1, b2) , where
d(b1, b2) = row(b1) − row(b2) + column(b1) −

column(b2). Now suppose βi , βi−1, αi−1, αi−2 are
partitions and that αi−1 and βi−1 are obtained
from βi by removing a box and are obtained from
αi−2 by adding a box. Then the skew diagrams
of βi − βi−1 and βi−1 −αi−2 each consists of a

single box, and Pi is given by

For a proof of this formula, in slightly different
notation, see [11, Chapter 3].

Generalization to Other Groups
The FFT described for symmetric groups suggests
a general approach to computing Fourier trans-
forms on finite groups. Here is the recipe.

1. Choose a chain of subgroups

(22) G = Gm ≥ Gm−1 ≥ · · · ≥ G1 ≥ G0 = 1

for the group. This determines the Bratteli di-
agram that we will use to index the matrix el-
ements of G . In the general case, this Bratteli
diagram may have multiple edges, so a path
is no longer determined by the nodes it visits.

2. Choose a factorization g = gn · gn−1 · · ·g1 of
each group element g. Choose the gi so that
they lie in as small a subgroup Gk as possible
and commute with as large a subgroup Gl as
possible.

3. Choose a system of Gel’fand-Tsetlin bases [9]
for the irreducible representations of G relative
to the chain (22). These are bases that are in-
dexed by paths in the Bratteli diagram and that
behave well under restriction of representa-
tions. Relative to such a basis, the representa-
tion matrices of gi will be block diagonal

Figure 4. Variables occurring at each stage of the fast Fourier transform for S4.

Figure 5. Restriction relations in the Fourier
transform formula for S5.

(21)

fea-maslen.qxp 10/15/01 10:04 AM Page 1157

1158 NOTICES OF THE AMS VOLUME 48, NUMBER 10

whenever gi lies in a subgroup from the chain
and block scalar whenever gi commutes with
all elements of a subgroup from the chain.

4. Now write the Fourier transform in coordi-
nates as a function of the pairs of paths in the
Bratteli diagram with a common endpoint and
with the original function written as a function
of g1, . . . , gn. This will be a sum of products
indexed by edges in the Bratteli diagram which
lie in some configuration generalizing (3). This
configuration of edges specifies the way in
which the nonzero elements of the represen-
tation matrices appear in the formula for the
Fourier transform in coordinates.

5. The algorithm proceeds by building up the
product piece by piece and summing on as
many partially indexed variables as possible.

Further Considerations and Generalizations
The efficiency of the above approach—in theory (in
terms of algorithmic complexity) and in practice
(in terms of execution time)—depends on both the
choice of factorization and the Gel’fand-Tsetlin
bases. In particular, very interesting work of
L. Auslander, J. Johnson, and R. Johnson [2] shows
how, in the abelian case, different factorizations
correspond to different well-known FFTs, each
well suited for execution on a different computer
architecture. This work shows how to relate the
2-cocycle of a group extension to construction of
the important “twiddle factor” matrix in the fac-
torization of the Fourier matrix. It marks the first
appearances of group cohomology in signal pro-
cessing and derives an interesting connection be-
tween group theory and the design of retargetable
software.

The analogous questions for nonabelian groups
and other important signal processing transform al-
gorithms, i.e., the problem of finding architecture-
optimized factorizations, is currently being inves-
tigated by the SPIRAL project at Carnegie Mellon [19].
Another Abelian Idea—Rader’s Prime FFT
The use of subgroups depends upon the existence
of a nontrivial subgroup. Thus, for a reduction in
the case of a cyclic group of prime order, a new
idea is necessary. In this case, one possibility is an
algorithm due to C. Rader [16] which proceeds by
turning computation of the DFT into computation
of convolution on a different, albeit related, group.
Let p be a prime. Since Z/pZ is also a finite field,
there exists a generator g of Z/pZ×, a cyclic group
(under multiplication) of order p − 1. Thus, for
any f : Z/pZ→ C and nonzero frequency index
g−b, f̂ (g−a) can be written as

