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A metaphor is an alteration of a
woorde from the proper and naturall
meanynge, to that which is not proper,
and yet agreeth thereunto, by some
lykenes that appeareth to be in it.

—Thomas Wilson,
The Arte of Rhetorique (1553) [Wil, page 345

Conceptual metaphor is a cognitive
mechanism for allowing us to reason
about one kind of thing as if it were
another. ...It is a grounded, inference-
preserving cross-domain mapping—a
neural mechanism that allows us to use
the inferential structure of one concep-
tual domain (say, geometry) to reason
about another (say, arithmetic).

—Where Mathematics Comes From,
page 6

In his philosophical writings, Poincaré reflected
on the origins of mathematical knowledge. His
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best-known re-
marks, translated
as the essay “Math-
ematical Creation”
in [P1], include
speculations about
the unconscious
processes that pre-
cede discovery.

. This is where we
"y M read the famous
F story of how, while
boarding a bus in
Coutances, Poin-
caré suddenly real-
ized the identity of
the transformations used to define the Fuchsian
functions with those of non-Euclidean geometry.

B EL [WEMED NN EEES EOEIMUES NI BESE

CESAGE LAKQFF RAFALL MUMEZ

In his 1905 essay “L’'Intuition et la Logique en
Mathématiques”, which appears in translation in
[P1], pages 210-222, Poincaré looks at mathemat-
ical production from a different angle. He pictures
two different kinds of mathematician. One kind is
devoted to explicit logical precision. Ideas must be
broken down into definitions and deductions. Even
conceptions that seem clear and obvious must be
subjected to analysis, cut apart, and examined
under the microscope of logic. The other kind of
mathematician is guided by geometric intuition,
physical analogies, and images derived from ex-
perience. This mathematician is like Klein, who
proved a theorem in complex function theory by
imagining a Riemann surface made of metal and
considering how electricity must flow through it.
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Poincaré goes on to argue that logic and intu-
ition play complementary roles in mathematics.
Logic provides rigor and certainty by substituting
precise notions for vague and ambiguous ones
and by moving in sure, syllogistic steps. Logic,
however, does not perceive goals and does not
grasp that which motivates and organizes our
mathematical activity. We may follow the logical
trail through an argument yet fail to “see” the idea
in it. For this we need intuition, which provides in-
sight, purpose, and direction. But intuition is some-
times ambiguous, and some-

the basis of mathematical truth. “Metaphor” is the
key word in this book.

Much of the book is devoted to the examination
of prominent topics in standard mathematics cur-
ricula. These topics include grade school arith-
metic, algebraic structures and their models, logic,
set theory, limits, real numbers, and a little bit of
nonstandard analysis. Chapters 13 and 14 have a
historical orientation, discussing the contributions
of Dedekind and Weierstrass to the foundations of
analysis. Chapters 15 and 16 treat philosophical
issues. The book ends with

times it even deceives. So
ultimately it is only by the
combination of logic and in-

How do

an extended discussion of the
equation e™ + 1 = 0 intended
to illustrate “mathematical

tuition that mathematics metaph()rs idea analysis”, a technique
advances. . . that was invented by the au-

Poincaré set his ideas down f unction in the thors and that they use to un-
at a time when revolutionary . cover the metaphorical ele-
advances in mathematical mathe matlcal ments in mathematical ideas.

logic were just beginning. He
could not have foreseen what
the next century would
achieve in foundational stud-
ies. Today, we cannot claim
to have the final word, but we
clearly understand much
more about logic and the role
it plays in mathematics than
we did one hundred years ago.

activities of
actual people?
On this, Lakoff
and Nunez are
not very clear.

The arguments do not fol-
low a direct path. The book
builds on many fronts, elab-
orates subgoals, and spins off
subsidiary projects. While
reading the book, I sometimes
found it difficult to keep track
of what the authors were aim-
ing at. For this review, there-
fore, I shall simplify things by

How about intuition? What

more do we know about this?

A few references come to

mind: Hilbert and Cohn-Vossen’s book [HC],
Hadamard’s essay [H], and perhaps a couple of
more recent items, particularly S. Dehaene’s work
on the number sense [Dh] and Devlin’s book [De].
I find noteworthy the essay [T], written by a young
Oxford mathematics student who went on to be-
come a neuroscientist of high repute at the Uni-
versity of California Los Angeles. Overall, how-
ever, it seems that intuition has remained largely
unanalyzed and poorly understood.

