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Marcia Ascher’s new book, Mathematics Else-
where, is certain to stimulate discussion of the na-
ture of mathematical ideas and how they find their
expression. For many Westerners the term “math-
ematics” means the intellectual exercise begun by
the Greeks of stating theorems and then proving
them by beginning with explicitly stated axioms 
and using logical arguments. Of course, in ancient
Greece the axioms were about either geometrical
or arithmetical objects. Today the axioms can be
about numerous other kinds of objects, but math-
ematicians are still proving theorems about ob-
jects, be they C∗-algebras or regular local rings. So
to look at mathematics elsewhere might be inter-
preted to mean the finding of logical arguments
from axioms about certain kinds of objects in cul-
tures other than “Western”.

Marcia Ascher, however, is not looking for math-
ematics in that sense. In fact, most of us use a work-
ing definition of mathematics much broader than
the one implied above. It was “mathematics” when
the Babylonians figured out how to solve what we

know as quadratic
equations. It was
“mathematics” when
Egyptian scribes de-
termined the vol-
ume of the frustum
of a pyramid. It was
“mathematics” when
the Chinese figured
out how to solve si-
multaneous congru-
ences by the Chinese
remainder theorem.
It was “mathemat-
ics” when Indian
scholars solved the 

so-called Pell equation. It was “mathematics” when
people from many cultures figured out that the sum
of the squares on the legs of a right triangle equals
the square on the hypotenuse, or that there was a
regular method of determining the number of ways
you could choose k objects out of a set of n. In none
of these occurrences, at least originally, was there
any notion of logical proof from explicit axioms.

These are examples of what Marcia Ascher calls
“mathematical ideas”—ideas that she has sought
in her research to find elsewhere. In particular, As-
cher defines mathematical ideas to be those “in-
volving number, logic, spatial configuration, and,
more significant, the combination or organization
of these into systems and structures.” Today the
contributions to mathematical ideas of the major
literate cultures, including the Babylonian, Egypt-
ian, Chinese, Indian, Islamic, and what we normally
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call “Western”, are being studied in more and more
detail by numerous scholars. Ascher takes a dif-
ferent path, exploring such ideas in “traditional”
or “small-scale” cultures, generally nonliterate in
our sense. In her book Ethnomathematics: A Mul-
ticultural View of Mathematical Ideas [Ascher, 1991],
she explored mathematical ideas in certain cul-
tures, and in the current book—really a sequel to
the earlier one—she continues her study with other
ideas in other cultures.

Ascher’s works are examples of what has become
known as ethnomathematics, a discipline that grew
up beginning in the 1980s, although, of course, its
roots go back much further. Initially, the impetus
came from mathematics education in traditional 
societies. The colonial powers ruling many of these
societies introduced Western mathematical edu-
cation in the schools they established, frequently
driving out indigenous educational practices. And
even after the colonial powers departed, the 
educational systems frequently remained. But with 
independence, inhabitants of these countries began
to realize that their own heritage was being 
ignored. All too frequently, the disconnect between
the indigenous culture and the Western educa-
tional system was too broad for students to 
bridge. So projects began in some of these places
to ferret out the mathematical ideas inherent in the
societies, with the hope that these ideas would
make mathematics, even “Western” mathematics,
more palatable to students. Even in the West, stu-
dents who traced their heritage to these traditional
societies clamored for information about mathe-
matics of their ancestors. Thus researchers began
to search out this information. Among the first
works of ethnomathematics was Claudia Za-
slavsky’s Africa Counts: Number and Pattern in
African Culture [Zaslavsky, 1973], which grew out
of the author’s desire to satisfy the request of her
African-American students in New York for infor-
mation about mathematical ideas in Africa.

It can certainly be debated whether students learn
mathematics better by knowing of the mathematical
ideas of their own ancestors. Nevertheless, modern
theories of education recognize that students need
to construct their own knowledge based on what they
already know. And if there are mathematical prac-
tices in the students’ cultural heritage, it certainly be-
hooves their teachers to be aware of them and to build
on that knowledge rather than to tear it down. Thus,
after the Brazilian mathematician and mathematics
educator Ubiratan D’Ambrosio began to understand
how attention to cultural background can improve
mathematics education, he formulated his ethno-
mathematical program, introducing it publicly in a
plenary address at the Fifth International Congress
on Mathematical Education in Adelaide, Australia, in
1984 and elaborating on it in many writings there-
after [D’Ambrosio, 1985a, 1985b, 1986]. As he put it,

