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O
f course the notion of doing analysis 
in various settings has been around 
for a long time. For the purposes of
this article, “analysis” can be broadly
construed, and indeed part of the point

is to try to accommodate whatever might arise or
be interesting, at least in some way. In particular
this might include spaces of functions, norms on
them, and linear operators, perhaps in connection
with complex analysis, differential equations, or
Fourier analysis.

The monographs [2], [10], [11] provide excellent
starting points for a number of topics along the 
lines of “analysis on metric spaces”, and the 
introductory survey [22] and those in [1] can also
be very helpful resources.

Some general notions
A basic scenario is that of a measure space (X,A, µ),
where X is a set, A is a σ-algebra of subsets of X,
and µ is a nonnegative measure on X for which 
the elements of A are the measurable sets. It is com-
mon to assume that the measure space is σ-finite,
which is to say that X can be expressed as a 
countable union of measurable sets of finite 

measure, to ensure certain kinds of nice behavior.
On such a space one can define integration,
Lp spaces, and so on.

One can add more structure in various interest-
ing ways. For instance, one might have a number 
of σ-algebras on X, all contained in a large σ-algebra
on which µ is defined, and this leads to conditional
expectation operators, as in probability theory. In
another direction, one might have a bijection T from
X to itself such that T preserves the σ-algebra of
measurable sets and the measure µ, in the sense that
µ(T (A)) = µ(A) for all measurable sets A contained
in X. This type of situation is studied in ergodic 
theory.

There is also analysis related to continuous
functions, limits, compactness, and so forth, as on
a topological space. One can do more on a metric
space. Recall that saying that (M,d(x, y)) is a met-
ric space means that M is a nonempty set; d(x, y)
is a function on M ×M taking values in the non-
negative real numbers; d(x, y) = 0 if and only if
x = y; d(x, y) = d(y, x) for all x, y ∈M ; and the 
triangle inequality holds, i.e.,

d(x, z) ≤ d(x, y)+ d(y, z)

for all x, y, z ∈M. Let us also make the standing
assumption that M has at least two elements.

If (M,d(x, y)) is a metric space, α is a positive
real number, and f (x) is a complex-valued function
on M , then we say that f is Lipschitz of order α if
there is a nonnegative real number L such that

|f (x)− f (y)| ≤ Ld(x, y)α

for all x, y ∈M . The smallest such constant L is 
denoted ‖f‖Lipα , and it can also be defined by

‖f‖Lipα = sup
{ |f (x)− f (y)|

d(x, y)α
: x, y ∈M, x �= y

}
.
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This is not quite a norm, but a seminorm, because
‖f‖Lipα = 0 when f is a constant function. The space
of all functions on M which are Lipschitz of order
α is denoted Lipα(M).

For each point p in M, the function fp(x) = d(x,p)
is Lipschitz of order 1, and ‖fp‖Lip1 = 1. One can
derive this using the triangle inequality. More gen-
erally, one can check that if 0 < α ≤ 1, then fp(x)α

lies in Lipα(M) and ‖f αp ‖Lipα = 1 . However, when
α > 1, it may be that the only functions in Lipα(M)
are the constant functions. This is the case when
M is a Euclidean space Rn, equipped with the stan-
dard metric, because the Lipschitz condition of
order α implies that the first derivatives of the func-
tion are equal to 0 everywhere.

If M is Rn and f (x) is a continuously differentiable
function on Rn, then f (x) is Lipschitz of order 1 if
and only if |∇f (x)| is bounded, and ‖f‖Lip1

is equal to the supremum of |∇f (x)| , x ∈ Rn . 
This is not difficult to verify using calculus. When
0 < α < 1, the property of being Lipschitz of order
α is a kind of fractional degree of smoothness,
which on Euclidean spaces can be considered in 
connection with fractional differentiation and 
integration. See [19]. In any case, the Lipα spaces
of functions have the nice features of being easy
to define and making sense on any metric space.

The combination of measure theory and topology
entails significant structure. One can start with a set
X equipped with a topology that makes X a locally
compact Hausdorff space, for instance, and use the
σ-algebra of Borel sets (the σ-algebra generated by
the open subsets of X) as the σ-algebra of measur-
able sets on X. For a “regular” Borel measure µ on X,
one has nice properties such as density of the space
of continuous functions with compact support in-
side the Lp spaces associated to µ on X, 1 ≤ p <∞ .