A good way to approach the book of Lakoff and
Nufiez is to see it, as the authors suggest in the pref-
ace, as an empirical study of the precise nature of
clear mathematical intuitions (page xv). Lakoff and
Nufiez promise in the introduction to give an ac-
count of how normal human cognitive mecha-
nisms rooted in the brain are used to formulate
mathematical concepts, reason mathematically,
and create and understand mathematical ideas.
Logic and formal rigor do not figure prominently
in this account. Rather, the book is about the in-
tuitive side; the focus is on certain “conceptual
metaphors” which, the authors hypothesize, are the
basic building blocks of mathematical intuition.
Moving beyond cognitive science into philosophy,
the authors even suggest that metaphors account
for the meaning of mathematical concepts and are
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picking out three major
strands and commenting on
them separately. I have men-
tioned them already. They are:

« a hypothesis about the role of metaphors in
mathematical cognition,

= a philosophical position about mathematical
truth, and

= the technique of mathematical idea analysis.

In many ways the three strands are interdepen-
dent—a point to be remembered, even though my
discussion is divided into three parts. I find the
metaphor hypothesis the most interesting, and
accordingly I devote more space to this than to the
other two items.

Let me state the metaphor hypothesis as I in-
terpret it. When people think about mathemat-
ics—even very deep, advanced mathematics—they
somehow activate links to mundane experiences
that occur in everyday functioning in the world and
links to other mathematical experiences as well.
These links are not logical or deductive—often, they
are not even conscious. They involve very complex
pattern-matching, by means of which people trans-
fer abilities and concepts that are relevant or adap-
tive in familiar, natural settings to new settings that
are less familiar and more abstract. The lifting or
“retooling” of cognitive categories and abilities in
this fashion is what the authors call conceptual
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metaphor. The second quote at the beginning of
this review is as close to a definition of this as any-
thing that the authors give.

Lakoff and Nufez present the metaphor hy-
pothesis within the framework of a general theory
of human cognition that Lakoff himself played an
important role in creating; see [L]]. In addition to
the idea that most abstract concepts are metaphor-
ical, this theory has two other basic tenets. One is
that thought is mostly unconscious and mostly “in-
volves automatic, immediate, implicit rather than
explicit understanding” (page 28). Conceptual
metaphors may be unconscious; they support and
influence our thinking without our necessarily
being aware of them. The other tenet is that human
conceptual structures are deeply influenced by
the particulars of our concrete, physical being. We
reason with the same equipment we use to observe
our immediate surroundings, move about in them,
and interact with people and things. Even the most
abstract concepts, if analyzed properly, show the
marks of their origin in, and dependence on, basic
perceptual and motor schemata. In summary, all
concepts—mathematical concepts in particular—
are metaphorical and rest upon unconscious un-
derstandings that originate in bodily experience.

Let us look at some examples. There are vari-
ous kinds of conceptual metaphors. Grounding
metaphors transfer conceptual abilities acquired
in concrete experiences (like putting things in piles
or traveling) to abstract domains like arithmetic.
Linking metaphors make connections between dif-
ferent abstract domains. What struck Poincaré as
he stepped aboard the bus, for example, was a
linking metaphor at a very high level that had
somehow evolved in his unconscious and then
made its way to the surface.

Basic arithmetic has several grounding
metaphors, all discussed in Chapter 3. One of
these metaphors connects experiences with col-
lections of objects on the one hand and the basic
arithmetic operations on the other. Joining two col-
lections, for example, corresponds to addition,
while splitting a collection into many subcollections
of equal size corresponds to division. The com-
mutative law of addition corresponds to the fact
that when two collections are thrown together, it
does not matter which goes first. Understanding
the commutative law presumably involves some
sort of reference back to this property of collec-
tions and thus the activation of this metaphor.
Other aspects of arithmetic are associated with
other grounding metaphors. Adding positive and
negative numbers may be understood metaphor-
ically by referring to forward and backward trips
along a linear path.

