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The 2003 George David Birkhoff Prize in Applied
Mathematics was awarded at the 109th Annual
Meeting of the AMS in Baltimore in January 2003.

The Birkhoff Prize recognizes outstanding con-
tributions to applied mathematics in the highest
and broadest sense and is awarded every three
years (until 2001 it was awarded usually every five
years). Established in 1967, the prize was endowed
by the family of George David Birkhoff (1884–1944),
who served as AMS president during 1925–26. The
prize is given jointly by the AMS and the Society
for Industrial and Applied Mathematics (SIAM).
The recipient must be a member of one of these
societies and a resident of the United States,
Canada, or Mexico. The prize carries a cash award
of $5,000.

The recipients of the Birkhoff Prize are chosen
by a joint AMS-SIAM selection committee. For the
2003 prize the members of the selection commit-
tee were: Douglas N. Arnold, Paul H. Rabinowitz,
and Donald G. Saari (chair).

Previous recipients of the Birkhoff Prize are
Jürgen K. Moser (1968), Fritz John (1973), James B.
Serrin (1973), Garrett Birkhoff (1978), Mark Kac
(1978), Clifford A. Truesdell (1978), Paul R.
Garabedian (1983), Elliott H. Lieb (1988), Ivo Babuška
(1994), S. R. S. Varadhan (1994), and Paul H.
Rabinowitz (1998).

The 2003 Birkhoff Prize was awarded to JOHN

MATHER and to CHARLES S. PESKIN. The text that follows
presents the selection committee’s citation, a brief
biographical sketch, and the awardee’s response
upon receiving the prize.

John Mather

Citation
John Mather is a mathematician of exceptional
depth, power, and originality.

His earliest work included contributions to 
foliation theory in topology and to the theory of
singularities for smooth and analytic maps on Rn
where he provided the rigorous foundations of
this theory. Among his main contributions is a sta-
bility result. Here stability of a map means that any
nearby map is equivalent to it up to diffeomor-
phisms of the domain and target manifolds. While

this is very difficult to check directly, Mather proved
that infinitesimal stability, a condition that can
often be verified constructively, implies stability,
and he developed an algorithm for describing 
the local forms of these stable mappings. These 
astonishing generalizations of the earlier work of
Hassler Whitney have provided approaches to 
understand a variety of applied issues ranging
from the structure of the Pareto set of the utility
mapping in economics to phase transitions in
physics.

Switching to the theory of dynamical systems,
Mather has made several major contributions. An
early highlight was his result with Richard McGehee
proving that binary collisions in the Newtonian 
4-body problem could accumulate in a manner that
would force the system to expand to infinity in 
finite time. He was a co-founder of Aubry-Mather
theory where, in particular, he proved that twist
maps of an annulus possess so-called Aubry-Mather
invariant sets for any irrational rotation number.
These sets are Cantor sets, and the diffeomorphism
on them is equivalent to a rigid rotation of a circle.
Since KAM theory, which extends research going
back to the work of Birkhoff, provides informa-
tion about such situations when the rotation 
number is Diophantine, Mather found the missing
circles in KAM theory.

Mather extended this work to multidimensional
positive definite Lagrangian systems. He proved the
invariant sets he found here—called Mather sets—
are Lipschitz graphs over configuration space. He
also developed a variational method for con-
structing shadowing trajectories first for twist
maps and then for positive definite Lagrangian
systems. In the twist map setting, he established
the existence of heteroclinic orbits joining Aubry-
Mather sets in the same Birkhoff instability region.

Currently he is doing seminal work on Arnold dif-
fusion. In particular Mather proved the existence
of Arnold diffusion for a generic perturbation of an
a priori unstable integrable Hamiltonian system,
solving the problem left standing from Arnold’s 
famous 1964 paper.

Mather is a member of the U.S. and Brazilian
National Academies of Sciences, a Guggenheim and
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Sloan Fellow, and the winner of the 1978 John J.
Carty Medal from the U.S. Academy.

Biographical Sketch
John N. Mather was born in Los Angeles, California,
on June 9, 1942. He received a B.A. from Harvard
University in 1964 and a Ph.D. from Princeton
University in 1967. From 1967 to 1969 he was pro-
fesseur associé (visiting professor) at the Institut des
Hautes Études Scientifiques (IHÉS) in France. In
1969 he joined the faculty of Harvard University as
associate professor and was promoted to profes-
sor in 1971. He was a visiting professor at Princeton
University in 1974–75 and joined the faculty of
Princeton University as professor in 1975. He was
a visiting professor at IHÉS in 1982–83 and at the
Eidgenössische Technische Hochschule in Zurich in
1989–90.

