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H
eisenberg groups, in discrete and con-
tinuous versions, appear in many parts
of mathematics, including Fourier
analysis, several complex variables,
geometry, and topology. In the present

survey we shall not focus too much on any partic-
ular aspect, but try to give a kind of sampler. We
begin with something which is, in effect, basic cal-
culus.
Commutators of Multiplication and
Differentiation Operators
Fix a positive integer n, and let v ·w denote the
usual dot product on Rn, so that v ·w =∑n

j=1 vj wj ,
where vj and wj denote the jth components of v
and w , respectively. If v and w are elements of Rn

and f is a function on Rn, let us write Mw (f ) for the
function on Rn defined by Mw (f )(x) = (w · x) f (x),
and let us write Dv (f ) for the function on Rn which
is the directional derivative of f associated to v, i.e.,
Dv (f )(x) = v · ∇f (x). We shall not dwell on differ-
entiability issues here, and so the reader is invited
to assume that the functions are sufficiently smooth
as might be convenient. The usual Leibniz rule for
differentiating products implies that

(1) Dv (Mw (f ))−Mw (Dv (f )) = (v ·w )f .

In other words, the commutator of the linear op-
erators Mw and Dv is equal to a constant multiple
of the identity operator, and that constant can be
nonzero in general.

Note that the commutator of two real or com-
plex matrices of finite rank can never be equal to
a nonzero constant multiple of the identity matrix,
because the trace of the commutator is automati-
cally zero. This observation uses the standard 
identity that the trace of a product AB is the same
as the trace of the product B A. For linear opera-
tors on infinite-dimensional spaces, there are still
results to the effect that the commutator of two
bounded linear operators cannot be a nonzero 
constant multiple of the identity, as on pp. 350–1
of [18]. See also [5].

As is well known, the fact that the Mw ’s and the
Dv ’s do not commute with each other in general is
connected to the Heisenberg uncertainty principle
in quantum mechanics.
Some Groups of Linear Operators
Let n still be a fixed positive integer, and let us 
continue to consider linear operators acting on
functions on Rn. For each v in Rn, define the 
operator Tv to be the operator of translation by v ,
so that

Tv (f )(x) = f (x− v).

Thus Tv is the identity operator exactly when v = 0,
and

Tv ◦ Tv′ = Tv+v′
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for all v, v′ ∈ Rn. In other words, the family of op-
erators of the form Tv , v ∈ Rn, forms an abelian
group which is isomorphic to Rn as a group under
addition.

Fix a positive real number λ. For each w in Rn,
define Uw to be the operator of multiplication by
exp(2πiλw · x) , so that

Uw (f )(x) = exp(2πi λw · x) f (x).

We should work with complex-valued functions
now to accommodate this complex exponential.
As before, Uw is equal to the identity operator if
and only if w = 0, and

Uw ◦Uw ′ = Uw+w ′

for all w,w ′ ∈ Rn. Thus the family of operators Uw,
w ∈ Rn , forms an abelian group which is also 
isomorphic to Rn under addition.

How do these two families of operators interact?
What kind of group do they generate? To see this,
we can compute as follows:

Tv (Uw (f ))(x)

= Uw (f )(x− v)

= exp(2πi λw · (x− v)) f (x− v)

= exp(−2πi λw · v) exp(2πi λw · x)Tv (f )(x)

= exp(−2πi λw · v)Uw (Tv (f ))(x).

In other words, Tv ◦Uw is equal to a constant mul-
tiple of Uw ◦ Tv, where that constant is equal to
exp(−2πi λw · v) . This is equivalent to saying that
the commutator Tv ◦Uw ◦ (Tv )−1 ◦ (Uw )−1 is equal 
to a constant multiple of the identity, where that
constant is equal to exp(−2πi λw · v) . This is a
kind of multiplicative version of the commutator
equation (1).

Using this identity, one can check that the 
family of operators of the form αTv ◦Uw , with
α ∈ C, |α| = 1, and v,w ∈ Rn, forms a group under
composition. Note that the Fourier transform
interchanges the roles of first-order directional 
derivatives and multiplication by linear functions,
and also the roles of translation operators and
multiplication by exponentials as above.