One might react to this with the feeling that it
is all pretty trivial. Of course, once the arithmetic
metaphors are internalized, using them is as easy
as riding a bike. But the skills involved in using
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arithmetic, or in riding a bike, are cognitively quite
complex. This is most obvious in the fact that
learning them is not at all trivial. I would even sug-
gest that evidence in favor of the metaphor hy-
pothesis can be found in the fact that exposure to
different metaphors influences the learning
process. In the appendix of [MC], Robert Moses dis-
cusses a strategy he developed for teaching arith-
metic with signed numbers. Moses does not men-
tion metaphors explicitly, but in the terminology
of Lakoff and Nufiez, what he did was hypothesize
that certain children were failing to progress be-
cause they were inappropriately bound by the col-
lection metaphor. So Moses developed a teaching
strategy intended to strengthen the trip metaphor,
and this strategy succeeded quite well.

Here is another example of a grounding
metaphor. In Chapter 8 Lakoff and Nufiez intro-
duce what is the single most important metaphor
in the book, the “Basic Metaphor of Infinity” (BMI),
and illustrate its occurrence in several mathemat-
ical contexts. Like all conceptual metaphors, the
BMI involves a correspondence between a “source
domain”, which is familiar and often concrete, and
a “target domain”, which is less familiar and usu-
ally more abstract. In the BMI, the source is the gen-
eral idea of an iterative process that reaches a
completion. Examples would be walking to a des-
tination or picking all the berries off a bush. The
target is any iterative process that potentially goes
on and on, like counting “One, two, three....” The
BMI simply shifts the idea of a completed process
from its natural context into a new context, like
counting, in which the idea does not exactly fit but
to which it bears a likeness or analogy. Thus, we
can reason about the collection of all natural num-
bers by extending or generalizing the patterns by
which we reason about things like the set of all
steps taken on a walk somewhere. It is not claimed
that the use of this metaphor is conscious, but just
that there is a common pattern. We are prepared
to think about infinite processes by experiencing
finite ones, and the descriptive categories we apply
in the finite case have analogues in the infinite. Of
course, there are vast differences between the logic
of finite and infinite processes, but the authors do
not seem very concerned about such differences.
I suppose that the authors consider such details
to be peripheral to the cognitive science, despite
their mathematical importance.

How do metaphors function in the mathemati-
cal activities of actual people? On this, Lakoff and
Nuiez are not very clear. When they do talk about
the mathematical activities of real people, they
describe them in generic terms: people entertain
ideas or “use cognitive mechanisms” of one sort
or another to “conceptualize” this or that. Pre-
sumably, when an individual is engaged in math-
ematical work, that person is guided by metaphors
that are somehow represented in his or her own
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brain. The details would depend on the specific task
or problem. Unfortunately, Lakoff and Nufiez do
not provide any illustrations of what they sup-
pose goes on in “real time”, so this is about as much
as I can say.

This brings me to my first main criticism con-
cerning the metaphor hypothesis: What is the qual-
ity of the evidence for it? If, as the authors say on
page 1, their goal is to determine “what mecha-
nisms of the human brain and mind allow human
beings to formulate mathematical ideas and rea-
son mathematically,” then one would expect some
data about the actual

another. After a while, the notion of metaphor
seems to become a catchall. In the discussion be-
ginning on page 384, for example, “metaphor” is
used to refer to the following: the algebra/geom-
etry dictionary in analytic geometry; the defini-
tion of function addition, (f + g)(x) == f(x) + g(x);
the “Unit Circle Blend”, which involves various
things one might attend to in a diagram showing
the unit circle at the origin in a Cartesian coordi-
nate system, together with a central angle; the
“Trigonometry Metaphor”, i.e., thinking of the co-
sine and sine of 6 as the x- and y-coordinates of

the point reached after mov-

thoughts and actions of peo-
ple in the process of doing
mathematics. Such data do
exist; the work of Robert
Moses provides one example.
However, essentially the only
kind of evidence Lakoff and
Nufnez provide comes from
the examination of the con-
tents of texts and curricula.
How much can we infer about
the “basic cognitive mecha-
nisms” used in mathematics

Mathematics is
constantly
absorbing what
it learns about
itself by gazing
at itself.