Mather was an editor of the Annals of Mathe-
matics from 1990 to 2001 and has been an editor
of the Annals of Math. Studies from 1990 to the 
present.

Mather was a Sloan Fellow in 1970–72 and a
Guggenheim Fellow in 1989–90. He was elected a
member of the National Academy of Sciences in
1988 and a member of the Brazilian Academy of
Sciences in 2000. He received the John J. Carty
Medal of the National Academy of Sciences in 1978
and the Ordem Nacional do Mérito Científico from
the Brazilian Academy of Sciences in 2000.

Mather’s current research is in the area of
Hamiltonian dynamics. In the past he has worked
in the theories of singularities of mappings and 
foliations.

Response
It is a pleasure to accept the Birkhoff Prize for my
work in singularities of mappings, the theory of fo-
liations, and Hamiltonian dynamics. I greatly ap-
preciate the generous citation of my achievements,
as well as the honor of the prize. While I have not
(yet) worked on applications of mathematics as
such, I have always been fascinated by theoretical
mathematical questions that originated in appli-
cations, for example, the n-body problem in New-
tonian mechanics. Poincaré showed long ago that
the study of the dynamics of area-preserving map-
pings of surfaces provides important insights into
this problem. G. D. Birkhoff greatly extended Poin-
caré’s work on area-preserving mappings, and his
work was one of the inspirations for my contribu-
tion to Aubry-Mather theory.

I am grateful to my teachers at Harvard University
and Princeton University, as well as colleagues and
friends, from whom I have learned so much. I also
wish to express my appreciation for the system of
higher education, which makes a career of mathe-
matical research possible.

Charles S. Peskin

Citation
Charles Samuel Peskin has de-
voted much of his career to
understanding the dynamics
of the human heart. Blurring
disciplinary boundaries, he
has brought an extraordinarily
broad range of expertise to
bear on this problem: mathe-
matical modeling, differential
equations, numerical analysis,
high performance computing,
fluid dynamics, physiology,
neuroscience, physics, and en-
gineering. His primary tool for
understanding the heart is
computer simulation. In work
spanning more than two
decades, much of it with David
McQueen, Peskin has devel-
oped a computer model that
simulates blood circulation
through the four chambers of
the heart and in and out of the
surrounding circulatory sys-
tem along with the deforma-
tion of the cardiac muscle and
the valves. This virtual heart
enables experimentation in sil-
ico that would be impossible
in vivo and is of tremendous
value to the study of normal
heart function and a variety
of pathologies, to plan inter-
ventions, and to design pros-
thetic devices.

Peskin’s computer simula-
tions are based on the im-
mersed boundary method, a
unique numerical method he
developed for the solution of dynamic fluid-struc-
ture interactions. This method, which is built on a
novel approach to couple a fluid description in
Eulerian coordinates to a solid description in La-
grangian coordinates, was originally designed to de-
scribe the flow of blood around cardiac valve sur-
faces. But it has found much wider use, allowing
simulation of a variety of complex systems, such
as the inner ear, swimming fish, locomoting mi-
crobes, flowing suspensions, and filaments flapping
in soap films. The development and analysis of the
immersed boundary method is an ongoing and ac-
tive field of study.

While the heart is a large biological motor, much
of Peskin’s recent research concerns biological 
motors at the smallest scales. Here too he brings 
innovative mathematical modeling and computa-
tional simulation to bear, exploring and explaining

John Mather

Charles S. Peskin
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the microscopic machinery inside cells which 
harness Brownian motion for transport and motility.

A former MacArthur fellow, Charles Peskin is a
member of the American Academy of Arts and 
Sciences, the National Academy of Sciences, and the
Institute of Medicine.
Biographical Sketch
Charles S. Peskin was born in New York City in 1946.
His mathematical education began at the Ethical Cul-
ture School, where arithmetic was done with sticks
tied together, when possible, in bundles of ten to 
explain the decimal system. His father, an electrical
engineer, was another early mathematical influence,
teaching him the elements of algebra from the sim-
ple yet mysterious example x + y = 10, x− y = 2 . At
Morristown (New Jersey) High School, Peskin had 
an inspiring mathematics teacher named Betty Wag-
ner, who emphasized sketching graphs of functions
and who was kind about undone homework. There
is a picture of Peskin in his high school yearbook
standing in front of these words written in chalk 
on the blackboard: “Resolved: That Homework Be
Abolished”.