(23) f̂ (g−b) = f (0) +
p−2∑
a=0

f (ga)ζg
a−b
p

.The summation in (23) has the form of a convo-
lution on Z/(p − 1)Z, of the sequence f ′(a) = f (ga),
with the function z(a) = ζg

a

p , so that f̂ may be al-
most entirely computed using Fourier transforms

of length p − 1 for which Cooley-Tukey-like ideas
may be used. It is a very interesting open question
to discover if this idea has a nonabelian general-
ization.
Modular FFTs
A significant application of the abelian FFT is in the
efficient computation of Fourier transforms for func-
tions on cyclic groups defined over finite fields.
These are needed for the efficient encoding and de-
coding of various polynomial error-correcting codes.
Many abelian codes, e.g., the Golay codes used in
deep-space communication, are defined as Fp-valued
functions on a group Z/mZ with the property that
f̂ (k) = 0 for k in some specified set of indices S ,
where now the Fourier transform is defined in terms
of a primitive (p − 1)st root of unity.

These sorts of spectral constraints define cyclic
codes, and they may immediately be generalized
to any finite group. Recently, this has been done
in the construction of codes over SL2(Fp) using
connections between expander graphs and linear
codes discovered by M. Sipser and D. Spielman. For
further discussion of this and other applications,
see [17].

FFTs for Compact Groups
The DFT and FFT have a natural extension to con-
tinuous compact groups. The terminology “dis-
crete Fourier transform” derives from the algo-
rithm having been originally designed to compute
the (possibly approximate) Fourier transform of a
continuous signal from a discrete collection of
sample values.

Under the simplifying assumption of periodic-
ity, a continuous function may be interpreted as
a function on the unit circle S1, a compact abelian
group. Any such function f has a Fourier expan-
sion defined as

(24) f (e2πit) =
∑
l∈Z

f̂ (l)e−2πilt ,

where

(25) f̂ (l) =
∫ 1

0
f (e2πit)e2πiltdt.

If f̂ (l) = 0 for |l| ≥ N , then f is band-limited with
band-limit N, and the DFT (1) is in fact a quadra-
ture rule or sampling theorem for f. That is, the DFT
of the function 1

2N−1 f (e
2πit) on the group of

(2N − 1)st roots of unity computes exactly the
Fourier coefficients of the band-limited function.
The FFT then efficiently computes these Fourier
coefficients.

The first nonabelian FFT for a compact group
was a fast spherical harmonic expansion algorithm
discovered by J. Driscoll and D. Healy. Several
ingredients were required: (1) a notion of “band-
limit” for functions on S2, (2) a sampling theory
for such functions, and (3) a fast algorithm for the
computation.

fea-maslen.qxp 10/15/01 10:04 AM Page 1158

NOVEMBER 2001 NOTICES OF THE AMS 1159

The spherical harmonics are naturally indexed
according to their order (the common degree of a
set of homogeneous polynomials on S2). With re-
spect to the usual coordinates of latitude and
longitude, the spherical harmonics separate as a
product of exponentials and associated Legendre
functions, each of which separately has a sam-
pling theory. Finally, using the usual FFT for the
exponential part and a new fast algorithm (based
on three-term recurrences) for the Legendre part
forms an FFT for S2.

These ideas generalize nicely. Keep in mind that
the representation theory of compact groups is
much like that of finite groups: there is a count-
able complete set of irreducible representations,
and any square-integrable function (with respect
to Haar measure) has an expansion in terms of the
corresponding matrix elements. There is a natural
definition of band-limited in the compact case,
encompassing those functions whose Fourier ex-
pansion has only a finite number of terms. The sim-
plest version of the theory is as follows:

Definition. Let R denote a complete set of irre-
ducible representations of a compact group G . A
system of band-limits on G is a decomposition of
R = ∪b≥0Rb such that

1. Rb is finite for all b ≥ 0,
2. b1 ≤ b2 implies that Rb1 ⊆ Rb2,
3. Rb1 ⊗Rb2 ⊆ spanZRb1+b2 .

Suppose {Rb}b≥0 is a system of band-limits on G
and f ∈ L2(G). Then f is band-limited with band-
limit b if the Fourier coefficients are zero for all
matrix elements in ρ for all ρ /∈ Rb.

The case of G = S1 provides the classical ex-
ample. If Rb = {χj : |j| ≤ b} , where χj (z) = zj ,
then χj ⊗ χk = χj+k, and the notion of band-limited
corresponding to the definition coincides with the
usual notion.