Definition of the nth Heisenberg Group
Let us define Hn(R) as follows. First, as a set, Hn(R)
is equal to Rn × Rn × R , i.e., the set of ordered
triples (v,w, t) , where v and w lie in Rn and t lies
in R. Next, we define a binary operation on Hn(R)
by

(2) (v,w, t) • (v′, w ′, t ′)
= (v + v′, w +w ′, t + t ′ + v′ ·w ).

One can verify that with respect to this operation,
Hn(R) becomes a group, with (0,0,0) as the

identity element, and (−v,−w,v ·w − t) the in-
verse of (v,w, t) .

When n = 1, one can associate a triple (v,w, t)
to a 3× 3 real matrix

(3)


1 w t

0 1 v
0 0 1


 ,

and then the group operation (2) corresponds 
exactly to matrix multiplication. In general, Hn(R)
can be identified with a subgroup of the group of
(n+ 2)× (n+ 2) real matrices with 1’s along the
diagonal and 0’s below the diagonal.

Let λ be a fixed positive real number, and let Tv
and Uw be the linear operators on functions on Rn

as before. Consider the mapping from Hn(R) to
linear operators defined by

(v,w, t) � exp(2πi λ t)Tv ◦Uw.

One can verify that this mapping is a group 
homomorphism, which is to say that the group
operation defined above for Hn(R) corresponds to
composition of linear operators. An element
(v,w, t) of Hn(R) is mapped to the identity opera-
tor exactly when v = w = 0 and λ t is an integer.
Thus this homomorphism incorporates a period-
icity in the t variable but is otherwise injective.

Let us be more precise and think of these linear
operators as acting on the Hilbert space L2(Rn) of
square-integrable functions on Rn. These operators
are all unitary, which is to say that they map L2(Rn)
onto itself and preserve the usual integral Her-
mitian scalar product there. Thus for each λ > 0
one gets a “unitary representation” of Hn(R) on
L2(Rn).

In addition to the group structure on Hn(R),
there is a natural family of dilations. Namely, for
each positive real number r , define a mapping δr
from Hn(R) to itself by

δr (v,w, t) = (r v, r w, r2 t).

This is a one-to-one mapping of Hn(R) onto itself
which preserves the group structure on Hn(R).
Also,

δr ◦ δr ′ = δrr ′

for all r , r ′ > 0, and δr is the identity transforma-
tion exactly when r = 1.

If a = (v0, w0, t0) is an element of Hn(R), consider
the mapping La from Hn(R) to itself defined by 
left-multiplication by a, so that

La(v,w, t) = (v0, w0, t0) • (v,w, t).

It is not difficult to verify that ordinary Euclidean
volumes are preserved by La, which is to say that
the volume of a measurable set E is the same as the
volume of the image La(E) of E under La. As in or-
dinary vector calculus, this statement is equivalent
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to saying that the Jacobian of the mapping La,
which is the determinant of the differential of La,
is equal to 1 everywhere on Hn(R). Indeed, it is easy
to see that the differential of La can be written in
terms of an upper-triangular matrix at each point,
where the diagonal part of the matrix is the same
as the identity matrix. For an upper-triangular 
matrix, the determinant is simply the product of
the diagonal entries and hence is equal to 1 every-
where in this case.

In short, ordinary volume measure is invariant
under left translations in the Heisenberg group.
Similarly, it is invariant under right translations. It
also behaves nicely under dilations; namely, the 
volume of δr (E) is equal to r2n+2 times the volume
of E for all r > 0 and all measurable sets E in
Hn(R). The number 2n+ 2 is sometimes called the
homogeneous dimension of Hn(R) for this reason.
By contrast, if A is a measurable subset of Rk and
one applies a standard dilation by a factor of t > 0
to A , then the volume of the result is tk times the
volume of A itself. Thus for ordinary Euclidean
spaces the “homogeneous dimension” is the same
as the vector-space dimension, which is the same
as the topological dimension, while for Hn(R) the
homogeneous dimension is equal to the topologi-
cal dimension plus 1.
Discrete Versions of the Heisenberg Groups
Define Hn(Z) to be the set of triples (v,w, t) , where
v and w lie in Zn and t lies in Z. It is easy to see
that this is a subgroup of Hn(R). It is a discrete 
version of the Heisenberg group.