Peskin studied engineering and applied physics
at Harvard (A.B., 1968). “Engineering at Harvard?
Isn’t that MIT?” was a common comment he heard
at the time. He then entered the M.D.-Ph.D. program
at the Albert Einstein College of Medicine, Bronx,
NY, but dropped out of the M.D. part of the program
after completing a Ph.D. (1972) in physiology with
a thesis entitled “Flow patterns around heart valves:
A digital computer method for solving the equations
of motion”. This thesis was the beginning of the
work that has now led to the Birkhoff Prize. Once
he had decided not to go on to the M.D., Peskin 
nevertheless remained at the Albert Einstein College
of Medicine for a year, studying pediatric cardiol-
ogy and pulmonary medicine. During this time 
he developed an interest in fetal circulation and 
congenital heart disease, and he has since done
mathematical modeling in these areas.

In 1973 Peskin joined the faculty of the Courant
Institute of Mathematical Sciences, New York Uni-
versity, where he has been ever since. He became
a professor of mathematics in 1981 and received
the additional title professor of neural science in
1995. At NYU, Peskin teaches courses like Mathe-
matical Aspects of Heart Physiology, Mathematical
Aspects of Neurophysiology, Partial Differential
Equations in Biology, Biomolecular Motors, and a
freshman seminar on Computer Simulation. He 
is the coauthor (with Frank Hoppensteadt) of 
Modeling and Simulation in Medicine and Biology,
Second Edition (Springer-Verlag, 2002). At New
York University, Peskin has received the Sokol 
Faculty Award in the Sciences (1992) and the Great
Teacher Award of the NYU Alumni Association
(1999).

Peskin’s other honors are the MacArthur Fellow-
ship (1983–88), SIAM Prize in Numerical Analysis
and Scientific Computing (1986), Gibbs Lecturer
(1993), Cray Research Information Technology 
Leadership Award (joint with David M. McQueen,
1994), Sidney Fernbach Award (1994), Mayor’s Award
for Excellence in Science and Technology (1994), and
von Neumann Lecturer (1999). He is a fellow of 
the American Institute for Medical and Biological 
Engineering (since 1992), fellow of the American
Academy of Arts and Sciences (since 1994), mem-
ber of the National Academy of Sciences (since 1995),
fellow of the New York Academy of Sciences (since
1998), and member of the Institute of Medicine 
(since 2000).
Response
It is a pleasure to accept the George David Birkhoff
Prize of the Society for Industrial and Applied
Mathematics and the American Mathematical
Society. I am awed to be placed in the company of
former winners such as Jürgen Moser, Fritz John,
Marc Kac, Paul Garabedian, and S. R. S. Varadhan,
whom I also count as colleagues and friends.
Although some of them are no longer with us, their
influence, both mathematical and personal, surely
lives on. Some of that influence is encapsulated 
in particularly memorable remarks. I especially 
remember when Mark Kac greeted me in his 
booming voice: “Ah, Peskin, the man with the two-
dimensional heart!” I think he would be pleased to
see that I have now won this great honor in large
part for a three-dimensional heart model. Then
there is the famous remark of Fritz John (that he
claims never to have said) that the rewards of 
mathematics are the grudging admiration of a few
friends. As the recipient of a reward of mathemat-
ics today, I would like to thank the mathematics
community for welcoming me without proper 
credentials (my Ph.D. is in physiology) and (with no
hint of grudging that I have ever detected) for 
honoring my research.

I would like to thank my father, Edward Peskin,
and my thesis advisors, Edward Yellin and Alexan-
dre Chorin, for starting me off on the road that has
now led to the Birkhoff Prize. It was my father, an
electrical engineer, who first suggested to me that
it might be a good idea to apply mathematical
methods to biological problems. It was Yellin, a 
mechanical engineer turned physiologist, who first
introduced me to the fascinating dynamics of the
heart and its valves. Around this time I had the 
incredible good luck to meet Alexandre Chorin,
who invited me to his course on fluid mechanics
at the Courant Institute. Chorin taught me his new
projection method for incompressible flow; set me
up with an office and an account on the CDC6600
(which we programmed with punch cards—I still
recall the satisfying sounds of the keypunch and
the relaxed mode of submitting a deck of cards to
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the computer and then going for a walk around
Washington Square while awaiting the result); and
introduced me to such inspiring characters as Peter
Lax, Cathleen Morawetz, and Olof Widlund, each of
whom has had a profound influence on my life and
work.

