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It has been a great pleasure to read such a grace-
fully written, original book of mathematics. Ignoring
the mathematics, one can enjoy Indra’s Pearls as an
art book displaying deeply hidden fractal shapes—
magical, mysterious, and beautiful.

The authors introduce from scratch a range of
topics relevant to the central theme, including

• complex numbers,
• groups of symmetries,
• Möbius transformations,
• combinatorics and number theory of the mod-

ular group,
• geometric group theory,
• fractal geometry.
In a nutshell, the book is a walkabout in the space

of two-generator Schottky groups and their various
degenerations. Discrete groups of Möbius transfor-
mations, in particular Schottky groups, act not only
on the extended complex plane but on upper half
3-space as well. A discrete group is always associ-
ated with a 3-manifold (or orbifold) and is often in
addition associated with a surface or surfaces that
form the boundary of the 3-manifold. The action

of most groups can-
not be fully under-
stood without involv-
ing the associated
3-manifolds. Yet it is
completely appropri-
ate that in their pre-
sentation, the authors
have stuck to the
group action on S2; to
have done otherwise
would have opened a
Pandora’s box which
would have been in-
consistent with the el-
ementary nature of

the exposition. However, I will describe their work
from the more general perspective. I will also round
out some of the historical references.

A two-generator Schottky group is associated with
a surface of genus two that bounds a handlebody. If
one imagines a surface of genus two smoothly 
embedded in R3 , the region it encloses is called a 
handlebody of genus two. In fact, two-generator 
Schottky groups are perhaps the simplest class of
“nonelementary” discrete groups. Yet typical phe-
nomena that occur when working with more com-
plicated groups already appear in the two-generator
Schottky case and, because of the low dimension, can
be fully exhibited on the computer monitor. That is
why this is the perfect class to explore visually. The
most interesting phenomena occur after the groups
are geometrically “degenerated” in certain ways.

Indra’s Pearls is a tale of Möbius transformations,
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A : z �→ az + b
cz + d

, ad − bc �= 0.

The Möbius transformations comprise the
class of conformal mappings of C∪∞ ≡ S2

onto itself. Each transformation A is asso-
ciated with a matrix

A = ±
(
a b
c d

)
∈ SL(2,C),

normalized so that ad − bc = 1. The com-
plex number a + d (defined up to the factor
±1) is called the trace of A .

A Möbius transformation is the compo-
sition of an even number of reflections in cir-
cles and lines. Being such, it has a natural ex-
tension to upper half 3 -space. Upper
halfspace, endowed with its hyperbolic met-
ric, is a model of hyperbolic 3-space H3. The
totality of extensions form the full group of
orientation-preserving isometries of H3. The
subgroup of Möbius transformations that in
addition preserve the upper halfplane com-
prise the group of orientation-preserving
isometries of hyperbolic 2-space H2.

A Möbius transformation, other than the
identity, is classified as elliptic if conjugate
to z �→ eiϕz with ϕ �≡ 2π , parabolic if con-
jugate to z �→ z + 1, and loxodromic if con-
jugate to z �→ keiϕz, k > 1 . It is those loxo-
dromics with ϕ �≡ 0 that are responsible for
the spirals that are so decorative in the limit
sets (see Figure 2). 

A discrete group G of Möbius transfor-
mations is called a kleinian group. If in ad-
dition it preserves the upper halfplane (or
any disk in S2), it is called a fuchsian group.
The limit set Λ(G) is the set of accumulation
points of the orbit of any point O in upper half-
space; the limit set lies in S2. The group G is called
elementary if it is a finite group or if Λ(G) consists
of one or two points. For nonelementary groups,
as all the groups we consider will be, the limit set
is a closed perfect set in which the loxodromic
fixed points are dense. The parabolic fixed points,
if any, are dense as well. The complement
Ω(G) = S2 \Λ(G) is called the set of discontinuity or
regular set. It is the largest open set in S2 in which
G is properly discontinuous.

A two-generator Schottky group is a group G that
arises from four mutually disjoint circles,
{C1, C′1;C2, C′2}, bounding mutually disjoint disks in
C. Choose any Möbius transformation that sends
the interior of Ci onto the exterior of its partner C′i ,
i = 1,2, and label the pair A,B. The group G = 〈A,B〉
so generated is discrete and free. Its limit set Λ(G)
is totally disconnected with positive Hausdorff di-
mension and zero area (“fractal dust”). It corresponds

to the “boundary” of the Cayley graph of G : each
limit point is the limit of a sequence of nested cir-
cles. Therefore each limit point corresponds to a
unique infinite word in four letters: the two
generators plus their inverses. The common exte-
rior of the four circles is a fundamental tile for the
action of G on Ω(G).