In addition to being a group, Hn(R) is a smooth
manifold of dimension 2n+ 1 , and the group 
operation is smooth. The quotient Hn(R)/Hn(Z)
makes sense not only as a set of cosets, but also
as a compact smooth manifold of dimension 2n+ 1
without boundary. When n = 1, this manifold has
dimension 3, and it is one of the basic building
blocks for 3-manifolds discussed in [23].

Define aj in Hn(Z) for j = 1, . . . , n to be the triple
(v,w, t) such that all components of v are equal to
0 except for the jth component, which is equal to 1,
and such that w = 0 and t = 0. Similarly, define bj
in Hn(Z) for j = 1, . . . , n to be the triple (v,w, t)
such that v = 0; all components of w are equal to 0
except for the jth component, which is equal to 1;
and t = 0. Define c in Hn(Z) to be the triple (0,0,1).
It is easy to see that the elements

a1, . . . , an, b1, . . . , bn, c

generate Hn(Z). Indeed, if k and l lie in Zn and m
lies in Z, then (k, l,m) is the same as the product

(4) ak1
1 · · ·aknn bl11 · · ·blnn cm

in the group, where of course this expression is 
interpreted using the group operation.

For i, j = 1, . . . , n we have that

ai aj = aj ai, bi bj = bj bi
and

ai c = c ai, bj c = c bj .

If 1 ≤ i, j ≤ n and i �= j, then

ai bj = bj ai.

When i = j we have in place of this

bi ai = ai bi c

for i = 1, . . . , n. These relations describe the group
Hn(Z) completely; every element of Hn(Z) can be
represented in a unique way in the form (4), and
these relations are adequate to define the group 
operation in terms of this representation.

Connections with Several Complex Variables
It will be convenient now to use a slightly different
formulation of the nth Heisenberg group. Define H̃n
to be Cn × R equipped with the binary operation

(z, t)� (z′, t ′) =
(
z + z′, t + t ′ + 2 Im

n∑
j=1

zj z′j
)
,

where zj and z′j denote the jth components of z
and z′, and a denotes the complex conjugate of a
complex number a. One can check that this defines
a group operation on H̃n, where (0,0) is the iden-
tity element and (−z,−t) is the inverse of (z, t) . In
fact H̃n is isomorphic to Hn(R), as one can see by
associating to (x, y, t) in Hn(R) the element

(5) (x,0)� (iy,0)� (0, t)

of H̃n. The correspondence (x, y, t) � (x+ i y, t)
does not quite work, and (5) adds in a suitable cor-
rection.

Put

(6) Un+1 = {(w,σ ) ∈ Cn × C : Imσ > |w|2},

where |w|2 =∑n
j=1 |wj|2 , as usual. Thus

∂Un+1 = {(w,σ ) ∈ Cn × C : Imσ = |w|2}.

For each (z, t) in H̃n, define the mapping A(z,t) on
Cn × C by

(7) A(z,t)(w,σ ) =
(
w+z,σ+t+i|z|2+2i

n∑
j=1

wj zj
)
.

Because

|w + z|2 = |w|2 + 2 Re
n∑
j=1

wj zj + |z|2,

one can check that A(z,t)(w,σ ) ∈ Un+1 when
(w,σ ) ∈ Un+1 and A(z,t)(w,σ ) ∈ ∂Un+1 when
(w,σ ) ∈ ∂Un+1. Also,
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A(z,t)(A(z′,t′)(w,σ ))

=
(
w + z′ + z,σ + t ′ + t + i|z′|2 + i|z|2

+ 2i
n∑
j=1

wj z′j + 2i
n∑
j=1

(wj + z′j )zj
)

=
(
w + z′ + z,σ + t ′ + t + i|z′|2 + i|z|2

+ 2i
n∑
j=1

wj (z′j + zj )+ 2i
n∑
j=1

z′j zj
)

=
(
w + z′ + z,σ + t ′ + t + i|z′ + z|2

+ 2i
n∑
j=1

wj (z′j + zj )− 2 Im
n∑
j=1

z′j zj
)

=
(
w + z + z′, σ + t + t ′ + i|z + z′|2

+ 2i
n∑
j=1

wj (zj + z′j )+ 2 Im
n∑
j=1

zj z′j
)

= A(z,t)�(z′,t′)(w,σ ).