not only are there mathematical ideas and practices
in “small-scale” cultures, but certain ideas and prac-
tices are part of the culture of identifiable groups
within Western societies, such as, for example, car-
penters, well-diggers, musicians, and even engineers.
Much of this more general ethnomathematics is not
taught in schools but is certainly understood and
used by practitioners. If one looks at the history of
mathematics, it is probably true that much of “West-
ern” mathematics originated in the ad hoc practices
and solutions to problems developed by small groups
in particular societies. So the theoretical questions
posed by D’Ambrosio include: (1) how are these 
practices developed into methods? (2) how are the
methods developed into theories? and (3) how are
theories developed into scientific invention? Main-
stream history of mathematics considers these 
questions for topics that have now become part of
modern mathematics. However, many mathemati-
cal methods that arose in traditional societies never
developed into theories but simply remained meth-
ods. Despite the lack of theoretical development, the
methods work for the purposes for which they were
intended and are therefore worthy of study. It is this
study that Marcia Ascher has carried out in numer-
ous instances in her earlier Ethnomathematics and
in the book under review.

Marcia Ascher’s own motivation for her studies
of mathematics in “small-scale” societies was not
primarily educational. She had a very traditional
mathematics background but was married to an 
anthropologist. Wanting to embark on joint re-
search, they decided to study the quipus of the
Inca civilization in Peru. Quipus are knotted strings
used by the Incas as a data collecting and record-
ing device. The question Ascher wanted to answer
was whether the ideas expressed on the quipus
had mathematical significance. As her work and the
parallel work of her husband on Inca culture pro-
gressed, she began to see that in fact many things
could be “read” from these artifacts. But she also
found that the artifacts alone were not enough to
gain an understanding of the meaning of the qui-
pus. As she wrote, “We were constantly amazed that
the structural characteristics I was coming up with
had resonance in other parts of the culture” [Ascher
and D’Ambrosio, 1994, p. 36]. She came to believe
that in other cases too the “implicit mathematics”
in a society could be understood only by studying
the ambient culture, not just the mathematical
ideas or artifacts themselves. So, since her original
study of the quipus [Ascher and Ascher, 1981],
Ascher has studied the implicit mathematics and
the cultures in which it is imbedded in societies
around the globe.

In Ethnomathematics Ascher discussed number
words and symbols in several societies, including the
Inca. She looked at graph tracing among the Bushoong
people of the Congo, the Tshokwe people of Angola,
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From the four columns, which we will call C1
through C4, and their associated rows, which we
will call C5 through C8, Ascher shows how the om-
biasy uses what we recognize as Boolean algebra
to create eight more columns. (For the purposes of
this algebra, we can think of one seed as repre-
senting “odd” or “1” and two seeds as represent-
ing “even” or “0”.) For example, column 11, C11, is
created as C4

⊕
C3 , where 

⊕
represents the XOR

(exclusive or) operation on the corresponding ele-
ments in each column, namely the operation that
gives “even” when combining two elements of the
same parity and “odd” when combining two ele-
ments of opposite parity. The final arrangement of
the columns, together with additional manipula-
tions of them, are the basis for the ombiasy’s pre-
dictions or answers to his client’s questions.

Of course, in performing his algorithm the om-
biasy does not think he is doing Boolean algebra.
But when he is done creating his 16 columns, he
does several checks to see that he has not made
any errors. In other words, he knows that certain
relationships must be present in his final arrange-
ment, assuming he carried out the algorithm cor-
rectly. For example, the final arrangement must 
always produce at least two identical columns, and
Ascher gives a modern proof of this result. How did
the originators of sikidy discover this result, and
did they develop some sort of proof of it? Ascher
does not address this question. But she does note
the interest of some of the ombiasy in certain 
special final arrangements and therefore in 
determining what original layouts lead to these
arrangements. That is, the ombiasy acted as 
“mathematicians”.

Ascher next has two chapters dealing with time.
The first shows how various peoples have organized
the physical cycles of the day, the phases of the
moon, and the yearly motion of the sun to create
calendars, while the second highlights the use of
more arbitrary cycles in marking time in the civi-
lization. Although Ascher deals briefly with the
luni-solar calendars of the Trobriand islanders and
the Kodi people of the South Pacific, she gives the
most detail on the development of the Jewish cal-
endar. In particular, she discusses the rules for
determining the first day, Tishri 1, of the Jewish
year. In general, it is the day of the new moon of
Tishri, with four exceptions, detailed in a diagram
(which has an unfortunate typographical error).
However, Ascher gives a reason for the first ex-
ception, that Tishri 1 cannot fall on a Wednesday,
Friday, or Sunday. That would mean that either
the Day of Atonement (Tishri 10) would fall on the
day before or the day after the Sabbath—thus forc-
ing a double Sabbath—or that Tishri 21 would fall
on a Sabbath, forcing a contradiction to that day’s
observances, with activities forbidden on the Sab-
bath. The reasons for the other exceptions are that

