The Performance of
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n his classic 1948 paper [10], Claude Shannon

introduced the notions of communication

channels and codes to communicate over

them. During the following two decades, he re-

mained active in refining and extending the
theory. One of Shannon’s favorite research topics
was the fundamental performance capabilities of
long block codes. In the 1950s and 1960s this topic
also attracted the active involvement of several of
Shannon’s distinguished colleagues both at Bell
Telephone Laboratories and at MIT, including
P. Elias, R. M. Fano, R. G. Gallager, E. N. Gilbert, R. W.
Hamming, I. M. Jacobs, B. Reiffen, D. Slepian, and
J. M. Wozencraft, and several graduate students, in-
cluding G. D. Forney and me. The work culminated
in a book by Gallager [6] and in a sequence of two
“Information and Control” papers by Shannon, Gal-
lager, and Berlekamp [11]. In this article I present
an overview of some of the more salient results and
their impact.

Error Exponent Theory

A discrete memoryless channel has finite input
and output alphabets related by any given matrix
of transition probabilities. A block code of length N
consists of M codewords, each of which is a se-
quence of N symbols selected from the channel’s
input alphabet. The rate R of the code in natural
units is defined as R = (In M)/N. A message source
selects one of the M equiprobable codewords and
transmits it over the channel. The received word
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is determined, symbol by symbol, according to the
row of the transmission matrix specified by the cor-
responding input symbol. A decoder examines the
received word, computes the a posteriori proba-
bilities of each of the M possible input words, and
rank orders them. The decoder is considered cor-
rect if the transmitted codeword is the most likely.
In a revealing generalization first studied by Elias
[3], a “list of L” decoder is considered correct if the
transmitted codeword appears anywhere among the
L most likely choices.

For any fixed channel, one seeks bounds on
P.(N,M, L), the error probability of the best code
of the specified codebook size M and list size L.
(In the most general case, in which the probability
of decoding error may depend on which codeword
is selected, one evaluates the code according to one
of its worst codewords.) Even today, the best codes
are known for relatively few channels, and even then
only for very high or very low coderates and/or rel-
atively short block lengths. Many of those that are
known have interesting connections with other
areas of mathematics.

Shannon was interested in getting bounds on the
behavior of

Pe(N, lexp(NR)|,L)

for fixed L (often L =1) and fixed R as N goes
to oo. For all R less than the channel capacity C, it
was shown that P, is an exponentially decreasing
function of N. In particular, there is an error ex-
ponent E;(R) such that P, < exp(—NEL(R)) for all
sufficiently large N.
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In the 1950s and 1960s, significant efforts were
made to determine the best possible error exponent,
which one might hope to define as

Er(R) = Al{im (=1/N)InPe(N, [exp(NR)|, L).

This definition measures information in natural
units, called “nats”. If the natural logarithm is re-
placed by the base 2 logarithm, then the units are
converted from nats to bits. In either case, Er(R)
is also called the channel’s “reliability function”.
Since it is conceivable that there might be circum-
stances under which this limit might not exist, one
interprets upper and lower bounds on E;(R) as
lim sup and liminf.

Upper bounds on Er(R) correspond to lower
bounds on the probability of decoding error. To ob-
tain such a bound for a given list size, a given
code, and a corresponding decoding algorithm,

one defines M sets of re-

ceived words, each set con-
sisting of all words that are
list-decoded into a particu-
lar codeword. One intro-
duces an appropriate
weighting function on the
received words and com-
putes the “volume” (total
weight) of each such set and
the volume V of the entire
space of all possible re-
ceived words. For suffi-
ciently symmetric channels,
the weighting function is
uniform, and the volume is
simply a count of the num-
ber of points in the relevant
set. Since each received
word can belong to at most
L sets, it follows that there
must be at least one par-
ticular codeword whose

corresponding decoding re-

R C gion has volume no greater

18

] than LV /M. The probability

Figure 1. of the received word lying

within an arbitrary region

of this given volume is maximal when the region

is a sphere. That probability can be computed and

used to determine the probability of decoding error

of an idealized “perfect” code, whose decoding re-

gions partition the set of all possible received se-
quences into perfect spheres.