Actually the group G so constructed is nowadays
called a classical Schottky group. This is to distin-
guish it from the geometrically similar groups
where the Schottky circles Ci no longer exist but
are replaced by noncircular Jordan curves. Recent
work of Hidalgo-Maskit has clarified how this dis-
tinction arises.

The quotient S(G) = Ω(G)/G is a Riemann surface
of genus two (see Figure 1); the quotient M(G) =
(Ω(G)∪H3)/G is a handlebody of genus two, as is
a pretzel. Its interior H3/G is complete in the pro-
jected hyperbolic 3-metric.

Figure 1. Dr. Stickler is gluing together each pair of Schottky circles so
that their common exterior becomes a surface of genus 2 (Fig. 6.15 in
the book). Here A , a = A−1, B, b = B−1 are the generators.
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to a tiling of the two domains of discontinuity. In
parallel, the authors explain how the “boundary”
of the Cayley graph and the limit set congeal to 
become topological circles. This is because the 
initial loxodromic commutator becomes parabolic
in the limit, fusing two fixed points into one.

Quasifuchsian space QF is naturally embedded
as an open, connected, proper subset of the rep-
resentation variety R(G) in PSL(2,C) , modulo 
conjugation, where R(G) is formed subject to the
restriction that the commutator must remain 
parabolic. As such, QF has a relative boundary
∂QF. There are a countable number of special
points on the boundary called cusps. These corre-
spond to groups with new parabolics and, more 
particularly, are of the type of H1 and H2, to be 
introduced below.

By the mid-1970s, Troels Jorgensen had worked
out a complete picture of QF. He showed that the
space can be described in terms of the combina-
torics of the faces of the isometric (Ford) funda-
mental polyhedron for each group. To date, most
of his work has not been published, yet it has 
become widely known and successfully applied,
most recently by Makato Sakuma and colleagues to
problems concerning 2-bridge knots. Jorgensen
gave an alternate description of QF in terms of a
“triangle graph”: Each vertex represents a genera-
tor, and two generators represent the same vertex
if and only if they are equal or inverses, modulo 
conjugations. Each edge represents a generator
pair. The traces of the three vertices of a triangle
are related by the Markoff identity. Jorgensen 
represented his triangle graph in the modular 
tessellation2 so that the vertices can be indexed by
the Farey series and continued fractions. Jorgensen
proved that the Ford polyhedron P meets each
component Ωtop , Ωbot in a circular polygon. He as-
sociated each of these two polygons with a trian-
gle in his graph and then chose the minimal trian-
gle strip in the graph joining the two triangles.
Amazingly, the labeling of this strip not only de-
scribes the combinatorics of the faces of P but
also reveals the group element associated with
each face. Singly or doubly degenerate groups cor-
respond to half-infinite or infinite geodesic strips.
In this theory, the possible geometric limits3 at a

2The reference is to the famous tiling of the upper half-
plane by the orbit of two adjacent ideal triangles under
the level 2 congruence subgroup of the modular group,
itself a pinched Schottky group, and the Farey series 
description of its ideal vertices.
3The sequences can be chosen to converge not only 
algebraically in the generators to a cusp group G∗ but 
also geometrically in that the quotient manifolds 
converge to the manifold of a Kleinian group H ⊃ G∗ . 
H will be strictly larger if the algebraic convergence to 
G∗ is “tangential”.

To begin the process of degeneration, find a
simple loop γ ⊂ S(G) that divides the surface into
two tori, each with one boundary component, yet
does not bound a topological disk within M(G).1

“Pinch” the surface S(G) along γ. This process
yields a sequence of isomorphisms onto Schottky
groups {θn : G → Gn}. The isomorphisms converge
to an isomorphism θ : G → G∗ in the sense that for
each generator A,B ∈ G, limθn(A) = θ(A) = A∗ ex-
ists, and likewise θ(B) = B∗ , while G∗ is the group
generated by these two limits. Such convergence,
that is, convergence of generators, is called alge-
braic convergence. If g ∈ G is an element corre-
sponding to γ, then θ(g) is parabolic. This means
that the commutator [A∗, B∗] is parabolic if A,B
are suitably chosen.