and the inhabitants of Malekula in the Republic of
Vanuatu in the South Pacific. She considered kin
relationships in Malekula and among the Warlpiri
in Australia’s Northern Territory, discussing how
these people described these relationships logi-
cally. She wrote about games of chance in numer-
ous societies, including a detailed study of the
Maori game of mu torere. She looked at how vari-
ous Native American groups described aspects of
the space in which they lived. And she considered
the symmetric strip decorations of both the Inca
and the Maori, analyzing them through the seven-
teen-fold classification of those two-dimensional
patterns.

In Mathematics Elsewhere Ascher discusses 
different mathematical concepts in other societies.
In every case, the originators of the particular 
practice had to solve a certain problem. They did so
by developing some mathematical idea. And often,
as is so frequent in the history of Western mathe-
matics, they did not stop at the answer to the 
problem they were solving. They followed the 
mathematical ideas in new directions, often led by
aesthetic considerations. For each mathematical 
idea she discusses, Ascher describes the particular
concept both in modern mathematical terms and,
to the extent possible, in the terms understood by the
culture itself. She also shows how the idea was imbed-
ded in the ambient culture.

The book begins with a discussion of the logic
of divination in three different cultures. Divination
is “a decision-making process, utilizing, as part of
the process, a randomizing mechanism. The deci-
sions coming out of the process sometimes in-
volve the determination of the cause of an event
or, more often, how, when, or whether to carry out
some future action” (p. 5). Divination has been a
part of virtually every recorded culture, including
modern Western ones. For Ascher the interesting
part of the subject is the logic behind the ran-
domizing mechanism, that is, the procedures by
which a diviner puts together a particular arrange-
ment from which he or she can make a decision.

The most fascinating divination system is that
of sikidy, a system with a long history that is still
used in Madagascar. In this system, the ombiasy (ex-
pert in sikidy) uses a randomizing procedure to lay
out four columns of four entries each, where each
entry contains either one or two dried seeds of a
fano tree. This array is called the mother-sikidy.

Paper tika (Figure 3.6, page 78, Mathematics Elsewhere).
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without them either the current year would be too
long or the previous year would be too short, since
a regular year must have either 353, 354, or 355
days, while a leap year must have 383, 384, or 385
days. Furthermore, all the exceptions together,
along with the known inequalities in the Moon’s 
motion, bring Tishri 1 and the first sighting of the
crescent moon as close together as possible in a
system based on the mean length of a lunation.

In her second chapter on time, Ascher deals pri-
marily with the calendrical system of the Maya. This
is based on a 260-day cycle, the Sacred Round, 
itself based on two independent 13- and 20-day 
cycles, and a 365-day cycle, the Vague Year, based
on 18 months of 20 days each as well as 5 extra
days at the end. These two cycles are joined in a
larger cycle, the Calendar Round, equivalent to 52
Vague Years or 78 Sacred Rounds, as well as in a
Great Cycle of 1,872,000 days, anchored at a fixed
historical starting point. An important function of
the Mayan priests was to do several types of elapsed
time calculations. For example, they needed to find
the number of days between two particular dates
in the Calendar Round. Since the Calendar Round
was made up of several cycles, this amounts to de-
termining the solution of several simultaneous
congruences, that is, solving a Chinese Remainder
problem. We unfortunately have no records of the
methods that the Mayan priests used to solve this
problem. But we do know that they calculated cor-
rectly. Thus somehow they developed techniques
for solving the Chinese Remainder problem.
Whether their techniques resembled those origi-
nally used in China or those used today to solve
such problems is unknown.

Another fascinating calendar is that of the island
of Bali, in Indonesia. This calendar is based on 10
arbitrary cycles of 10 days, 9 days, 8 days, and so
on, down to 1 day. A year in this calendar is 210
days, a number evenly divisible by all the cycle
lengths except 4, 8, and 9. Special adjustments are
made for those cycles so they fit reasonably into
this calendar. As in the Mayan calendar, to do cal-
culations in this calendar requires the solution of
simultaneous congruences. In this case, we know
that the Balinese use a wooden board known as the
tika, on which an array of seven rows and thirty
columns is carved or painted. Various symbols are
placed in many of the boxes of the array repre-
senting important days in the calendar. Manipula-
tions on the tika then enable one to find answers
to typical calendrical questions. An unanswered
question about the Balinese calendar is how the tika
was originally constructed.