This probability of decoding error for perfect
codes can be used to calculate an upper bound on
Er(R). For any fixed positive integer L and any
fixed rate R between 0 and C, this technique yields
as N goes to o an upper bound on Er(R) that is
independent of L. This bound is called either the
“volume bound” or the “sphere-packing bound”. As

NOTICES OF THE AMS

shown in Figure 1, this function is typically analytic.
It is tangent to the R axis at R = C, and tangent to
the F axis at R = 0. As we shall soon see, it happens
to give the correct values of E«(R) for all values of
R between 0 and C, assuming that we interpret
Ex(R) as the limit of E7(R) as L goes to co. Since
each Er(R) is itself a limit as N goes to o, it is im-
portant that the two limits be taken in the appro-
priate order. If L and N were allowed both to go
to o in such a way that L were an exponentially
growing function of N, we would get a different an-
swer.

The volume bound remains valid even if the
problem is modified to include a noiseless, delay-
less feedback link, which allows the encoder and
the decoder to revise their code depending on pre-
viously received symbols.

Lower bounds on E;(R) correspond to upper
bounds on the probability of decoding error. An im-
portant technique to get such bounds is the ran-
dom coding argument introduced in Shannon’s
1948 paper, in which all of the MN letters in the
codebook are selected independently at random
from the same input distribution, which is deter-
mined by a careful optimization that depends crit-
ically on the statistics of the noisy channel. As L
goes to co, the random bounds approach a limit,
which happens to coincide with the volume bound
shown in Figure 1. The conclusion is that the vol-
ume bound is also the correct value of the func-
tion E«(R) for all rates R between 0 and C. This is
a very remarkable result: when the list size is suf-
ficiently large, random codes are virtually as good
as perfect codes. Although the proof of this result
for sufficiently symmetric channels is reasonably
straightforward, it is much more difficult for the
general asymmetric case. One problem is that the
reliability function itself is not very tractable. The
most successful approach is Gallager’s formulation,
which expresses the function in terms of a quan-
tity p, which turns out to be the negative slope,
—dE/dR.

For each finite value of L, there is a corre-
sponding critical rate Ry such that the random
coding bound on E (R) agrees with E«(R) for code-
rates in the interval R; < R < C. For coderates
below Ry, however, the random coding bound is a
straight line of slope —L that joins the function
E«(R) tangentially at the point R = R;. The random
coding bounds for L = 1, 2, 3, 4, 5 are shown in Fig-
ure 2.

In most applications, a list of size L =1 is re-
quired. The coding theorems show that at suffi-
ciently high coderates (R¢rit = R1 < R < C), random
codes are exponentially as good as perfect codes.
At lower rates, however, the error exponent for
random codes becomes a straight line of slope —1
that veers off tangentially from the volume bound.
With a list of size L, the error exponent for random
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codes remains equal to the volume bound for
another interval of rates, Ry < R, but then it veers
off tangentially from the volume bound with
slope —L.

The limit of E1(R) as R approaches 0 is known
precisely, and for most channels it is strictly be-
tween the random bound and the volume bound.
An upper bound on E1(0) is provided by

lim lim —(1/N)InP.(N,M,1).
M — 00 N—oo

For sufficiently symmetric channels, this double
limit is relatively easy to compute, because for any
fixed M and very large N, the best codes can be con-
structed explicitly. Their key property is that they
are equidistant, in the sense that the frequency with
which any particular ordered pair of input symbols
occurs in one pair of codewords is the same as the
frequency with which it occurs in any other pair of
codewords. Equidistant codes also happen to op-
timize the above double limit for arbitrary asym-
metric channels, although that result was rather
more difficult to prove.