My long-term colleagues in the research that is
described in the citation for the Birkhoff Prize are
David McQueen (in the case of the heart) and George
Oster (in the case of biological motors). Both deserve
a large share of the credit. McQueen handles all of
the details of heart model construction, conducts
our computer experiments, and visualizes the 
results with custom software of his own design. My
role is to think about the methodology and suggest
changes as needed. In the case of biomolecular
motors, I am particularly grateful to George Oster
for introducing me to this exciting field. Most of the
concepts in our joint work have been his. I have been
happy to help him reduce some of these concepts
to specific mathematical models and computer
simulation programs, which we can then use to
see whether the concepts are capable of explaining
the observed behavior of the biomolecular motor.

I would like to conclude with a few words of ex-
planation about the immersed boundary method.
This is a numerical method for fluid-structure in-
teraction that I originally introduced to study the
flow patterns around heart valves. Heart valve leaflets
are thin membranes that move passively in the flow
of blood and yet have a profound influence on the
fluid dynamics. Examples of this influence are that
they stop the flow when the valve is closed, and when
the valve is open, the leaflets shear the flowing blood
to create vortices that then participate in efficient
valve closure, as was first described by Leonardo 
da Vinci.

The standard way to model this situation would
be to treat the valve leaflet as an elastic membrane
obeying Newton’s laws of motion with forces cal-
culated in part from the elasticity of the mem-
brane and in part by evaluating the fluid stress 
tensor on both sides of the membrane. Then the
fluid equations would have to be supplemented by
the constraint that the velocity of the fluid on 
either side of the membrane must agree with the
instantaneously known velocity of the elastic mem-
brane itself. There are two difficulties with this
standard approach to the problem. First, the valve
leaflet is incredibly thin and light, with hardly any
mass per unit area. (Indeed, if the mass per unit
area were zero, the dynamics of the valve would
not be noticeably different.) Because of its small
mass, the valve leaflet is supersensitive to any im-
balance in the forces acting upon it. The second
challenge is the practical one of evaluating the
fluid stress tensor on either side of the boundary.
This seems difficult (or at least messy) to do 
numerically, unless the computational grid is

aligned with the boundary. On the other hand, in
a moving boundary problem, it is both expensive
and complicated to recompute the grid at every time
step in order to achieve alignment.

In the immersed boundary method, the mass of
the heart valve leaflet is idealized as zero. (Recent
work shows how to handle immersed boundaries
of nonzero mass, but I won’t discuss that here.) This
means that the sum of the elastic force and the 
fluid force on any part of the immersed boundary
has to be zero. Once we know this, it becomes 
unnecessary to evaluate the fluid stress tensor at
the boundary at all! We can find the force of any
part of the boundary on the fluid by evaluating the
elastic force on that part of the boundary. (Note the
use of Newton’s third law: the force of boundary
on fluid is minus the force of fluid on boundary.)
All we need is a method for transferring the elas-
tic force from the immersed boundary to the fluid.
On a Cartesian grid, this may be done by spread-
ing each element of the boundary force out over
nearby grid points. The particular way that this is
done in the immersed boundary method involves
a carefully constructed approximation to the Dirac
delta function. This force-spreading operation 
defines a field of force on the Cartesian lattice that
is used for the fluid computation. Then the fluid
velocity is updated under the influence of that
force field. The Navier-Stokes solver that updates
the fluid velocity does not know about the geom-
etry of the heart valve leaflet; it just works with a
force field that happens to be zero everywhere ex-
cept in the immediate neighborhood of the leaflet.
Note that there is no constraint on the fluid velocity
coming from the state of motion of the leaflet. On
the contrary, since the mass of the leaflet is zero,
the leaflet velocity is not a state variable of the 
problem. Indeed, the no-slip condition has been
turned on its head: it is now the equation of 
motion of the leaflet instead of a constraint on the
fluid. The local fluid velocity at a point of the leaflet
is evaluated by interpolation from the Cartesian
grid. The same approximate delta function that 
was used to spread force can also be used to get
an interpolation operator that is the adjoint (or
transpose) of the force-spreading operator.

In summary, the immersed boundary method
avoids many of the difficulties and pitfalls of the
standard approach to fluid-structure interaction.
By representing an immersed elastic boundary in
terms of the forces applied by the immersed elas-
tic boundary to the fluid, the immersed boundary
method avoids any consideration of boundary
geometry in the fluid computation; makes it un-
necessary to evaluate the fluid stress tensor at the
immersed elastic boundary; and makes it possible
to simulate immersed elastic boundaries that are
essentially massless, like the valve leaflets of the
human heart.