Let (M,d(x, y)) be a metric space, and let B
denote the σ-algebra of Borel sets on M, associated
to the topology coming from the metric. Suppose
also that we have a regular nonnegative Borel 
measure µ on M . There is a very interesting com-
patibility condition between µ and the metric on 
M, which is that µ be positive and finite on all open
balls in M and that there be a positive real number
C such that

µ(B(x,2r )) ≤ C µ(B(x, r ))

for all x in M and all positive real numbers r . Here
B(x, r ) denotes the open ball in M with center x and
radius r , defined by

B(x, r ) = {y ∈M : d(x, y) < r}.
In these circumstances µ is said to be a doubling
measure.

Actually, there is a more basic doubling condi-
tion that one can define on the metric space with-
out referring to the measure. This condition asks
that there be a positive real number C′ such that

for every ball B in M of radius r there exist a fam-
ily F of balls of radius r/2 such that B is contained
in the union of the balls in F and F has at most C′
elements. One can show that if there is a doubling
measure on M , then M is doubling as a metric
space in this sense. Note that this kind of doubling
property is closely related to Gromov–Hausdorff
compactness for families of metric spaces, as in [9].

I like to assume also that M is complete, in the
sense that every Cauchy sequence in M converges.
The doubling condition on M described in the pre-
vious paragraph implies that bounded subsets of
M are totally bounded, which means that for every
positive ε a bounded subset of M can be covered
by a finite collection of balls of radius ε. The 
assumption that M is complete then implies that
closed and bounded subsets of M are compact by
a well-known characterization of compactness.

Let us call a complete metric space (M,d(x, y))
equipped with a Borel measure µwhich is doubling
a space of homogeneous type, following [3], [4].

Examples
For each positive integer n, the standard Euclidean
space Rn is a basic example of a space of homoge-
neous type, equipped with its standard Euclidean
metric |x− y| and volume measure. On a Riemann-
ian manifold, doubling conditions are connected to
lower bounds for Ricci curvature. See [9].

As a more exotic example, consider the space
Rn × R, equipped with the metric

(1) ρ((x, s), (y, t)) = |x− y| + |s − t|1/2.
One can check that this is indeed a metric and that
ordinary volume measure on Rn × R is doubling
with respect to this metric. Just as for the standard
metrics on Euclidean spaces, this metric is invari-
ant under translations. However, ordinary dilations
do not behave well for this metric, and instead 
one can use the “parabolic” dilation defined by

Figure 1. A snowflake curve.
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δr (x, s) = (rx, r2s) for r > 0. This geometry was 
considered by my colleague Frank Jones in con-
nection with the heat operator

n∑
j=1

∂2

∂x2
j
− ∂
∂t
.

Roughly speaking, the nonstandard geometry com-
pensates for the fact that there is only one derivative
in t , while there are two derivatives in the other 
directions.

There are numerous familiar examples of self-
similar fractal subsets of Euclidean spaces which
give rise to spaces of homogeneous type, such as
Cantor sets, snowflake curves (Figure 1), and the
Sierpiński gasket and carpet (Figure 2). For these one
can use the ambient Euclidean metric restricted to
the set, although there are often different metrics
which are roughly equivalent and which may be
adapted to some features of interest. Typically there
are also natural measures on the sets which are 
compatible with the self-similarity and which sat-
isfy the doubling condition.

In particular, the usual middle-thirds Cantor set
can be viewed as a geometric model for aspects of
probability theory concerning a sequence of coin
tosses. One might recall that the Cantor set is “totally
disconnected” and hence contains no nontrivial
curves. The Sierpiński gasket and carpet are quite
interesting for having curves of finite length
connecting any specified pair of points, while
snowflake curves contain no nontrivial curves of fi-
nite length, even if they are themselves curves in the
topological sense. A number of aspects of analysis
on fractals like the Sierpiński gasket and carpet are
treated in [11], [22].

Very interesting examples arise from Heisenberg
groups, nilpotent Lie groups more generally, and
sub-Riemannian geometry. In the Heisenberg group,
the geometry looks like that of (1) on Rn × R infini-
tesimally at each point, but the axes turn as one
moves from point to point. Nonetheless, there are 

still natural parabolic dilations which respect the
geometry on the whole space. For this geometry,
there are again curves of finite length connecting
any two points. This can be viewed as a special case
of sub-Riemannian geometry, in which one starts
with a smooth manifoldM, a family of subspaces of
the tangent spaces of M at arbitrary points, and 
inner products on these subspaces. One then 
defines the distance between two points p and q
inM to be the infimum of the length of the curves in
M connecting p andq, subject to the constraint that
the tangent vectors to the curves be contained in 
the specified subspaces of the tangent spaces toM.
These subspaces of the tangent spaces should sat-
isfy suitable “nonintegrability” conditions in order
for such curves to exist for all p andq inM. Although
the resulting metric is compatible with the usual
topology onM, the geometry is quite different.