For a nonabelian example, consider G = SO(3).
In this case the irreducible representations of G
are indexed by the nonnegative integers, with Vλ
the unique irreducible of dimension 2λ + 1. Let
Rb = {Vλ : λ ≤ b}. The Clebsch-Gordon relations

(26) Vλ1 ⊗ Vλ2 =
λ1+λ2∑

j=|λ1−λ2|
Vj

imply that this is a system of band-limits for SO(3).
When restricted to the quotient S2 ∼= SO(3)/SO(2),
band-limits are described in terms of the highest
order spherical harmonics that appear in a given
expansion.

This notion of band-limit permits the con-
struction of a sampling theory [14]. For example,
in the case of the classical groups, a system of
band-limits Rnb is chosen with respect to a partic-
ular norm on the dual of the associated Cartan
subalgebra. Such a norm ‖ · ‖ (assuming that

it is invariant under taking duals and that
‖α‖ ≤ ‖β‖ + ‖γ‖ for α occurring in β⊗ γ) defines
a notion of band-limit given by all αwith norm less
than a fixed b. This generalizes the definition
above. The associated sampling sets Xnb are con-
tained in certain one-parameter subgroups. These
sampling sets permit a separation of variables
analogous to that used in the Driscoll-Healy FFT.
Once again the special functions satisfy certain
three-term recurrences which admit a similar ef-
ficient divide-and-conquer computational approach
(see [15] and references therein). One may derive
efficient algorithms for all the classical groups
U (n), SU (n) , and Sp(n).

Theorem 3. Assume n ≥ 2.

(i) For U (n), TXnb (Rnb) ≤ O(bdimU (n)+3n−3) ,
(ii) for SU (n) , TXnb (Rnb) ≤ O(bdimSU (n)+3n−2) ,

(iii) for Sp(n), TXnb (Rnb) ≤ O(bdimSp(n)+6n−6) ,
where TXnb (Rnb) denotes the number of operations
needed for the particular sample set Xnb and rep-
resentations Rnb for the associated group.

Further and Related Work

Noncompact Groups
Much of modern signal processing relies on the un-
derstanding and implementation of Fourier analy-
sis for L2(R), i.e., the noncompact abelian group R.
Nonabelian, noncompact examples have begun to
attract much attention.

In this area some of the most exciting work is
being done by G. Chirikjian and his collaborators.
They have been exploring applications of convo-
lution on the group of rigid motions of Euclidean
space to such diverse areas as robotics, polymer
modeling, and pattern matching. See [5] for details
and pointers to the literature.

To date the techniques used here are approxi-
mate in nature, and interesting open problems
abound. Possibilities include the formulation
of natural sampling, band-limiting, and time-
frequency theories. The exploration of other
special cases such as semisimple Lie groups (see
[1] for a beautifully written, succinct survey of the
Harish-Chandra theory) would be one natural place
to start. A sampling and band-limiting theory would
be the first step towards developing a computa-
tional theory, i.e., FFT. “Fast Fourier transforms on
semisimple Lie groups” has a nice ring to it!
Approximate Techniques
The techniques in this paper are all exact, in the
sense that if computed in exact arithmetic, they
yield exactly correct answers. Of course, in any ac-
tual implementation, errors are introduced, and the
utility of an algorithm will depend highly on its nu-
merical stability.

There are also “approximate methods”, ap-
proximate in the sense that they guarantee a cer-
tain specified approximation to the exact answer

fea-maslen.qxp 10/15/01 10:04 AM Page 1159

1160 NOTICES OF THE AMS VOLUME 48, NUMBER 10

that depends on the running time of the algo-
rithm. For computing Fourier transforms at non-
equispaced frequencies, as well as spherical har-
monic expansions, the fast multipole method due
to V. Rokhlin and L. Greengard is a recent and
very important approximate technique. Multipole-
based approaches efficiently compute
these quantities approximately in such a way that
the running time increases by a factor of log(1