In particular, A(−z,−t) is the inverse of A(z,t). It follows
that A(z,t) defines a one-to-one mapping of Un+1

onto itself.
From the definition of A(z,t) it is clear that A(z,t)

is a holomorphic mapping, and in fact a complex-
affine mapping, since there are only w ’s and σ’s
in A(z,t)(w,σ ) and none of their complex conju-
gates. Thus A(z,t) is in fact a biholomorphic mapping
of Un+1 onto itself.

Define δ̃r : H̃n → H̃n for r > 0 by

δ̃r (z, t) = (r z, r2 t).

As before, δ̃r is a one-to-one mapping of H̃n onto
itself which preserves the group structure on H̃n,
δ̃r ◦ δ̃r ′ = δ̃rr ′ for all r , r ′ > 0, and δ̃r is the identity
mapping on H̃n exactly when r = 1. These dilations
also correspond to mappings on Un+1 in a natural
way. Namely, define ∆r : Un+1 →Un+1 for r > 0 by

(8) ∆r (w,σ ) = (r w, r2 σ ).

It is easy to see that ∆r is a one-to-one mapping of
Un+1 onto itself which takes Un+1 to Un+1 and
that ∆r ◦∆s = ∆r s for all r , s > 0 and ∆1 is the iden-
tity mapping. Furthermore, ∆r is a biholomorphic
mapping of Un+1 onto itself, and

∆r (A(z,t)(w,σ )) = Aδ̃r (z,t)(∆r (w,σ )).

A famous fact about Un+1 is that it is biholo-
morphically equivalent to the unit ball in Cn+1.
Thus the A(z,t)’s and ∆r’s correspond to biholo-
morphic transformations on the unit ball in Cn+1.
They do not account for all of the biholomorphic
transformations, though; basically what is missing

are the complex-linear transformations on Cn+1

which map the unit ball onto itself, which is the
same as saying that they preserve the standard
Hermitian inner product on Cn+1.
Tube Domains and Spaces of Holomorphic
Functions on Them
Let m be a positive integer, and let B be a nonempty
open subset of Rm . The corresponding tube 
domain TB in Cm is defined by

TB = {z ∈ Cm : z = x+ i y, x ∈ Rm, y ∈ B}.
We shall be interested in complex-valued functions
F (z) on TB which are holomorphic, which is to say
that F (z) can be represented in a neighborhood of
each point w ∈ TB by a power series that uses only
factors of the form (zj −wj ) and not their complex
conjugates. If F (z) is a function on TB which admits
a power series representation around each point
w ∈ TB that uses both the factors (zj −wj ) and
their complex conjugates, then F (z) is said to 
be real-analytic. Of course real-analyticity can be
defined directly on real Euclidean spaces, using
standard power series expansions, and that defi-
nition is equivalent to this one for functions on
open subsets of Cm .

A real-analytic function vanishes on a neigh-
borhood of some point if and only if the function
and all of its derivatives are equal to 0 at that point.
Using this, one can check that if a real-analytic
function on a connected domain vanishes on a non-
empty open subset, then the function vanishes
everywhere on the domain. We shall make the
standing assumption that the bases B of our tube
domains are connected, so that the corresponding
tube domain is also connected.

Fix a point y in B, and consider the subset
Rm + i y of TB consisting of points of the form
x+ i y, x ∈ Rm . If F (z) is a holomorphic function
on TB, then F (z) is uniquely determined by its 
restriction to Rm + i y. This is equivalent to saying
that if F (z) is holomorphic on TB and vanishes on
Rm + i y, then F (z) vanishes on all of TB. Indeed, if
F (z) vanishes on Rm + i y, then the derivatives of
F (z) in the Rm directions on Rm + i y vanish, and
for a holomorphic function this implies that the 
derivatives in all directions vanish on Rm + i y. In
other words, the power series coefficients of F (z)
at points in Rm + i y all vanish, so that F (z) vanishes
on a neighborhood of Rm + i y. In particular, F (z)
vanishes on a nonempty open subset of TB and
hence on all of TB, as in the previous paragraph.