These examples are closely related to the bound-
ary behavior of functions of several complex 
variables and subelliptic partial differential oper-
ators. See [12], [20] for instance. They also arise 
in connection with spaces at infinity of rank 1
symmetric spaces of noncompact type. One can 
define spaces at infinity of complete simply con-
nected Riemannian manifolds of negative curvature
more broadly, or even negatively curved metric
spaces, and these again lead to examples of spaces
of homogeneous type. Compare with [5], [8], [13].

Another fundamental class of examples comes
from graphs. Suppose that we have a graph con-
sisting of a set V of vertices, with at least two 
elements, and a set E of edges. One can think of the
edges as being represented by unordered pairs of
distinct vertices. We shall assume that the graph 
is connected, which means that every pair of points
can be connected by a finite chain of adjacent ver-
tices. The length of such a chain is defined to be the
number of vertices in the chain minus 1, which is
the same as the number of edges traversed. This
leads to a distance function on the set V of vertices;
namely, the distance between two vertices v and 
w is equal to the length of the smallest chain of 
adjacent vertices connecting v and w . Thus V
becomes a metric space in this way, and we also 
have a natural measure on V , namely, counting
measure, which assigns to a subset A of V the
number of elements of A . When this measure is a
doubling measure, one gets a space of homoge-
neous type. For instance, one can take V to be Zn,
with an edge between x, y ∈ Zn exactly when x− y
has all components equal to 0 except for one, 
which is equal to ±1. Concerning analysis on 
graphs and related matters, see [14] and the 
article by Coulhon in [1]. Some further adventures
with analysis and combinatorial geometry can be
found in [15], [16], [24]. One might wish to look 
at metric spaces in terms of “nonstandard graphs”,

Figure 2. The Sierpiński carpet.
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in the sense of nonstandard analysis, and this is 
discussed in [23].

It may be that the graph is finite, and one is 
interested in quantitative bounds. Some basic 
examples are given by the natural approximations 
of fractals like the Sierpiński gasket and carpet 
by graphs, representing the first n stages of their
construction for each positive integer n.

Approximations to the Identity
Fix a positive integer n, and let us review some 
aspects of analysis on Rn . For each positive 
real number τ, define a linear operator Hτ on 
functions on Rn by

(2) Hτ (f )(x)

=
∫

Rn
(4πτ)−n/2 exp(−|x− y|2/4τ) f (y)dy.

To be more precise, this makes sense if the func-
tion f does not grow too fast, e.g., if f (x)(1+ |x|2)−k

is integrable on Rn for some positive integer k.
Well-known computations from calculus imply

that Hτ applied to the constant function equal to 1
gives 1 back again. It is easy to see that this is true for
all τ > 0 as soon as one checks it for any particular
τ, by making a change of variables with a dilation.
Also, the question is essentially the same for all n, 
because the n-dimensional integral reduces to the
nth power of 1-dimensional integrals.

Because Hτ (1) ≡ 1, Hτ (f )(x) is really an average
of values of f (y). This average is concentrated
around x at the scale of 

√
τ because of the decay

of the Gaussian kernel of Hτ. It is not difficult to
show, for instance, that

(3) sup
x∈Rn

|f (x)−Hτ (f )(x)| = O(τα/2)

when f is Lipschitz of order α.
The family of operators Hτ, τ > 0, is an exam-

ple of an approximation to the identity, as in [19],
[20], [21]. In this case the kernels are especially 
nice, with a lot of symmetry. In particular, it turns
out that the Hτ’s form a semigroup, which is to 
say that Hσ ◦Hτ = Hσ+τ for all σ,τ > 0. In fact,
Hτ (f )(x) satisfies the heat equation

∂
∂τ
Hτ (f )(x) = ∆Hτ (f )(x),

where ∆ denotes the usual Laplace operator on Rn,

∆ =
n∑
j=1

∂2

∂x2
j
.

Even if f is not smooth, Hτ (f )(x) is smooth in x and
τ because of the smoothness of the kernel of Hτ.

Note that in the context of (1), the t parameter
is incorporated into the metric space, while τ here
is viewed as a kind of external parameter.

On a general space of homogeneous type, one can
try to define approximations to the identity like this
with as much symmetry as the space allows. It can
be shown that there are always approximations to the
identity with suitable localization and other nice
properties in terms of basic analysis, along the lines
of (3), for instance. Some basic aspects of this are
reviewed in [18]. One may be interested in actual
semigroups, perhaps with a discrete parameter 
running through the nonnegative integers rather
than a continuous parameter τ as above, and this
has been studied in a number of situations. A num-
ber of results along these lines are discussed in [11],
and two recent papers related to this are [6], [7].

