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My topic is not renegade computer programs, nor
Write-Once-Read-Many optical storage devices, nor
convoluted plane curves.1 The “worm” in my title
is an important example in multidimensional com-
plex analysis.

A first course on holomorphic (that is, complex
analytic) functions of one variable introduces two
flavors of function theory: namely, functions holo-
morphic in the entire complex plane C and func-
tions holomorphic in the unit disc. If one restricts
attention to topologically trivial planar domains,
then there are no other one-dimensional theories
of holomorphic functions. Indeed, the Riemann
mapping theorem says that every simply connected
planar domain other than the whole plane can be
mapped onto the unit disc by a one-to-one holo-
morphic mapping with a holomorphic inverse, and
hence function theory on that domain is equivalent
to function theory on the unit disc.

In contrast, the theory of holomorphic functions
of two (or more) variables comes in an infinite vari-
ety of flavors. Two domains in multidimensional
complex space typically are holomorphically in-
equivalent: each domain supports its own individual
theory of holomorphic functions. For example, a
bidisc (the product of two one-dimensional discs)
cannot be mapped onto a ball in C2 by a one-to-one,
invertible holomorphic mapping; indeed, Walter
Rudin has written both a book titled Function 
Theory in Polydiscs and a book titled Function 
Theory in the Unit Ball of Cn.

For general domains that lack symmetry, there
is little hope to understand the function theory in
such an explicit way as one can on polydiscs and
on balls. One may hope, however, to get some qual-
itative information. For example, is function theory
stable under perturbations of the domain?

One of several remarkable discoveries of Fritz
Hartogs in his seminal 1905 dissertation was a prop-
agation phenomenon in two-dimensional function
theory. An example is furnished by perturbations
of the Hartogs triangle T, the set of points (z,w )
inC2 such that |z| < |w| < 1. One may visualize this
domain as being fibered over a punctured unit disc
in the w-plane, the fiber over a pointw being a disc
in the z -variable of radius |w|. For small positive ε,
let the perturbationTε be the union ofT and the set
of points (z,w ) such that max(|z|, |w|) < ε (the
bidisc of radius ε). A function that is holomorphic
in Tε has a two-variable Maclaurin series that con-
verges in a neighborhood of the origin, and a little
trickery with the one-dimensional Cauchy integral for-
mula shows that this series must actually converge
in the whole bidisc of radius1. Thus, all holomorphic
functions onTε extend to be holomorphic functions
on the unit bidisc, a much larger domain! No such 
extension phenomenon occurs for holomorphic 
functions of a single variable.

A domain for which it is not the case that all holo-
morphic functions on the domain extend to a larger
domain is called a domain of holomorphy. Domains
of holomorphy are the natural domains on which to
study function theory; they are of interest also in
mathematical physics. Some examples of domains
of holomorphy are polydiscs, balls, and (more gen-
erally) convex domains.

The Hartogs triangle T turns out to be a domain 
of holomorphy too. Yet every function holomorphic
in a neighborhood of the closureofT is holomorphic
on some Tε and hence extends to be holomorphic on 
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1Leo Moser’s worm problem asks for a planar convex set
of minimal area that contains a congruent copy of every
rectifiable arc of length 1. In the November 1973 issue of
Scientific American, Martin Gardner discussed Paterson’s
worms, which are certain paths on a planar grid.
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the unit bidisc. Consequently, every domain of holo-
morphy that contains the closure ofT also contains
the unit bidisc. Thus the domain of holomorphy T
cannot be approximated from outside by domains of
holomorphy.

In 1933, when H. Behnke and P. Thullen raised
the general question of when a domain of holomor-
phy can be approximated from outside by domains
of holomorphy, the only negative examples they
could offer were variations of the Hartogs triangleT.
The boundary of T has a bad singularity at the ori-
gin, and one might hope that exterior approxima-
tion would be possible for a domain of holomorphy
whose boundary is, say, a C∞-smooth manifold. 
In 1976 Klas Diederich and John Erik Fornæss 
constructed a counterexample in their paper “A
strange bounded smooth domain of holomorphy”.
Their example came to be known as “the worm 
domain” (actually they constructed a family of 
domains), because it winds in a way reminiscent of
a spiral staircase.

For simplicity I specialize the real parameter in
their example to be equal to 25 and discuss one 
specific worm. A preliminary nonsmooth version
is the set of points (z,w ) in C2 such that
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This domain is fibered over an annulus in the w-
plane, each fiber in the z -variable being a disc of
radius 1 with center at a point of modulus 1. As
|w| varies, the center of the fiber moves along a
unit circle, and so these disc fibers wind around a
central axis.

Since log 252 > 2π , the fibers wind all the way
around a circle, and the projection of this domain
into the z -plane is a punctured disc of radius 2. The
projection of a neighborhood of the closure of the
domain, however, covers a full disc of radius 2 in
the z -plane. This filling in of the puncture gives a
hint why, as in the case of the Hartogs triangle, one
cannot approximate the domain from outside by
domains of holomorphy.

The domain just described, in which |w| is
chopped off flat at the ends, does not have smooth
boundary, but Diederich and Fornæss showed how
to add suitable caps to the ends to create coun-
terexample domains of holomorphy with smooth
boundary. The smooth domains constructed in this
way are the worm domains.

Since these domains depend on the variable w
only through the modulus |w|, one can represent
the worms in ordinary three-dimensional space by
collapsing together all the points with equal values
of |w|. The illustration, with the central axis fattened
for clarity, was created by James T. Hoffman for the
1995–96 program in several complex variables at
the Mathematical Sciences Research Institute in
Berkeley.

The worm is a coun-
terexample to another
stability property:
Diederich and Fornæss
showed that there exist
holomorphic functions
on the worm that are
continuous on the clo-
sure of the domain yet
cannot be approxi-
mated by functions
holomorphic in a
neighborhood of the
closure. Two decades
later, the worm was 
discovered to be a
counterexample also 
to a regularity property
in partial differential
equations.

Holomorphic functions are the solutions of the
homogeneous Cauchy-Riemann equations. When
solving the inhomogeneous Cauchy-Riemann equa-
tions, one often is interested in the “canonical” 
solution, the solution whose modulus squared has
minimal integral. If the inhomogeneous Cauchy-
Riemann equations on a domain of holomorphy with
smooth boundary have data whose derivatives of
all orders extend continuously to the boundary,
must the canonical solution have the same regu-
larity? In 1980 Steve Bell and Ewa Ligocka showed
that an affirmative answer has important conse-
quences for determining whether two domains are
holomorphically equivalent.

The class of domains for which the answer to the
question is yes includes, for example, the convex
domains (as Emil J. Straube and I proved). Work of
Christer O. Kiselman for the chopped-off worms 
and of David E. Barrett for the smooth worms sug-
gested that the answer might be negative in general.
Finally, a 1996 paper of Michael Christ proved that
the smooth worms, originally constructed for a
different purpose, are indeed counterexamples 
to this regularity property in partial differential
equations.

For Further Reading
[1] JOHN ERIK FORNÆSS and BERIT STENSØNES, Lectures on

Counterexamples in Several Complex Variables, Prince-
ton University Press, 1987.

[2] SO-CHIN CHEN and MEI-CHI SHAW, Partial Differential
Equations in Several Complex Variables, American
Mathematical Society and International Press, 2001.

The “WHAT IS…?” column carries short (one- or two-
page) nontechnical articles aimed at graduate students.
Each article focuses on a single mathematical object
rather than a whole theory. The Notices welcomes feed-
back and suggestions for topics for future columns.
Messages may be sent to notices-whatis@ams.org.