In the Hausdorff topology, limΛ(Gn) = Λ(G∗) .
Instead of one infinitely connected component,
Ω(G∗) has two simply connected components,
Ωtop(G∗) , Ωbot (G∗). Each is invariant under the
full group G∗ .  Their quotients, Stop(G∗) =
Ωtop(G∗)/G∗, Sbot (G∗) = Ωbot (G∗)/G∗ , are once-
punctured tori. To complete the picture, the quo-
tient hyperbolic 3-manifold is a product M(G∗) ∼=
Sbot (G∗)× [0,1]. Customarily, one of the compo-
nents of ∂M(G∗) is referred to as the “top” and the
other, the “bottom”, as has already been 
suggested.

With this first pinch we arrive at the class of
pinched Schottky groups of the type of G∗. Re-
verting to the original notation, this is the class of
two generator, free, discrete groups of the form
G = 〈A,B〉 , where A,B are loxodromic but their
commutator [A,B] = ABA−1B−1 is parabolic, and
Ω(G) has two simply connected components, each
invariant under G . Such a group is called a quasi-
fuchsian group because it is the image of a fuch-
sian group under a quasiconformal mapping. The
collection QF of such groups, modulo conjugation,
comprises the quasifuchsian once-punctured torus
space. The groups depend on two complex para-
meters that may be taken essentially as the traces
of A and B; correspondingly, QF is a 2-dimensional
complex manifold.

In the book this new class first appears by 
having the four Schottky circles become tangent—
or, as the authors say, “kiss”—so as to form a 
circular quadrilateral. Each pairing transformation 
A,B must be chosen so as to fix the appropriate
point of tangency. The result is called a “kissing
Schottky group”, and the resultant geometric pic-
ture in C is called “Indra’s necklace” (Figures 6.16,
6.1). It is shown how the tangent circles give rise

1Much later, in Chapter 8 (see Figure 8.20), an entirely dif-
ferent degeneration is introduced (called a Riley group):
the two generators A,B become parabolic. The corre-
sponding 3-manifold is the connected sum of two pinched
solid tori: glue together two bagels with defective holes.
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of H1 conjugate to the famous level-two congru-
ence subgroup of the modular group.

The cusp group H1 itself has a 1-dimensional
complex deformation space QF1, called a Maskit
slice; Sbot, the 3-punctured sphere, is fixed, while
the once-punctured torus Stop is allowed to vary
over all possibilities, making the slice a represen-
tative of the once-punctured torus Teichmüller
space. There are countably many ways to pinch Sbot,
and each way gives rise to a “slice”.6 The space QF1
is the quasiconformal deformation space of H1. It
is not composed of quasifuchsian groups; rather
QF1 ⊂ ∂QF . The modular tessellation provides 
a model for the boundary ∂QF1, with the Farey 
series used to index the cusps.

For Teichmüller theory the most useful slices
have been the Bers slices that are submanifolds of
QF. The closure of a Bers slice is homeomorphic
to a disk, whereas the closure of a Maskit slice is
homeomorphic to a disk minus a boundary point
(Minsky). A Bers slice is determined by fixing the
conformal type of the once-punctured torus Sbot
while allowing Stop to vary. McMullen showed that
cusps are dense on its boundary. Computing a Bers
slice is more difficult, since doing so involves

6There are also slices based on a singly degenerate Sbot .

cusp, including nonfinitely generated
groups, can be deduced from the finite
strip representing the cusp.

In particular, Jorgensen recognized that
cyclic extensions H∗ of certain of his bound-
ary groups H—doubly degenerate groups
corresponding to periodic infinite geodesic
strips—give rise to manifolds M(H∗) that
are fibered over the circle, with fibers being
once-punctured tori. The discovery was a
surprise; some had doubted the existence of
such hyperbolic manifolds. For one of these
groups,4H0, M(H∗) is homeomorphic to the
figure-8 knot complement. This is a conse-
quence of the fact that H∗ is conjugate to
the group Bob Riley had earlier discovered
to be a representation of the figure-8 knot
group; this was one of the knot and link
groups for which he had found representa-
tions in PSL(2,C) . The group H0 is the dou-
bly degenerate example presented in the
book.

