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O
ne of the mandated duties of the 
president of the AMS is to deliver a 
Retiring Presidential Address. The fact
that this duty has not been met by a few
presidents does not mean that one

should not take it seriously. The content of this 
address is not mandated by the bylaws of the 
Society; one can presumably deliver a mathematical
lecture or talk about policy issues.

The title of this lecture is intended to be as 
general as possible. One can reflect on the future;
one cannot predict the future with precision. For
example, I cannot predict with any measure of 
authority whether the Riemann Hypothesis will 
be proved or disproved. But I can predict that 
people will work on the Riemann Hypothesis until
the question is settled. That is a prediction with 
a high degree of probability. The same applies 
for the Poincaré Conjecture and other celebrated
problems.

This is one kind of reflection that is possible: to
consider where some of our topics of concern are
probably going to come from. Another way to reflect
is to consider the internal workings of mathematics
on the one hand and, on the other, the way in which
mathematics fits into institutional structures, such
as universities, government, private foundations,
etc. This is the area where policy comes in.

I shall take seriously some recent articles and
speeches on these and related themes. One article
is based on the address Michael Atiyah gave at 

a meeting at the Fields Institute in Toronto. The 
article has just been published [1]. There is an in-
teresting programmatic article by Mikhael Gromov,
which appeared originally in a report of the National
Science Foundation—a very influential report, as a
matter of fact, on the problems of American math-
ematics in the future [2]. There was also a lecture
in the same direction given by Robert MacPherson
of the Institute for Advanced Study in Princeton.
This was the one and only official lecture I heard
about mathematical policy given at the Institute; 
it was entitled “Can One Predict the Future of
Mathematics?” MacPherson remarked on a cyclical
process in the twentieth century in which, after 
a mid-century emphasis on general abstract 
theories, we have returned to an emphasis on 
concrete problems and scientific applications 
reminiscent of 1900.

Of Hilbert and Poincaré
One of the most famous attempts to set the course
for the future of mathematics was made in the
early twentieth century, in a paper by David Hilbert.
Hilbert delivered the paper, or rather part of it, at
the International Congress of Mathematicians in
Paris in 1900. He was not specifically invited to
give such a paper, but he did it anyway. The speech
was instigated by his friend Hermann Minkowski,
to whom he was very close personally and mathe-
matically at Göttingen. The speech was an attempt
to answer an earlier paper presented by Henri
Poincaré at the first International Congress of
Mathematicians, held in 1897 in Zurich. Poincaré’s
paper did not specifically describe the future of
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mathematics, but it was centered on the theme of
how mathematical problems arising in physics
would probably be very influential in mathematics.
The thesis that Hilbert wanted to develop is that
mathematical problems arising in other directions
would also be influential, in particular in number
theory. The Hilbert Problems that have been 
influential fall into three sections: the problems
on logic and foundations, the problems on number
theory, and the problems on partial differential
equations. (For those who are interested in the 
genesis and influence of the Hilbert Problems, I
strongly recommend two publications: the recent
book by Jeremy Gray called The Hilbert Challenge
[3] and an article by the historian David Rowe [4].)

There are some ironies that people have remarked
on in the Hilbert Problems and the attempts to pre-
dict what would be done in mathematics after the
year 1900. First of all, the Hilbert Problems did not
predict what Hilbert would do. For example, there is
not a word in the Hilbert Problems about functional
analysis or integral equations, which are the sub-
jects that Hilbert worked on in the succeeding two
decades. Second, the problems ignored many of the
major trends that were going on in mathematics at
the time that he spoke. There is very little on topol-
ogy, which Poincaré had founded and which a few
years after Hilbert’s speech was revolutionized by
L. E. J. Brouwer. Third, the section on logic is very 
interesting from a psychological point of view 
and is probably the most influential part of the 
Hilbert Problems. It gave rise to Kurt Gödel’s in-
completeness theorem and the work of Gödel and
Paul Cohen on the continuum hypothesis. These 
results constituted a negation of Hilbert’s most 
powerful presupposition: that every problem 
could be solved. But the whole modern thrust of
foundations was to prove the contrary.