The most impressive chapter of Mathematics
Elsewhere is the chapter on models and maps,
which discusses the stick charts of the Marshall Is-
landers of the South Pacific. There are two types
of these charts, made of palm ribs tied with coconut

fibers, often with a few shells attached, and rang-
ing in size from about 60 cm square to 120 cm
square. The first type, known as mattang, was de-
signed to introduce prospective Marshall Islands
navigators to the interplay of oceanographic 
phenomena and land masses necessary for 
navigation through the islands. Thus, these charts
represent wave fronts as they approach land and
help navigators understand refraction, reflection,
and diffraction of the wave fronts. After using the
mattang under the guidance of an expert, an 
apprentice can move on to the second type of stick
chart, the rebbelith and the meddo. These are maps
of either the entire Marshall Islands archipelago or
some smaller region within it, designed to help
navigators wend their way among the islands
through a knowledge of the typical wave patterns

in the ocean and certain physical features of the
islands. Interestingly, these stick charts are all 
intended for study on land. A navigator does not
carry one with him on his boat but relies on his
memory. Ascher gives many details of both kinds
of stick charts, with numerous examples, and shows
how they fit into the culture of the Marshall 
Islanders. As before, we do not know exactly how
the islanders organized their sea-faring knowledge
into these charts, but we do know that they were
able to create these models of a most important 
aspect of their culture.

Meddo (Figure 4.17, page 119, Mathematics
Elsewhere).
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their initial problems. Anyone who enjoys this
process of mathematization will enjoy seeing how
it was accomplished in the diverse societies about
which Ascher writes, and those who teach mathe-
matics will be tempted to use her examples in 
relevant classes. These examples will help us
demonstrate to our students the universality of
mathematical thinking. And since our students,
both at the undergraduate and graduate levels, are
increasingly coming from countries outside the
West, Ascher’s ideas will prove useful in helping
us meet their needs as we teach them the modern
mathematics so important to understanding our
world.
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Ascher deals with “systems of relationships” in
her fifth chapter, considering these among the
Basque people of Sainte-Engrâce, France, near the
Spanish border; among the Tonga of Polynesia; and
among the Borana of Ethiopia, near the Kenyan
border. Her discussion revolves around the formal
relationships that enable the people to understand
their roles in the society. Ascher is careful to note
that the people of these communities have “artic-
ulated the properties of the relations” in a way 
easily translatable into our formal terms. Thus she
feels comfortable in making that translation, even
though the people themselves did not do so.
Nevertheless, certain formal consequences of the
initial form of the relationships were discovered by
the peoples involved, consequences that we can
derive “logically”. For example, the Borana historian
who discussed the father-son classes in Borana 
society noted that the consecutive appearances of
particular class names occurred in alternate son-
to-father lines, while a modern proof of this result
requires the algebra of congruences.

Finally, Ascher considers the kolam designs of
southern India. The women of Tamil Nadu draw
these designs each morning at the threshold of the
house using a thin stream of rice flour. These de-
signs, which serve both to welcome guests and to
avert misfortunes and illness, are mathematically
interesting because their creation involves trans-
forming and superimposing several basic units.
There are different types of designs, some for daily
use and some for special occasions, but the tradi-
tion has been passed on from mother to daughter
for centuries. Sometimes the kolam are constructed
around and within an initial grid of dots, but 
others are made up of one or a few continuous
curves. Throughout the centuries, the women of
Tamil Nadu have elaborated these designs well 
beyond any practical necessity, evidently impressed
by the beauty of their creations. Interestingly, the
creation of these kolam designs has now become
part of the literature in computer science, inspir-
ing those working in formal language theory and
with picture languages. Thus, the mathematical
ideas inherent in this traditional culture have 
influenced the development of modern computer
science theory.

In Mathematics Elsewhere, as in her earlier book,
Marcia Ascher has made a significant contribution
toward a global perspective on the history of math-
ematics. Her work has made it increasingly clear
that mathematization—that is, the combination
and organization of ideas about number, logic, and
space into systems and structures—is not the
province of a limited number of cultures but has
in fact been accomplished by numerous cultures
around the world. People have always “mathema-
tized” and have even acted as “mathematicians” by
following their ideas well beyond the solution of

Illustrations from Mathematics Elsewhere:
An Exploration of Ideas Across Cultures (© 2002
Princeton University Press) used with permission
of Princeton University Press.