Thus one can identify holomorphic functions 
on TB with a special class of functions on Rm + i y.
Just as the mth Heisenberg group acts by linear 
operators on functions on Rm, as indicated before,
it also acts on holomorphic functions on TB. For
each fixed ξ in Rm, the mapping z � z − ξ takes TB
onto itself, and this leads to the linear operator
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F (z) � F (z − ξ) acting on functions on TB, which
takes holomorphic functions to holomorphic func-
tions. If we fix a positive real number λ, then for
each η in Rm we get a complex exponential

(9) exp
(

2πiλ
m∑
j=1

zj ηj
)

which defines a holomorphic function on all of
Cm . Multiplication by this exponential function 
defines a linear operator on functions on TB, and
it takes holomorphic functions to holomorphic
functions, because the exponential function is 
holomorphic. Just as before, the translation oper-
ators and the operators of multiplication by these
complex exponentials do not quite commute, the
commutators between them being scalar multiples
of the identity, and again we get homomorphic 
images of the mth Heisenberg group.

As in Chapter III of [21], one defines the Hardy
space H 2(TB) to be the vector space of holomor-
phic functions F (z) on TB such that

(10)
∫

Rm
|F (x+ i y)|2 dx

is finite for all y ∈ B and in fact uniformly bounded.
The norm ‖F‖H 2(TB ) is defined by

‖F‖2
H 2(TB ) = sup

y∈B

∫
Rm
|F (x+ i y)|2 dx.

This space and its norm are preserved by the trans-
lation operators F (z) � F (z − ξ), ξ ∈ Rm. In order
for multiplication by the complex exponentials 
(9) to take H 2(TB) to itself for all η ∈ Rm, it is 
necessary and sufficient for B to be bounded, 
which ensures that the complex exponentials are
bounded functions on TB. On each slice of the form
Rm + i y, the modulus of the complex exponential
(9) is equal to exp(−2πy · η) , which is constant 
on the slice. Thus if one multiplies F (z) by (9), then
(10)  is multiplied by exp(−4πy · η) . This is more
complicated than a translation in the Rm direc-
tion, since this factor depends on y as well as on η .

Elements of the Hardy space have a nice Fourier-
transform representation. Namely, F (z) lies in
H 2(TB) if and only if F (z) can be expressed as

(11)

F (z) =
∫

Rm
exp

(
2πi

m∑
j=1

zj uj
)
f (u)du, z ∈ TB,

where f (u) is a measurable function on Rm such that

(12) sup
y∈B

∫
Rm
|f (u)|2 exp(−4πy · u)du <∞.

Furthermore, ‖F‖2
H 2(TB ) is equal to the quantity in

(12) in this case. See [21, p. 93]. As usual, transla-
tions of F (z) correspond to multiplications of f (u)

by exponentials, and multiplications of F (z) by
complex exponentials (9) correspond to translations
of f (u).

It is a classical result that if B is a connected open
subset of Rm and B̂ denotes the convex hull of B,
then every holomorphic function on TB admits a
holomorphic extension to TB̂. See Theorem 9 in
Chapter V of [4]. In fact B is convex if and only if
TB is a domain of holomorphy, which basically
means that there is not some universal holomor-
phic extension of holomorphic functions on TB to
a connected region that intersects TB but is not 
contained in TB. See Theorem 3.5.1 in [15], for in-
stance. For an element of H 2(TB), one can also get
this holomorphic extension from the preceding
Fourier-transform representation, and, moreover,
the Hardy-space norm of the extension is equal to
the Hardy-space norm of the original function on
the original domain. This is Corollary 2.4 on p. 93
of [21]. Note that for a nonempty convex open sub-
set B of Rm, H 2(TB) contains a function which is
not identically 0 if and only if B does not contain
a line, as in Corollary 2.6 on p. 94 of [21].