ing counterclockwise from
(1,0) along the unit circle
through an angle of 0; the
“Recurrence Is Circularity
Metaphor”, which refers to
connections between mathe-
matical concepts and the lan-
guage of recurrence used in
nonmathematical settings to
describe things like the sea-
sons; and, finally, polar coor-
dinates. Other parts of the
book add yet more variety. In

from what we find in texts

and curricula? A study of nav-

igation based on the standard manuals would tell
us very little indeed about how the task was actu-
ally accomplished on the bridge of a large ship. How
exactly do people use metaphors when they are
learning new material, solving problems, proving
theorems, and communicating with one another?
I would like to have seen direct support for the
metaphor hypothesis from the observation of
mathematical behaviors. After a demonstration
that metaphors are indeed as common as the au-
thors believe, I would want a detailed examination
of the ways metaphors are used in a wide variety
of settings. The authors report no such informa-
tion, and in fact they acknowledge the lack of di-
rect empirical support for their hypotheses in
many places. Carefully designed studies might
lead to very different ideas about how metaphors
function in mathematics or mathematics learning.
For example, at the AMS meeting in New Orleans
in January 2001, Eric Hsu and Michael Oehrtman,
mathematics education research postdocs at the
Dana Center at the University of Texas at Austin,
spoke about their study of calculus learners. They
found students making up their own, often dys-
functional, metaphors, and they raised the fasci-
nating question of how it is that some learners shed
the idiosyncratic metaphors they initially build
and acquire the ones that are standard.

My second main criticism concerns lack of pre-
cision in the concept of metaphor. By rough page
count, more than half the text is devoted to dis-
playing mathematical metaphors of one sort or
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abstract algebra the relation-

ship of an abstract structure
(e.g., a group) to a model of that structure (a group
of rotations) is an example of a metaphor. Cauchy,
Dedekind, and Weierstrass contributed to the foun-
dations of analysis by creating the “Arithmetic Cut
Metaphor”, the “Spaces Are Sets of Points
Metaphor”, and many others. When mathemati-
cians write axioms, they are using the “Essence
Metaphor”. Set-theoretic foundations give us an
instance of the “Formal Reduction Metaphor”. With
examples of so many differing kinds serving such
diverse functions, the notion of metaphor begins
to lose its meaning. If I had been given the origi-
nal definition and a couple of examples and then
had gone looking for conceptual metaphors in
mathematics, I would never have come back with
many of the things listed in this paragraph. The idea
that metaphors play a role in mathematical think-
ing is quite attractive, but what is needed is a no-
tion specific and precise enough so that people
working independently and without consulting
one another can discover the same metaphors and
agree on the functions they perform. I do not think
we have this yet.

Let me turn now to the philosophical parts of
the book. The authors devote many pages to por-
traying a sort of philosophy/ideology that they
call the “Romance of Mathematics”, which they
contrast with their own philosophy. This is a good
rhetorical strategy, since the so-called “romance”
would probably be disliked by all readers except
some superficial and self-congratulatory mathe-
maticians. For the sake of brevity, I will not
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comment on the “romance” but just go directly to
the authors’ philosophical ideas.

According to my reading, Lakoff and Nunez
want us to view mathematics as a natural human
activity, about which their cognitive theory informs
us. They would like us to use words like “meaning”,
“existence”, and “truth” to describe aspects of this
activity. In particular, they say that mathematical
entities are “metaphorical entities” that exist “con-
ceptually” only “in the minds of beings with [ap-
propriate] metaphorical ideas” (pages 368-9). They
also say that when we speak of the truth of a math-
ematical statement, we must speak only relative to
a particular person, and we may mean no more than
this: that person’s understanding of the statement
accords with his or her understanding of the sub-
ject matter and the situation at hand; see page
366. Such a view of mathematical truth appears to
be at odds with the reality of how mathematicians
communicate. If my mathematics depends on the
metaphors that happen to be in my head, and your
mathematics depends on the metaphors in yours,
then how is it that we can share mathematical
ideas? And why is it that we agree on so much?