Nevertheless, I think anybody who really dares
to try such a thing as Hilbert tried should be com-
mended, because after all it stimulates research.
Whatever the ultimate influence of the Hilbert 
Problems has been, they certainly were a major stim-
ulus in research and in diversifying mathematics.

At the 1908 Rome International Congress, 
Poincaré gave a response to Hilbert’s speech in a
speech entitled “The Future of Mathematics”. 
Poincaré’s approach is much broader and much 
more tolerant than Hilbert’s, emphasizing, among
other things, the connection of mathematics with
theoretical physics, of which Poincaré was the 
foremost practitioner. One of Hilbert’s problems,
for example, was to axiomatize physics. This was
a misguided endeavor at that time, which was just 
before relativity theory and quantum theory began.
Even if one could have axiomatized physics, one
could just as well ignore the axioms, because
physics changed so drastically shortly thereafter.
Poincaré was much closer to the physicists than was

Hilbert (although Hilbert had a good deal
of interaction with his local physicists). I
have been told that physicists considered
Poincaré to be one of the great physicists
of his time, particularly because of his
work on thermodynamics and relativity
theory, where in effect he competed with
Einstein for the origins of that subject.
This is not to speak of areas like celestial
mechanics, where Poincaré was the chief
contributor for many years. His work
earned him more nominations for the
Nobel Prize in Physics than probably
everybody else put together. In fact, in
1908, Gösta Mittag-Leffler went to every
major physicist in Western Europe and got
all but a very few to sign a petition say-
ing that Poincaré deserved the Nobel Prize
in Physics. Hundreds signed, but he still
did not get it. Much of this is described
in Jeremy Gray’s book.

A number of years ago, at a symposium
at the National Academy of Sciences, the
mathematical physicist Elliott Montroll
said, “The first half of the twentieth cen-
tury in physics was the era of Hilbert, and
the second half was the era of Poincaré.”
What did he mean? He meant that Hilbert’s
influence in setting up the research pro-
gram that other people practiced in spec-
tral theory had a very crucial influence on
the development of quantum mechanics
in the 1920s and 1930s. From Montroll’s
point of view, Poincaré’s creative work in
founding what we now call chaos theory
is probably the decisive influence on
physics in the latter half of the twentieth
century.

In the 1940s, that habitually courageous
mathematician, André Weil, wrote an essay
entitled “The Future of Mathematics” [5]. I
personally find this essay very sympathetic.
It is also entirely free of the ideology that
we call today Bourbaki-ism—Weil does not
refer to Bourbaki; he does not praise for-
malization and the abstract movement in
mathematics. He ignores it completely, even
though he was one of the founders and prin-
cipal figures of Bourbaki. Weil begins the es-
say by quoting Poincaré—even though Bour-
baki, until the late 1970s, rarely said a good
word about Poincaré. Weil also discusses,
not in a very sanguine spirit, the institu-
tional influences on mathematics. He had
just finished a stint teaching at American
universities, and he was not very optimistic
about their intellectual future, because they
did not have much intellectual structure at
the time. This essay actually does to a large
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extent predict Weil’s own intellectual tendencies in
the years that followed. It is a very penetrating essay,
and the spirit is so vigorous and free of prejudice—
surprisingly so—that it is well worth reading.

The Mathematics of Bisociation
During my AMS presidency I organized a sympo-
sium called “Mathematical Challenges of the 21st
Century”, which took place at the University of
California, Los Angeles, in August 2000. There are
many axes on which one could organize such a
meeting—or on which one can organize one’s think-
ing about the future of mathematics. I chose an 
unorthodox axis, the precursor for which was an
essay by Dieudonné published almost twenty-five
years ago [6]. This essay provides a framework for
discussing two aspects of developments in math-
ematics: its internal structure and its interdisci-
plinary nature. Many of these developments can be
seen as examples of “bisociation”, a word coined
by the political and scientific writer Arthur Koestler.
Bisociation occurs when two seemingly unrelated
things are shown to have unanticipated connec-
tions. Arthur Koestler argues that all creativity is
bisociation. In his book on humor, he argues that
all humor is bisociation. One can accept these 
theses or not. But I believe that “bisociation” is a
good description of many significant developments
in mathematics in recent decades. This is put 
elegantly by Poincaré as follows:

In proportion as science develops, its
total comprehension becomes more dif-
ficult; then we seek to cut it in pieces
and to be satisfied with one of these
pieces: in a word, to specialize. If we
went on in this way, it would be a griev-
ous obstacle to the progress of science.
As we have said, it is by unexpected
union between its diverse parts that it
progresses.