The Unit Ball in Cn

Fix a positive integer n again, and let Bn denote the
unit ball in Cn, i.e., the set of z in Cn such that
|z| < 1. Here |z| denotes the usual Euclidean length
of z , given by

|z|2 =
n∑
j=1

|zj|2,

where zj denotes the jth coordinate of z . Let us
write Σn for the boundary of Bn, which is to say the
set of z in Cn such that |z| = 1. If f (z) is an inte-
grable function on Σn, consider the function F (w )
on Bn defined by

(4) F (w ) =
∫
Σn

(1− 〈w,z〉)−n f (z)dA(z),

where

〈w,z〉 =
n∑
j=1

wj zj

and dA(z) denotes the element of surface integra-
tion on Σn, normalized so that the total area of Σn
is equal to 1. Notice that |〈w,z〉| ≤ |w| < 1 when
w ∈ Bn and z ∈ Σn, by the Cauchy–Schwarz in-
equality, so the integral in (4) makes sense. One calls
F (w ) the Cauchy–Szegő integral of f (z) , and it is
not hard to see that F (w ) is a holomorphic func-
tion of w , because the Cauchy–Szegő kernel

(5) SBn (w,z) = (1− 〈w,z〉)−n

is holomorphic in w . It also turns out that if F (w )
is a holomorphic function on Bn with boundary
values f (z) in an appropriate sense, then F (w ) is 
reproduced from f (z) by (4). When n = 1, this is a
version of the Cauchy integral formula in one com-
plex variable.

A basic property of the Cauchy–Szegő projection
is that

(6) sup
0<r<1

∫
Σn
|F (rw )|2 dA(w ) ≤

∫
Σn
|f (z)|2 dA(z)

when f is in L2(Σn, dA) and F is as in (4). In other
words, the Cauchy–Szegő  integral defines an 
orthogonal projection of L2(Σn, dA) onto the 
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subspace of functions which are boundary values
of holomorphic functions on Bn . Indeed, the 
reproducing property mentioned in the previous
paragraph shows that the mapping from f to the
boundary values of F is a projection onto the sub-
space of functions which are boundary values of
holomorphic functions on Bn. One can verify from
the explicit expression that this projection is self-
adjoint and hence is an orthogonal projection.

What about estimates in terms of Lp norms in
place of L2 norms? In other words, is there an 
inequality of the form

sup
0<r<1

∫
Σn
|F (rw )|p dA(w )

≤ C(p)
∫
Σn
|f (z)|p dA(z)(7)

for all f in Lp(Σn, dA), where C(p) is a positive real
number? Although one can take C(2) = 1, this does
not work for other p. For p = 1, or for an analogous
inequality involving essential suprema when p = ∞,
such an estimate does not hold, but there are 
substitutes, and we shall say a bit about this in a
moment. When 1 < p <∞ , an estimate of this kind
does hold. This goes back to famous work of 
Marcel Riesz when n = 1, and for n > 1 it was orig-
inally shown by Korányi and Vági. By now there 
are many results concerning questions like this, 
as explained in [20].

This kind of Lp estimate looks exactly like the
type of issue which is addressed by singular inte-
gral theory, as in the real-variable methods of
Calderón and Zygmund. Namely, there is already
an L2 estimate (6), and the Cauchy–Szegő kernel (5)
is known and looks nice. The Lp estimates (7) do
fall into the Calderón–Zygmund framework when
n = 1, but not exactly when n > 1, because the ker-
nel does not fit so well with Euclidean geometry.
However, there is a different geometry on Σn with
which it fits very well and which corresponds to 
a space of homogeneous type.

Actually, one can pretty much read the geome-
try off from the kernel in such a way that the two
are then compatible. One can also describe the
geometry in sub-Riemannian terms by saying that
the distance between two points should be the 
infimum of the lengths of the paths in Σn which join
the two points, subject to the constraint that the
paths remain tangent to the complex subspaces of
the tangent spaces to Σn. At any point p in Σn, the
ordinary tangent space to Σn is a real plane with
real dimension 2n− 1, and it contains a complex
plane of complex dimension n− 1, which is to say
real dimension 2n− 2. It turns out that the sub-
Riemannian geometry just described is compatible
with the usual topology on Σn but is quite differ-
ent geometrically. Nonetheless, it defines a space
of homogeneous type, and the Calderón–Zygmund
methods apply to those in general, as in [3], [4]. It

should be mentioned that the results of Korányi and
Vági, as well as those of Frank Jones for the heat
operator and singular integrals associated to it,
were established before the development of the 
notion of spaces of homogeneous type and provide
important examples of this notion.