A lower bound on Ej(R) that coincides with the
correct value at R = 0 is obtained by a technique
called “expurgation”. One first selects a code at ran-
dom. Then one computes the probability of con-
fusing each pair of codewords, as if M =2 and
these two words were the only words in the code.
A threshold is carefully selected, and any pair of
codewords whose confusion probability exceeds
this threshold is expurgated, meaning that both of
those codewords are removed from the code. The
threshold is chosen so that on the average, at least
half of the codewords survive the expurgation.
What remains is an expurgated random code that
contains no pair of too-easily confused codewords.
As shown in Figure 3, this yields an error exponent
Ex(R), which improves the random coding bound
in the region of rates 0 < R < Rx. The Ex(R) curve
joins the random coding bound tangentially at
R =Rx.

Finally, there is another general result that al-
lows any upper bound on E1(R) to be joined to any
point on the volume bound by a straight line bound
(also known as the SGB bound). As shown in Fig-
ure 3, the best such bound is attained by selecting
points such that the straight line bound is tangent
to the volume bound at its high-rate endpoint and
to a low-rate bound at its low-rate endpoint. In
Figure 3, the low-rate bound is the single-point
double-limit upper bound on E1(R) described above.

One communications channel of considerable
practical importance is the binary-input Gaussian
noise channel. This channel has only two inputs,
which are taken as the real numbers +1 and —1. The
input number is called the “signal”. The noise is
taken as an additive real number having zero mean
and given variance. The output, also a real
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number, is the sum of the
signal and the noise. In L
order to make the channel
discrete, the output range
is commonly partitioned
into a finite number of in-
tervals. Usually this is
done by uniformly quan-
tizing the output over
some finite range, allow-
ing the extreme intervals
at either end to run to oo.
For example, in the 2-
input 8-output version of
this model, the seven
breakpoints between dif-
ferent output intervals are
commonly set at —1.5,
-1, -.5, 0, +.5, +1, and
+1.5.

More intricate models
of this channel assume

that the noise is white and Rs Ry Ry Ry R R)

that an appropriate figure

of throughput for the en-

tire system is the number Figure 2.
of nats/sec or bits/sec.

This turns out to be max-

imized by making the time

interval for each trans- l

mitted bit very small, even
though this yields a dis-
crete memoryless channel
that is very noisy and that
has a very small capacity
per transmitted bit.

This motivation led to
the study of “very noisy | g
channels”, whose proba- :
bility transition matrices
could be written as Escn
Pjjj =Pi(1+¢;j), where
€;,jis small for all i and j.
Reiffen [9] showed that
the error exponent for any
such channel depends on
only one parameter, the
capacity C. As shown in
Figure 4, the graph of
E(R) is a parabola that

attains a slope of —1 at

the critical rate Ry = C/4.
At rate R = 0, the average
distance upper bound co-
incides with the random
coding bound. So for such channels, expurgation
gains nothing, and the random coding bound is op-
timal at all rates between 0 and the capacity C. It
coincides with the straight-line SGB bound at rates

Figure 3.
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0 < R < C/4 and with the volume bound at rates
C/4<R<C.

In general, sophisticated codes attain reliabil-
ity at the cost of code redundancy and digital
electronics required to implement the coding and
decoding algorithms. Often the greatest potential
system gains are attained by designing a channel
that is too noisy to use without coding. Such a
channel allows such significant benefits as lower
power, faster speeds, and perhaps greater stor-
age density. The local cost is a much higher raw
error rate, which is eliminated from the system
by the coding.
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Many early communication and memory sys-
tems were designed and deployed before sophis-
ticated coding was practical. Others were designed
and deployed before the benefits of sophisticated
coding were understood and appreciated by the sys-
tem designers. In either case, such systems worked
by placing heavy investments in power and in ana-
log equipment, and by constraining the users to rel-
atively low throughput and often only marginally
acceptable error-performance as well. When users
of such systems expressed willingness to make
further sacrifices in throughput in order to gain bet-
ter error-performance, the coding engineers and
theorists were presented with “very quiet chan-
nels”. Most such channels turned out to be highly
symmetric. This is fortunate because, to this day,
relatively little is known about very quiet asym-
metric channels.