Let us now consider the case of convex cones.
Recall that a subset Γ of Rm is said to be a convex
cone if t v ∈ Γ whenever v ∈ Γ and t is a positive real
number, and v +w ∈ Γ whenever v,w ∈ Γ. We shall
assume as well that Γ is nonempty and an open 
subset of Rm and that it does not contain 0, since
otherwise Γ would be all of Rm. The dual Γ∗ of Γ is
defined by

Γ∗ = {u ∈ Rm : v · u ≥ 0 for all v ∈ Γ}.
It is easy to see that Γ∗ is always a convex cone that
is a closed subset of Rm.

Note that Γ∗ is equal to the set of u in Rm such
that exp(2πiz · u) is a bounded function of z on
the tube TΓ over Γ, and indeed

| exp 2πiz · u| ≤ 1

for all u ∈ Γ∗ and z in TΓ . Now consider the Hardy
space H 2(TΓ ). Because Γ is unbounded, multipli-
cation by the complex exponential (9) does not
send H 2(TΓ ) to itself for arbitrary η in Rm, but this
is true when η is an element of the dual cone Γ∗.
More precisely, if F (z) is an element of H 2(TΓ ) and
η lies in Γ∗, then the Hardy-space norm of F (z)
times the exponential function (9) is less than or
equal to the Hardy-space norm of F (z) itself.

For a tube over a convex cone, the Fourier-
transform representation of elements of the 
Hardy space can be converted into the following.
A function F (z) lies in H 2(TΓ ) if and only if it can
be expressed as

F (z) =
∫
Γ∗

exp(2πiz · u) f (u)du,

where f (u) is a measurable function on Γ∗ such that
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(13)
∫
Γ∗
|f (u)|2 du <∞.

In this case ‖F‖2
H 2(TΓ ) is equal to the quantity in (13).

This is Theorem 3.1 on p. 101 of [21]. Let us 
emphasize that the integrals over Γ∗ are taken with
respect to m-dimensional volume measure. If Γ
contains a line so that the closure of Γ contains a
line, through the origin, then Γ∗ is contained in a
subspace of Rm of dimension strictly less than m
and the integrals over Γ∗ are automatically equal
to 0.

A tube over a cone TΓ is invariant not only under
the translations z � z − ξ, ξ ∈ Rm, but also under
the dilation mappings z � r z, where r is a positive
real number. If F (z) lies in H 2(TΓ ), then F (r z) also
lies in H 2(TΓ ), and the norm of F (r z) is equal to
r−m/2 times the norm of F (z). More generally, if φ is
an invertible linear mapping from Rm onto itself
such that φ(Γ ) = Γ, then the extension Φ of φ to a
complex-linear mapping on Cm defines a biholo-
morphic automorphism of TΓ . Composition with
these mappings Φ defines linear operators on 
H 2(TΓ ), in which the norm is multiplied by the 
square root of the reciprocal of the absolute value 
of the determinant of φ. For some special cones Γ,
there may be quite a lot of these linear symmetries.

A basic example is the cone consisting of the 
elements v of Rm such that each component vj of
v is a positive real number. A linear mapping on
Rm takes this cone to itself if and only if the 
matrix of the linear mapping in the standard basis
has nonnegative entries and each row in the 
matrix contains at least one positive entry. In par-
ticular, this cone is homogeneous, which is to say
that for every two elements v and w in the cone
there is an invertible linear mapping on Rm which
takes the cone to itself and which takes v to w. Note
that the dual of this cone consists of the elements
u of Rm such that each component uj of u is a 
nonnegative real number.

The domain Un+1 defined in (6) is not a tube 
domain but nonetheless enjoys remarkable struc-
ture which is somewhat similar. This includes a
large family of biholomorphic automorphisms
given by affine mappings, namely those generated
by the A(z,t)’s defined in (7) and the nonisotropic
dilations ∆r defined in (8). The Hardy space
H 2(Un+1) associated to Un+1 is defined as the
space of holomorphic functions F (w,σ ) on Un+1

such that

(14)
∫

R

∫
Cn
|F (w, r + i|w|2 + is)|2 dw dr

is finite for every positive real number s and uni-
formly bounded. The norm ‖F‖H 2(Un+1) is defined
to be the square root of the supremum of (14) over
s > 0. Compare with [20, p. 532]. For any holo-
morphic function on Un+1, one can compose with

an affine mapping A(z,t) or a dilation ∆r and get 
another holomorphic function on Un+1 . If the 
initial function lies in the Hardy space H 2(Un+1) ,
then one can check that the same is true after 
composition. Composition with the A(z,t)’s does
not change the Hardy-space norm, while compo-
sition with the dilations ∆r changes the norm by a
scale factor. In other words, the Heisenberg group
again acts on the Hardy space, but this time one
uses only compositions and not multiplications
by exponentials. Concerning these and related 
matters, see [15], [19], [20].