Mathematics is now extremely diverse. First of
all, the size of the mathematical community since
I started fifty-odd years ago has multiplied by a fac-
tor of more than ten. The first meetings of the
AMS I attended were minuscule compared to
today’s meetings. At that time the AMS had about
4,000 members. And now we have 30,000 members
all over the world. The number of mathematical 
specialties has increased greatly. There are many
people working on a lot of subjects, and some peo-
ple know nothing but their own narrow subject.
This is a very unusual situation, in historical terms.
To some extent it influences what the mathemat-
ical community thinks is of high significance. For
example, the solution to historically famous 
problems is considered significant. Nobody in the
mathematical world could doubt that Fermat’s Last
Theorem and the Riemann Hypothesis are of 

high significance. The same can be said for the
“Millennium Prize Problems” identified by the Clay
Mathematics Institute [7], although some of those
problems may be less famous. Nevertheless, 
those problems at least are plausible candidates 
for being considered significant.

What else is significant, besides such problems?
That is where the term “bisociation” comes in. 
Developments that have been regarded by the
tastemakers of the mathematical community as 
being highly significant are almost always devel-
opments in which ideas and techniques from one
set of mathematical sources impinge fruitfully on
the same thing from another set of mathematical
sources. In modern history, a major example of
that in my experience was the Atiyah-Singer Index
theorem, where K-theory and differential geome-
try on the one hand and elliptic partial differential
equations on the other hand were identified in a 
very crucial way. Another example, which is perhaps
of even greater importance in terms of its influence
on contemporary mathematical research, was the
thesis of Simon Donaldson, where he attained 
revolutionary new results on the topology of 
four-dimensional differentiable manifolds by 
using techniques of quantum field theory, 
particularly the study of Yang-Mills fields. An 
even more significant example is the interaction 
between quantum field theory and topology in 
the work of Edward Witten in the last two decades.

Many examples arose in lectures at the UCLA
symposium. One was the Langlands Program.
Andrew Wiles’ solution of the Fermat problem con-
sists of verifying one important special case of the
Langlands Program. And what is the Langlands
Program? It is essentially to establish systematically
an interrelation between number theory and certain
problems in group representations and automor-
phic forms. The program continues to develop,
and every new case that is verified will be regarded
as a very significant development. In his essay,
Atiyah emphasizes quantum algebra, arguing 
that the mathematics of the future will consist of
algebraic developments related to the fact that
quantum field theory is both nonlinear and 
infinite-dimensional and therefore falls outside 
of the frame of reference of most of the classical
mathematics that people try to apply to it.

Another interesting example is stochastic
processes, which is a fairly classical field by now.
The so-called Malliavin Program consists of putting
stochastic processes in the framework of Sobolev
spaces. Sobolev spaces were designed explicitly
for studying partial differential equations, and Paul
Malliavin has revolutionized this field by putting
stochastic processes into this framework. There are
other interesting variants of bisociation that can be
mentioned. For example, there are developments
in the topology of Sobolev manifolds. This is
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another case of the intrusion of Sobolev spaces
where ordinarily one would not see them. I asked
one of the practitioners of this field whether the
topologists take his work seriously, and he said they
do and he has great interactions with them.

I believe that a great deal of the internal devel-
opment of mathematical ideas will consist of 
examples of this kind, where ideas from one area
suddenly impinge on another area. Sometimes this
causes displeasure, but I think that displeasure
has to be quelled. It appears that, at least in the 
major mathematical centers, the students have
learned to adapt to such changes. In fact, sometimes
they flock from one fad to another. It is sometimes
comical to see a group of people decide to change
their minds about what they are interested in.

The most important area of bisociation lies in the
interaction between mathematics and the sciences.