Perhaps the most-studied channel is the binary
symmetric channel. It is a special case (with g = 2)
of the g-ary symmetric channel, which has g inputs
and g outputs. Each input goes to its correspond-
ing output with probability 1 — p. The parameter p,
which is the probability of symbol error, is the same
for all inputs. All kinds of symbol errors are equally
likely, each occurring with probability p /(g — 1). As
p approaches (g — 1)/g, the channel becomes very
noisy, and its capacity approaches 0. But as for all
very noisy channels, when properly normalized, the
reliability approaches the function shown in Fig-
ure 4. On the other hand, when p approaches 0, the
capacity approaches In g bits/symbol. Since Ryt
and Ry both approach the capacity C, the high-rate
region above Ry disappears. Random codes be-
come uniformly bad, because the reliability is dom-
inated by minimum distance considerations rather
than by volume considerations. Here minimum
distance is the smallest number of input symbols
in which any pair of codewords differ. The relia-
bility approaches o at all coderates between 0 and
the capacity C, and the rate at which it ap-
proaches o is proportional to —Inp. So the inter-
esting function to study is the “normalized relia-
bility”, defined as

e(R) = E1(R)/(~=1np).

For the binary symmetric channel, N - e(R) is the
best possible minimum distance of any block code
of the specified (long) length and rate. From the
mid-1950s through the mid-1970s, the classic
bounds on e(R) shown for the binary symmetric
channel in Figure 5 were the best results known.
Results for the more general symmetric g-ary chan-
nels were similar. But eventually, both the upper
and lower bounds on e(R) were partially improved.
The first improvement on the Elias bound, at suf-
ficiently small positive rates, was by Welch,
McEliece, and Rumsey [15]. The first improvement
on the Gilbert bound, for g = 49, was due to

VOLUME 49, NUMBER 1



Tsfasman, Vladut, and Zink [13]. The latter result
was a novel application of algebraic geometry. De-
spite further improvements, a gap still remains
between the improved bounds.

Algebraic Coding

Even before Shannon’s retirement, many engineers,
computer scientists, and mathematicians were cre-
ating innovative algorithms to specify and imple-
ment feasible coding strategies for particular noisy
channels. The first such were the single-bit-error-
correcting binary Hamming codes. Shannon men-
tioned the binary Hamming code with 24 code-
words of length n =7 as an example in his 1948
paper. Binary Hamming codes with 232 or 264 code-
words later became very widely used in computer
memories.

In 1960, Bose-Chaudhuri-Hocquenghem and
Reed-Solomon applied the theory of finite fields to
construct error-correcting codes. Although subse-
quently seen to be special cases of a common gen-
eralization, the initial BCH codes were binary, while
the initial RS codes used a large prime-power al-
phabet of size g = N + 1. The RS codes proved di-
rectly suitable for the original g-ary symmetric
channel and for several of its close relatives with
g symmetric inputs but with more outputs. One
such channel has an additional (g + 1)st “erasure”
output, accessible from all g inputs with the same
transition probability. Another such channel has 2q
output symbols, each pair of which corresponds to
a “more reliable” and a “less reliable” estimate of
each input signal.

The most widespread application of RS codes has
been to a bursty (rather than a memoryless) ver-
sion of the binary symmetric channel, the bit error
probability varying with time. Any sequence of bits
can be partitioned into m-bit characters, each of
which can be viewed as a symbol in a finite field
of order g = 2™. This is particularly appropriate for
certain binary channels in which errors tend to
come in short bursts of lengths comparable to m.
For such channels, doubly-interleaved RS codes
are superior to multiply-interleaved binary BCH
codes in numerous respects. They have superior
performance. Surprisingly, they are easier to en-
code. They are also easier to decode. Partly be-
cause of this, and partly because of unusually fast
and efficient decoding algorithms now associated
with them, RS codes with high coderates have be-
come very widely used in many magnetic and op-
tical storage systems.