Understanding of QF (and of deforma-
tion spaces for general groups) has dra-
matically increased in recent years. The
manifold interiors H3/H corresponding to
all boundary groups H ∈ ∂QF , as is the
case for groups of QF , are topological
products S × (0,1), where S is a once-punc-
tured torus (Thurston, Bonahon). McMullen
showed that the limit set of any H ∈ ∂QF
is locally connected. McMullen, Canary-Her-
sonsky proved that cusps are dense there. It fol-
lows from the ending lamination conjecture for
QF—proved by Yair Minsky, with additional results
of Brock, Bromberg, Canary, and Minsky—that any
group that “should be” on ∂QF by virtue of the
product topology of its quotient actually is.

We can now do some more pinching. Take any
simple loop γb in, say, Sbot (G) not contractible to
a point or a puncture, and “pinch” again. We get
an algebraically convergent sequence of quasi-
fuchsian groups, ending up with a group H1 with
the following property. In the limit, the top surface
Stop(H1) remains a once-punctured torus. How-
ever, Sbot (H1) has become the 3-punctured sphere.5

Up in S2 there is still a component Ωtop(H1) of
Ω(H1) that is simply connected and invariant under
the full group H1. In place of Ωbot there is a count-
able union of disks, each preserved by a subgroup

4Actually the group H0 first appeared, not in Jorgensen’s
Annals paper (as suggested in the book), which featured
a family of degenerate groups with elliptic commutators,
but in a somewhat later, related paper with the reviewer.
5There is only one 3-punctured sphere in the sense that
any two are Möbius equivalent.

Figure 2. A blow-up of part of the limit set of a once-punctured torus
quasifuchsian group. Dr. Stickler is shown being carried around one
component of the regular set by the group action (Fig. 8.6 in the book).
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The Mathematical Cartoonist
The cartoons in Indra’s Pearls are the cre-
ation of freelance cartoonist Larry Go-
nick. That they convey mathematical ideas
so well is no accident: Gonick was once on
track to become a mathematician, study-
ing mathematics as an undergraduate and
graduate student at Harvard University in
the 1960s and 1970s. Today he is known
for his wacky, brainy cartoons about sci-
ence, mathematics, and history.

Gonick began his cartooning career
with Blood from a Stone: A Cartoon Guide
to Tax Reform (New York Public Interest
Research Group, 1972), written with Steve
Atlas. “It was the dullest subject my coau-
thor could think of, so it needed cartoons,”
Gonick remarked. He went on to write po-
litical and historical cartoons for Boston
newspapers. He moved to San Francisco
in 1977 and fell in with the world of “un-
derground comics”, a genre exemplified
by the work of R. Crumb. Starting in the
early 1980s, Gonick coauthored a series
of cartoon guides to such subjects as ge-
netics, physics, and the computer. The
bestseller of the series is The Cartoon
Guide to Statistics (HarperCollins, 1994) by
Gonick and Woollcott Smith, which has
been widely used as a classroom supple-
ment and as a training tool in industry. Go-
nick has also written a series of cartoon
histories; the most recent is the third vol-
ume of The Cartoon History of the Uni-
verse (W. W. Norton), which appeared in
fall 2002.

While in college, Gonick got to know
David Mumford, one of the authors of
Indra’s Pearls. The two reconnected when
Gonick spent 1994–95 as a Knight Science Journalism Fellow at the Massachusetts Institute of Technology, and
they collaborated on software designed to visualize four-dimensional space. A few years later, Mumford told Go-
nick that the 20-year-long project of writing Indra’s Pearls was finishing up and sent him a copy of the manuscript.
“I looked at it and I thought, ‘No way,’” Gonick recalled. “If it took them twenty years to do this, it would take them
another seven years to finish it. It turned out [Mumford] was right, and I was wrong.” Mumford asked Gonick to
do some cartoons for the book, and Gonick agreed.

Mumford would send Gonick sketches outlining the ideas the cartoons were supposed to convey. Gonick’s use
of the figure of “Dr. Stickler” adds a human touch to the drawings and conveys a tactile sense of movement. For
example, the first cartoon in the book shows how to make a torus out of a square by identifying the opposite sides
of the square. By having Dr. Stickler manipulate the square, with a little pot of glue at hand to stick the sides to-
gether, Gonick just about eliminates the possibility that a reader could get confused. The cartoons are not merely
accurate; they are perhaps the best way of giving the reader intuition about topological ideas.