Lakoff and Nunez make a couple of hypotheses
that might address these objections. First, they
claim that the metaphors on which mathematics
is based are not arbitrary. Many grounding
metaphors, in particular, are forced on us by our
physical nature. Second, they claim that natural
metaphors have a very elaborate and precise struc-
ture; see page 375. These, of course, are empirical
hypotheses. Some day we might acquire good
evidence for or against them. If they are borne
out, they might support the kind of naturalistic ap-
proach to the philosophy of mathematics that the
authors have begun to sketch. In my opinion,
though, a naturalistic approach should certainly not
dismiss the way mathematicians share definitions
with one another, understand and criticize one
another’s reasoning, and use a precise, if artificial,
logical language to put their ideas in writing so that
those ideas can be judged by the world. Surely we

can acknowledge a role for intuition without ig-
noring the ways that logic and conventional rigor
support the kind of knowledge that mathemati-
cians build and share.

Let me move now to the third and last of the
three major strands on which I promised to com-
ment. The authors argue that mathematical ideas
occur within elaborate networks of interconnected
metaphors. “Mathematical idea analysis” is the
technique of teasing apart the network to reveal
the metaphorical parts. The reason for doing this
is to “characterize in precise cognitive terms the
mathematical ideas in the cognitive unconscious
that go unformalized and undescribed when a for-
malization of conscious mathematical ideas is
done” (page 375).

The appendix contains an extended discussion of
the equation €™ + 1 = 0 that is intended to illus-
trate the method. The authors say that they want to
characterize the meaning of the equation and pro-
vide an understanding of it (page 384). What a math-
ematician will find here is a detailed description of
the geometric interpretation of complex exponen-
tiation. Building from basic high-school-level ideas
up to college-level complex analysis, the treatment
is, at different times, insightful, entertaining, opaque,
interesting, breezy, ponderous, and muddled.! Math-
ematicians will find the images and metaphors dis-
cussed here to be very familiar, scarcely unconscious.
Many come directly from the pages of calculus books
and are things most of us describe over and over to
our calculus classes. To me, these mental images
are certainly very helpful in understanding. The mys-
tery has always been how difficult it is for students
to absorb them and use them productively.

Lakoff and Nufez seem to want to open up that
whatever-it-is that makes mathematics into a co-
herent, meaningful whole and expose it for all to
see and appreciate. If only there were a way! Poin-
caré himself speculated about how best to teach
mathematics, concluding finally that understand-
ing means different things to different people at
different times and for different purposes; see

1See the website|http://www.unifr.ch/perso/|
[nunezr/errata.htmT]for a list of errata. One error in
the first printing (pages 416-8) was fairly serious. The “cor-
rection” that I found at the website and that appears in
the recently distributed softcover edition of the book is a
kind of mathematical red herring—a passage that appears
to answer a question but in fact misleads. The authors pref-
ace this passage by criticizing other texts for failing to an-
swer “the most basic of questions: Why should this par-
ticular limit, limy, . o (1 + %)” , be the base of the exponential
function that is its own derivative?” (pages 415-6). In the
revised explanation (errata 416-8), the unacknowledged
assumption that lim,,_. (1 + %)“ exists is used in an es-
sential way. (There are situations that are analogous in
all explicit details but in which the pattern of explanation
that the authors use would “explain” a falsehood.) When
the authors complete their proffered explanation, they
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make a point of saying that, once the meanings and
metaphors are combined with some “simple algebraic
manipulations,” there is “nothing mysterious” (errata,
page 419) about the result. I would retort that what is re-
ally the most basic question is: How do we know that
there is any number at all to which the values of (1 + %)“
tend as n increases? The authors create the appearance
of simplicity only by suppressing this issue, and in fact they
create a path that can lead to error. The book [Do], on
the other hand, contains a nice self-contained treatment
of this limit, beginning, appropriately, with a non-myste-
rious demonstration of its existence; see page 45. The cen-
tral claims of the book under review, which are in cogni-
tive science and philosophy, may not be threatened by such
mathematical infelicities, but perhaps they serve as use-
ful reminders of the importance of logical discipline in
mathematics.
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[P1], page 432. Surely there will always be good
reasons to experiment with new formats for math-
ematical exposition, and Lakoff and Nuilez are not
alone in exploring. Zalman Usiskin, for example,
has proposed something he calls “concept analy-
sis”, intended for people who are learning to teach
mathematics; see [U]. Concept analysis examines
various methods of representing and defining
mathematical ideas, as well as how those methods
evolved over time, how they are used, the problems
people have understanding them, and strategies
that are useful in explaining them.