In short, several complex variables, classical
Fourier analysis, and Heisenberg groups are inter-
weaved in a number of ways, with various domains,
spaces of functions, and actions on them.
Some Geometric Aspects
As on any Lie group, one can define left-invariant
smooth Riemannian metrics on the Heisenberg 
group by choosing any inner product on the tangent
space at the identity element and then extending
that to the whole group through left translations. 
In other words, the inner product on the tangent
space at a point p is determined by using a left 
translation to move p to the identity element and
using the differential of this translation mapping 
to transport tangent vectors at p to tangent vectors
at the identity, where the inner product has been
specified.

On the Heisenberg groups, as well as other 
nilpotent Lie groups, one has the extra ingredient
of dilations. On any Riemannian manifold one can
scale the metric simply by multiplying it by a pos-
itive real number, but with the dilations one can
make a different kind of scaling, using the dilations
as a change of variables.

On Rn with the standard Euclidean metric, these
two kinds of scaling have the same effect on the
metric. This is not the case on the Heisenberg
groups or other nonabelian nilpotent Lie groups.
Let us briefly describe two very interesting aspects
of this.

As mentioned earlier, one can take the quotient
of Hn(R) by the subgroup Hn(Z) to get a smooth
compact manifold. Since we are considering left-
invariant metrics on Hn(R), let us agree to take the
quotient of Hn(R) by the action of the subgroup
Hn(Z) on the left as well. This permits us to get 
Riemannian metrics on the quotient from left-
invariant metrics on Hn(R). Using the dilations,
one can show that the quotient space admits 
Riemannian metrics such that the maximum of the
absolute values of the sectional curvatures is
bounded by 1 at the same time that the diameter
is as small as one likes. This is equivalent to say-
ing that there are metrics such that the diameter
is bounded by 1 and the maximum of the absolute
values of the sectional curvatures is as small as one
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likes. For more about this kind of phenomenon, see
[6], [7], [12].

In addition to left-invariant Riemannian met-
rics, one can consider sub-Riemannian geometry.
For this one specifies a family of subspaces of the
tangent spaces to a given manifold and measures
distances between points by taking lengths of
curves where the curves are restricted to have their
tangent vectors in the specified subspaces of the
tangent spaces. Of course the family of subspaces
of the tangent spaces has to satisfy certain prop-
erties in order for there to be such a curve between
any two points. In the case of the Heisenberg group
Hn(R), such a family of subspaces of the tangent
spaces can be obtained as follows. At the identity
element (0,0,0) the tangent space can be identified
with the vector space Rn × Rn × R in a natural way,
and for the subspace one takes Rn × Rn × {0}. At
other points one gets a subspace of the tangent
space by making a left translation to reduce to 
this subspace of the tangent space at the identity
element. This leads to a family of subspaces of the
tangent spaces which satisfies the condition just
mentioned, and it is also invariant under left trans-
lations as well as the dilations on the Heisenberg
group.

In the context of the domain Un+1 in Cn+1 defined
in (6), one can look at this in a slightly different 
way. Namely, in the boundary ∂Un+1, one can
choose the family of subspaces of the tangent
spaces to be the maximal complex subspaces. These
are preserved by the mappings A(z,t) and the dila-
tions ∆r discussed before, because these 
mappings take ∂Un+1 to itself and they preserve 
the complex structure.

Two very good references concerning sub-
Riemannian geometry in general are [2] and [17].
One might be surprised at the extent to which 
familiar and basic topics from advanced calculus
become quite tricky in the sub-Riemannian case 
and for which there are a lot of open questions. In
this regard, see [16].
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