The humor and whimsy in the cartoons are not add-ons but derive from the nature of mathematics. During his
stint drawing two-page cartoon strips for the science magazine Discover, Gonick created several strips based on
mathematical ideas, such as transparent proofs, factoring, and DNA computation. The editors did not give him a
hard time about strips on deep mathematics. “I was usually able to convince them that the more recherché the sub-
ject, the better the strip,” he recalled. “Sometimes they would come in with ideas for the strip that were based on
the kookiness of an experiment, and I’d say, ‘No, there’s not enough humor in the experiment being kooky.’ There
has to be some deep principle at work. That’s where the humor comes from.”

—Allyn Jackson

Figure 3. Dr. Stickler is showing how a pair of thrice-punctured
spheres is obtained from the exterior of four Schottky “kissing

circles” (Fig. 7.7 in the book).
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numerically solving Schwarzian equations and
computing monodromy; nevertheless, this has
recently been done by the team of Komori, Sug-
awa, Wada, and Yamashita.

Return to the group H1 obtained by pinching
Sbot (G) and the Maskit slice QF1 that it deter-
mines. We can pinch once more, heading off to
a cusp on ∂QF1: Choose any simple loop
γt ⊂ Stop(H1) that is not in any parabolic con-
jugacy class; in particular, γt and γb do not de-
termine the same conjugacy class within H1.
Pinch γt . We end up with a group
H2 ∈ ∂QF ∩ ∂QF1 such that not only Ωbot but
now also Ωtop has become a countable union of
round disks. Topologically, the interior H3/H2
remains homeomorphic to S × (0,1), with S a
once-punctured torus, while ∂M(H2) is the
union of two 3 -punctured spheres (see
Figure 3). The group H2 is rigid; it cannot be de-
formed (modulo Möbius equivalence). The limit
set Λ(H2) is the union of circles and limits of cir-
cles. Particularly significant in understanding
the limit set are the parabolic fixed points; these
are the points of tangency of the circles.

The authors introduce groups of the type
H2 by means of the Apollonian gasket, repre-
sented in Figure 7.3 as a beautiful “glowing
gasket.” It is constructed by means of a sym-
metric arrangement of the four “kissing cir-
cles”, which determines three circular trian-
gles. The cartoon Figure 3 well displays the
process of pinching leading to a double cusp
group.

The first seven chapters (two-thirds of the book)
consist of introductory material and detailed 
discussion of a number of typical examples. 
Included is a very clear presentation of the 
modular tessellation and Farey series with related
continued fraction expansion. Later in the book it
is explained how the rational numbers correspond
to slopes of simple curves on a torus and words in
the generators.

Chapter 8 begins by introducing a number of pa-
rameter systems, involving the trace of two felici-
tously normalized generators, for QF. These are
used to roam about the space, with particular at-
tention paid to the effect on the pictures of chang-
ing the generator traces. We find out how to “tighten
the spirals” (Figure 8.13) and “raise a crop of spi-
rals” (Figure 8.23). The subtle matter of visualiz-
ing “thin necks” is addressed (Figure 8.17). We
learn how to estimate the Hausdorff dimension of
the limit set. And we are led out to “single cusps”
of the type H1 and “double cusps” of the type H2
on the boundary.

Chapter 9 is devoted to exploring the boundary
of a Maskit slice. Guided by the Farey series indexing
of the cusps (now of type H2), the boundary is

traced out. The Schottky heritage of these cusps is
still evident in the form of “smushed” Schottky cir-
cles (Figure 9.5). In describing the cusps the authors
use the term “accidental parabolic”, which has
come into common use for a “new” parabolic that
arises in a boundary group. This is unfortunate ter-
minology, because building and finding such groups
is anything but “accidental”.

Chapter 10 fills out our knowledge of a Maskit
slice boundary. We have a look at the boundary it-
self and notice its self-similarity (Figure 10.3). We
are shown how to approach an irrational (non-
cusp) boundary point by a sequence of double cusp
groups. We are shown two examples of singly de-
generate groups (Figures 10.4, 10.6), with indica-
tion of how the degeneration of the regular set
has occurred: In these examples the top punctured
torus boundary component of the 3-manifold has
vanished completely, leaving the triply punctured
sphere on the bottom. The limit set now has
Hausdorff dimension two (Bishop-Jones) but still
no interior. In fact, the double cusps of type H2 are
dense on ∂QF1 (Canary-Culler-Hersonsky-Shalen),
and all the other boundary groups are singly de-
generate.