ε),
where ε denotes the precision of the approxima-
tion. M. Mohlenkamp has applied quasi-classical
frequency estimates to the approximate compu-
tation of various special function transforms.
Quantum Computing
Another related and active area of research involves
connections with quantum computing. One of the
first great triumphs of the quantum computing
model is P. Shor’s fast algorithm for integer factor-
ization on a quantum computer [18]. At the heart
of Shor’s algorithm is a subroutine which computes
(on a quantum computer) the DFT of a binary vector
representing an integer. The implementation of this
transform as a sequence of one- and two-bit quan-
tum gates is the quantum FFT, effectively the Coo-
ley-Tukey FFT realized as a particular factorization
of the Fourier matrix into a product of matrices com-
posed as tensor products of certain 2× 2 unitary
matrices, each of which is a “local unitary trans-
form”. Extensions of these ideas to the more gen-
eral group transforms mentioned above are a current
important area of research of great interest in com-
puter science.
Final Remarks
So, these are some of the things that go into the
computation of the finite Fourier transform. It is
a tapestry of mathematics both pure and applied,
woven from algebra and analysis, complexity the-
ory, and scientific computing. It is on the one hand
a focused problem, but like any good problem, its
“solution” does not end a story, but rather initi-
ates an exploration of unexpected connections
and new challenges.

References
[1] J. ARTHUR, Harmonic analysis and group represen-

tations, Notices Amer. Math. Soc. 47 (2000), 26–34.
[2] L. AUSLANDER, J. R. JOHNSON, R. W. JOHNSON, Multidi-

mensional Cooley-Tukey algorithms revisited, Adv.
Appl. Math. 17 (1996), 477–519.

[3] L. AUSLANDER and R. TOLIMIERI, Is computing with the
finite Fourier transform pure or applied
mathematics? Bull. Amer. Math. Soc. (N.S.) 1 (1979),
847–897.

[4] T. BETH, Verfahren der schnellen Fourier-Transfor-
mation, Teubner Studienbücher, Stuttgart, 1984.

[5] G. S. CHIRIKJIAN and A. B. KYATKIN, Engineering Ap-
plications of Noncommutative Harmonic Analysis,
CRC Press, Boca Raton, FL, 2000.

[6] J. W. COOLEY, The re-discovery of the fast Fourier
transform algorithm, Mikrochimica Acta III (1987),
33–45.

[7] J. W. COOLEY and J. W. TUKEY, An algorithm for ma-
chine calculation of complex Fourier series, Math.
Comp. 19 (1965), 297–301.

[8] P. DIACONIS, Group Representations in Probability and
Statistics, Inst. Math. Stat., Hayward, CA, 1988.

[9] I. GEL’FAND and M. TSETLIN, Finite dimensional repre-
sentations of the group of unimodular matrices,
Dokl. Akad. Nauk SSSR 71 (1950), 825–828 (Russian).

[10] M. T. HEIDEMAN, D. H. JOHNSON, and C. S. BURRUS, Gauss
and the history of the fast Fourier transform, Arch.
Hist. Exact Sci. 34 (1985), 265–277.

[11] G. JAMES and A. KERBER, The Representation Theory
of the Symmetric Group, Encyclopedia Math. Appl.,
vol. 16, Addison-Wesley, Reading, MA, 1981.

[12] T. Y. LAM, Representations of finite groups: A hun-
dred years, I and II. Notices Amer. Math. Soc. 45
(1998), 361–372, 465–474.

[13] D. K. MASLEN, The efficient computation of Fourier
transforms on the symmetric group, Math. Comp. 67
(1998), 1121–1147.

[14] ——— , Efficient computation of Fourier transforms
on compact groups, J. Fourier Anal. Appl. 4 (1998),
19–52.

[15] D. K. MASLEN and D. N. ROCKMORE, Generalized FFTs—
a Survey of Some Recent Results, Groups and Com-
putation, II (New Brunswick, NJ, 1995), DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., vol. 28, Amer.
Math. Soc., Providence, RI, 1997, pp. 183–237.

[16] C. RADER, Discrete Fourier transforms when the num-
ber of data samples is prime, IEEE Proc. 56 (1968),
1107–1108.

[17] D. N. ROCKMORE, Some applications of generalized
FFTs (an appendix w/D. Healy), Groups and Com-
putation, II (New Brunswick, NJ, 1995), DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., vol. 28, Amer.
Math. Soc., Providence, RI, 1997, pp. 329–369.

[18] P. W. SHOR, Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26 (1997), 1484–1509.

[19] http://www.ece.cmu.edu/~spiral/.
[20] A. WILLSKY, On the algebraic structure of certain

partially observable finite-state Markov processes,
Inform. Contr. 38 (1978), 179–212.

fea-maslen.qxp 10/15/01 10:04 AM Page 1160

http://www.ece.cmu.edu/~spiral/

NOVEMBER 2001 NOTICES OF THE AMS 1161

fea-maslen.qxp 10/15/01 10:04 AM Page 1161