One major external influence on mathematics is,
of course, the computer. Everything that relates to
this sphere will be of central importance to mathe-
matics in the coming century or as long as our 
civilization continues on its present trajectory—
which means as long as it lasts! The influence of
quantum computation is hard to predict, because
nobody actually knows how to carry it out. It is still
in the realm of mathematical modeling. But many
other things—such as complexity of computation
or number theory applied to codes—provide very
striking examples of bisociation that certainly 
nobody would have predicted thirty years ago.

In molecular biology, mathematics has a much
greater role to play than people realize, even though
mathematics has had, for example, a significant ef-
fect on the course of the genome project. There will
be an even larger effect when it comes to analyz-
ing how the genome actually creates living cells.
This development has caused a great upsurge of
interest in mathematics on the part of biologists.

In his brief paper, Gromov mentions the essen-
tial developments in data analysis, which have an
impact on such areas as genomics. David Donoho,
an eminent practitioner of data analysis, gave a 
talk about this at the UCLA symposium. He 
showed how sophisticated mathematical tools 
such as wavelets are being used in data analysis.
The rituals of classical statistics no longer suffice
to deal with many problems that people face, 
especially when they have large masses of data—
and large masses of data are the basic ingredient
of the modern world.

Relations of Mathematics to Societal
Structures
The interactions between mathematics and the sci-
ences are important for mathematics not just for
its internal development, but also for the future of
mathematics within societal structures such as the
federal government. There is now an initiative of

the National Science Foundation (NSF) to try to
boost the NSF mathematics budget—an initiative
coming directly from the director of the NSF, Rita
Colwell, a distinguished biologist, who is firmly
convinced that a good deal of the future of biol-
ogy rests on its interactions with mathematics. She
has taken a proactive attitude of favor towards
mathematics and plans to increase funding for 
it. Some may dislike the initiative’s emphasis on 
interdisciplinary research. The emphasis reflects
the fact that mathematicians, especially young
mathematicians, ought to be interested in how
mathematics is applied to other things.

The importance of the relations of mathemat-
ics to the institutions of society can be seen in the
following example. American mathematicians often
think of France as a country where mathematics is
much encouraged. However, the relations of math-
ematics and mathematicians to the French gov-
ernment have been extremely problematic. In 
fact, there was a major crisis in 2000, when Claude
Allègre was the French minister of science, re-
search, and education. He is a reasonably distin-
guished geophysicist and has written several books,
one called The Defeat of Plato—Plato being a 
representative of mathematics. In this book he
clearly reveals that he does not know about the
mathematics pervading fundamental physics after
the year 1900. And he is firmly convinced that
with the computer one does not need to know
much mathematics of any kind to do science. While
he was minister, Allègre decided that mathemat-
ics was overemphasized in French education. He
advocated the elimination of mathematics classes
in the schools. Because he was a very close friend
of the prime minister, this looked like a very 
dangerous situation. Mathematicians were saved
from the consequences of Allègre’s dogmas, but 
not through their own influence. Allègre got very
much under the skin of the major teachers’ unions
in France, who were very angry about his proposed
reforms. In France, which has a socialist regime, you
do not irritate the teachers’ unions! So no matter
how close Allègre was to the prime minister, he had
to go. And he went. I do not think his successors
have taken up his ideas. This episode illustrates that
mathematicians have to be aware and alert in 
responding when these kinds of problems arise 
in the institutions that determine our destiny.

Fortunately, the AMS has taken a very proactive
attitude toward dealing with many of the problems
to which I just referred, and as long as it continues
in this role, the Society will be a vital influence on
the future of American mathematics. The AMS is
playing an extremely important role, which most 
of its members do not realize, in organizing and 
focusing attention on policy matters. I urge the 
membership to find out what is going on in this
sphere. One can go to meetings of the committees
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that deal with these matters. The meetings are 
held in Washington, D.C., and are open to the math-
ematical public.

The report in which Gromov’s essay appeared
noted that mathematics in the United States is
flourishing, but it is not guaranteed that it will
continue to flourish, for two reasons. One is the
scarcity of resources. But even more important is
the scarcity of recruitment, especially of talented
American students, to mathematical vocations.
Both of these are very crucial questions, and ques-
tions that we must continue to address.
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