This concludes my comments on the three strands
Iidentified earlier. If I think about the portrayal of
mathematics in the book as a whole, I find myself
disappointed by the pale picture the authors have
drawn. In the book, people formulate ideas and
reason mathematically, realize things, extend
ideas, infer, understand, symbolize, calculate,
and, most frequently of all, conceptualize. These
plain vanilla words scarcely exhaust the kinds of
things that go on when people do mathematics. They
explore, search for patterns, organize data, keep
track of information, make and refine conjectures,
monitor their own thinking, develop and execute
strategies (or modify or abandon them), check their
reasoning, write and rewrite proofs, look for and
recognize errors, seek alternate descriptions, look
for analogies, consult one another, share ideas,
encourage one another, change points of view,
learn new theories, translate problems from one
language into another, become obsessed, bang their
heads against walls, despair, and find light. Any one
of these activities is itself enormously complex
cognitively—and in social, cultural, and historical
dimensions as well. In all this, what role do metaphors
play?

Moving to a different perspective, I want to note
that there are areas not even hinted at in the book
where cognitive science is prepared to contribute
to our understanding of mathematical thought.
Consider this: Metaphorical ideas are frequently
misleading, sometimes just plain wrong. Zariski
spent most of his career creating a precise language
and theory capable of holding the truths that the
Italian geometers had glimpsed intuitively while
avoiding the errors into which they fell. What cog-
nitive mechanisms enable people to recognize that
a metaphor is not doing the job it is supposed to
do and to respond by fashioning better conceptual
tools?

From early childhood people comment on their
own thinking or on the things they create in order
to represent their thinking, and they use this com-
mentary to adjust and correct themselves. In a
fascinating article about her own first-grade class-
room, Kristine Reed Woleck describes how children
talk to themselves and to one another while draw-
ing and revising pictures to depict mathematical
ideas, in the process coming to “question, debate,
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defend, clarify, and refine their mathematical
understandings” ([W], page 224). Isn’t this a minia-
ture version of what a group of research mathe-
maticians might be found doing in front of a
tentative proof sketched on a blackboard? Or what
you do alone when you draft a proof and then
read, correct, and redraft it?

If mathematical thinking is like other kinds of
thinking in its use of metaphors, what distinguishes
mathematical thinking may be the exquisite, con-
scious control that mathematicians exercise over
how intuitive structures are used and interpreted. We
can step back from our own thinking and critically
examine our attempts at meaning-making. This, I
would venture, is as fundamental a cognitive mech-
anism as any mentioned by Lakoff and Nufiez. Math-
ematics is constantly absorbing what it learns about
itself by gazing at itself. In Al Cuoco’s memorable
phrase, “mathematics is its own mirror on the very
thinking that creates it” ([CC], page x). In a similar
vein, Schoenfeld’s classic study [S] showed how im-
portant self-observation is in solving mathematical
problems. Today we can associate the ability to ob-
serve and control our own thought processes with
certain clearly demarcated regions of the brain, and
we understand much about how these regions func-
tion in normal brains and how they fail in certain
diseased brains; see [M].

Where does mathematics come from? Poincaré
viewed mathematical intuition as that which in-
vents and logic as that which proves. Perhaps in
this sense mathematics starts with intuition. But
Poincaré also said that without proof there is no
understanding, no communication, no meaning
([P2], page 95-6). Most mathematicians would prob-
ably agree that mathematics is both invention and
proof and that it comes from the cooperation of
intuition and logic.

What about the question I asked earlier: what
do we know today about mathematical intuition
that we did not know one hundred years ago?
Lakoff and Nufiez have suggested that intuition is
not as formless and elusive as perhaps we had
thought. To the contrary, or so they claim, it works
on the basic mechanism of metaphor, and it has
a profound structure that is dictated by human na-
ture. These are interesting and appealing ideas, or
perhaps intuitions, about the nature of mathe-
matical intuition.

Among the sciences, mathematics is not alone
in building on intuition. Nor is it alone in requir-
ing more. Every science also needs concepts that
are precise enough to frame testable hypotheses,
and every scientific theory needs proof—not in
the mathematical sense, but at least in the sense
that the theory has been subjected to the most rig-
orous trials we can devise and has survived. Lakoff
and Nurfiez have shared with us their intuitions
about the way the mathematical mind operates.
More work remains to be done. We do not know
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what scientists may some day build upon these in-
tuitions.
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