Figure 4. Exploring a Maskit slice QF1 near a double cusp group of
type H2 on ∂QF1. The group whose limit set is (i) is close to H2 while
in (iii) the group is just outside QF1 and is not discrete. The
parameters ta, bb are traces of generators (Fig. 8.15 in the book).
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We are taken back to quasifuchsian space QF for
an approximation to the doubly degenerate group
H0. It is found as the limit of a cleverly symmetrized
sequence of double cusp groups on ∂QF. Here
both once-punctured tori components of the 3-
manifold have vanished. The limit set has become
S2 itself; an approximation appears in Figure 10.1.
One finds the original structure buried in the limit
set as the lift to H3 of each fiber S × {x} determines
a space-filling curve on S2 (Cannon-Thurston). By
the use of the group, the authors show how to par-
tition S2 in a way to reflect its Schottky heritage.

Lest the reader come away with the idea that he
has understood everything, the final examples
should dispel any such thought. There is a striking
example of a geometric limit properly containing
the algebraic limit at a double cusp (Figure 10.16).
Jorgensen’s theory could be repeated by requiring
the commutator [A,B] to be elliptic of finite order
rather than parabolic. Figure 11.1 is an example of
a cusp group of this type. For this example the
Schottky circles intersect at 45◦ (Figure 11.2). To
cope with the group theoretical complications in 
developing an algorithm to compute the limit set
of such a group, the authors introduce the theory
of automatic groups. In this respect, they use a
program of Derek Holt that has implemented the
theory.

It makes a huge difference that the pictures are
of the highest resolution and quality in that we have
a clear view for long distances into the fine detail
of the limit sets. The many diagrams are drawn with
great care, both as to visual impact and to their con-
tent. The colorations are not only artful but are used
to bring out special mathematical properties.

The authors intend that the book be read and
understood by a broad audience, by everyone who
is comfortable with high school algebra. A broad
audience could certainly understand the earlier
chapters. The complexity builds up slowly; tech-
niques and ideas are explained from first princi-
ples as they are introduced. But toward the end, less
mathematically experienced readers might need
help. In the academic world the book could be
used as the basis of a college course on “chaos and
fractals”, or read as an introduction to group 
actions, or read just for enjoyment by graduate 
students and, not least, by professors. At the end
of each chapter there is a well-chosen set of prob-
lems called “projects” that provides the reader
with hands-on experience with the theory.

An important aspect of the book is its inclusion
of pseudocode which in principle will allow a savvy
programmer, or “hacker”, to explore for himself the
space of these groups. But even a reader who is not
interested in computing will find the pseudocode
essential in understanding how the pictures are
made. The computational aspect is a natural vehi-

cle to draw those with hacker ambition into the
mathematical content. Conversely, a mathematical
reader who has become intrigued while reading
about the subject may be enticed to make his own
computer explorations.7

Indra’s Pearls is not written in the theorem/proof
style of a mathematics textbook. Rather, it is a
flowing narrative, leavened with wit, whimsy, and
lively cartoons by Larry Gonick. A delightful quo-
tation highlights a theme for each chapter. For ex-
ample, Chapter 3 begins with a quote from Lewis
Carroll:

First accumulate a mass of Facts: and
then construct a Theory.

That, I believe is the true Scientific
Method.

I sat up, rubbed my eyes, and began to
accumulate Facts.

The chosen style exposes the authors’ own love of,
and long experience with, the subject, which they
have made a great effort to communicate.

The heaven of the great Buddhist god Indra is
said to be an infinite web strung with pearls. In each
pearl all the others are reflected, in each reflection
the infinite number of pearls is seen again. Indra’s
universe is seen in each pearl and seen over and
over again on smaller and smaller scales; the
metaphor of the title anticipates the geometry. 
The three authors, with the support of Cambridge
University Press, have produced a book that is as
handsome in physical appearance as its content is
stimulating and accessible. The book is an exem-
plar of its genre and a singular contribution to 
the contemporary mathematics literature.

Note: All figures from Indra’s Pearls have been
reprinted with the permission of Cambridge Uni-
versity Press.

7Masaaki Wada has built a publicly available Mac program,
OPTi, which allows the user to explore QF, as parame-
terized by Jorgensen’s “complex probabilities”. OPTi in
particular indicates the Ford polyhedron corresponding to
each point of QF .  For information on OPTi, see
http://vivaldi.ics.nara-wu.ac.jp/~wada/
OPTi/index.html.

http://vivaldi.ics.nara-wu.ac.jp/~wada/OPTi/index.html
http://vivaldi.ics.nara-wu.ac.jp/~wada/OPTi/index.html