The emphasis on high coderates arises from a
coincidence of several factors. On the system side,
considerations of factors such as bit synchroniza-
tion, latency, and delay make high coderates at-
tractive. On the coding side, all of the costs asso-
ciated with RS codes grow linearly or as the square
of the redundancy, (Ing — R)N, and these costs

JANUARY 2002

become very small when R is large. There is also a
performance factor, because traditional RS de-
coding algorithms perform only as block codes
with list size L = 1.

Sudan [12] introduced an innovative method to
decode RS codes with low coderates using lists of
size greater than 1. He also applied these methods
to random proof-checking problems in theoretical
computer science. When it is feasible to trade an
increase in decoding complexity for improved per-
formance, Sudan’s algorithm can be used to attain
much higher reliability for low-rate RS codes even
when L = 1. One first uses Sudan’s algorithm like
a search committee, to reduce a large pool of can-
didates down to a short list. In many applications,
there is auxiliary information available that allows
another part of the decoder to scrutinize each of
these candidates more carefully before making the
final selection.

Convolutional Codes

Originally, Shannon used the block length N as a
rough measure of the delay and complexity of a cod-
ing/decoding system. Many coding theorists have
long sought to refine this measure. In the 1950s,
Elias introduced binary “convolutional codes” in
which message and check bits were intermingled
in the transmitted data stream, and in which each
check bit was constrained to depend on only N prior
message bits. This approach replaced the block
length with a constraint length and led Wozen-
craft, Fano, Jacobs-Berlekamp, and others to study
sequential decoding algorithms. Viterbi [14] pre-
sented a very innovative approach showing that
maximume-likelihood sequential decoding was fea-
sible on sufficiently short convolutional codes and
that the performance was adequate for many pur-
poses, particularly on the binary-input Gaussian
noise channel. This led to widespread use of Viterbi
decoding on many communications channels. In the
mid-1980s, NASA adopted standards for deep-
space communications that required a concatena-
tion of two codes: an inner Viterbi code of code-
rate 1/2, and an outer RS code of coderate 223/255
or 239/255. The Viterbi code converts a rather
noisy memoryless Gaussian channel into a rather
bursty binary symmetric channel, on which the RS
code then attains a very low probability of decod-
ing error.

Low Density Parity Check Codes

In 1962, Gallager [5] introduced “low density par-
ity check codes” as a way to get some of the ad-
vantages of long block codes while constraining the
cost of complexity. Although the topic then re-
mained relatively dormant for nearly twenty years,
the phenomenal decrease in the cost of memory led
a number of computer scientists and engineers to
revisit or rediscover and improve this approach in
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the early 1980s. Gallager’s methods had been ran-
dom, but the modern resurgence of interest in this
area has focussed more attention on specific con-
structions using expander graphs such as those
constructed by Margulis [7] and by Lubotzky,
Phillips, and Sarnak. This construction is a novel
application of modular forms.

Conclusion

Most mathematicians are probably aware of names
such as Conway, Margulis, and Sarnak, but they may
not be aware of the enormous impact the coding
work inspired by Shannon has had in other areas.
Forney, Ungerboeck, and others used increasingly
sophisticated coding techniques to improve speeds
over local phone lines by almost two orders of
magnitude, well beyond crude early estimates of
capacity. Jacobs and Viterbi founded a company
called Qualcomm, which dominates the intellectual
property in the cell phone industry. Today, Reed-
Solomon codes are used in most magnetic disks and
optical CDs. The large part of Bell Telephone Labs
that stayed with AT&T at the time of the Lucent
spinoff was renamed “Shannon Labs”. Statues of
Shannon have been dedicated in his hometown of
Gaylord, Michigan, and at both of his alma maters:
University of Michigan and MIT, and at AT&T’s
Shannon Labs and at Lucent’s Bell Labs, and at the
Center for Magnetic Recording Research of the Uni-
versity of California at San Diego.
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