When n = 1, there is a simple “Cayley trans-
form” which permits one to move between the unit
disk in C and the upper half-plane, which is the set
of z ∈ C whose imaginary part is positive, through
a holomorphic change of variables. There is an
analogous transform when n > 1 for moving be-
tween the unit ball Bn and an “upper half-space”,
but now the latter is more complicated and has
curved boundary. When n = 1, the boundary of
the upper half-plane can be identified with the real
line, and harmonic analysis on the real line is con-
nected to various aspects of complex analysis, such
as the corresponding Cauchy-Szegő projection,
just as harmonic analysis on the unit circle is con-
nected to complex analysis on the unit disk. For
n > 1 it is natural to identify the boundary of the
upper half-space mentioned above, not with an 
ordinary Euclidean space, but with the Heisenberg
group of the appropriate dimension. Harmonic
analysis on the Heisenberg group is then connected
to complex analysis on the upper half-space, 
including the Cauchy-Szegő projection there. See
[20] for more information.

In addition to Lp estimates for 1 < p <∞ , there
is a weak-type inequality for p = 1; Hardy space 
results for p = 1, or even 0 < p < 1; and estimates
in terms of bounded mean oscillation instead of L∞
norms. Note that the definition of bounded mean
oscillation here uses the special geometry on Σn
rather than the ordinary Euclidean geometry, which
would be appropriate for classical singular integral
operators. There are results as well for Lipα(Σn),
0 < α < 1, which should also be interpreted using
the sub-Riemannian geometry on Σn in place of
the ordinary geometry, just as there are well-known
results for classical singular integral operators 
and Lipα spaces defined in terms of Euclidean
geometry. In both the classical situation and this
case, adjustments should be made for α = 1, and
one can deal with a variety of other function spaces
as well. Concerning these various topics see [3], [4],
[12], [19], [20].

Odd Kernels for Singular Integral
Operators
The Hilbert transform is the linear operator acting
on functions on the line defined by

H(f )(x) = 1
π
p.v.

∫
R

1
x− y f (y)dy,

and the Riesz transforms are the linear operators
acting on functions on Rn defined by
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Rj (f )(x) = cn p.v.
∫

Rn

xj − yj
|x− y|n+1

f (y)dy,

1 ≤ j ≤ n, where cn is the constant

Γ ((n+ 1)/2)
π (n+1)/2 .

It is not hard to show that these principal value 
integrals exist when f is Lipschitz of some positive
order and has compact support, for instance. These
are the most fundamental examples of singular
integral operators, and among their important
properties is that they define bounded linear 
operators on Lp for 1 < p <∞ . See [19], [21].

The Hilbert and Riesz transforms are singular
integral operators of convolution type, which ba-
sically means that their kernels are of the form
k(x− y). On a general space of homogeneous type
M , one can look at singular integral operators of
the form

T (f )(x) =
∫
M
k(x, y) f (y)dy,

where the integral again involves some kind of
principal values and where the kernel k(x, y) sat-
isfies size and smoothness conditions analogous
to those of the Hilbert and Riesz transforms. 
Depending on the circumstances, the kernel might
have additional symmetry or structure related to
that of the underlying space M .

There are interesting ways in which the Hilbert
and Riesz transforms take directions in the under-
lying Euclidean space into account, and a question
that keeps bothering me is, what are reasonable 
versions of this in other situations? As far as I am 
concerned, the Cauchy–Szegő projections are also
very interesting in this way, and in this regard one
might like their counterparts on the corresponding
upper half-spaces in Cn, as on p. 536 of [20].

A basic feature of the kernels of the Hilbert and
Riesz transforms is that they are odd, which is to
say that they are of the form k(x− y) where
k(−w ) = −k(w ) . In general one can consider kernels
k(x, y) which are antisymmetric, so that

k(x, y) = −k(y, x).

Jean-Lin Journé once explained to me how this sim-
ple condition already has nice properties, although
it is not as special as when k(x, y) is something
like a convolution kernel.

I think that it would be very interesting to have 
examples of singular integral operators in other 
contexts which are more like the Hilbert and Riesz
transforms. This could involve some kind of reflec-
tions on the space about each point. In any case,
there is a lot of room for interactions between ker-
nels of singular integral operators and the structure
of the underlying spaces.
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