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T
he Poincaré Conjecture was posed ninety-
nine years ago and may possibly have
been proved in the last few months. This
note will be an account of some of the
major results over the past hundred

years which have paved the way towards a proof
and towards the even more ambitious project of
classifying all compact 3-dimensional manifolds.
The final paragraph provides a brief description of
the latest developments, due to Grigory Perelman.
A more serious discussion of Perelman’s work 
will be provided in a subsequent note by Michael
Anderson.

Poincaré’s Question
At the very beginning of the twentieth century,
Henri Poincaré (1854–1912) made an unwise claim,
which can be stated in modern language as follows:

If a closed 3-dimensional manifold has
the homology of the sphere S3 , then it
is necessarily homeomorphic to S3 .

(See POINCARÉ 1900.1) However, the concept of “fun-
damental group”, which he had introduced already
in 1895, provided the machinery needed to disprove
this statement. In POINCARÉ 1904 he presented a
counter-example that can be described as the coset

space SO(3)/I60 . Here SO(3) is the group of rota-
tions of Euclidean 3-space, and I60 is the subgroup
consisting of those rotations which carry a regu-
lar icosahedron or dodecahedron onto itself (the
unique simple group of order 60). This manifold
has the homology of the 3-sphere, but its funda-
mental group π1(SO(3)/I60) is a perfect group of
order 120. He concluded the discussion by asking,
again translated into modern language:

If a closed 3-dimensional manifold has
trivial fundamental group, must it be
homeomorphic to the 3-sphere?

The conjecture that this is indeed the case has
come to be known as the Poincaré Conjecture. It 
has turned out to be an extraordinarily difficult
question, much harder than the corresponding
question in dimension five or more,2 and is a 
key stumbling block in the effort to classify 
3-dimensional manifolds.

During the next fifty years the field of topology
grew from a vague idea to a well-developed disci-
pline. However, I will call attention only to a few
developments that have played an important role
in the classification problem for 3-manifolds. (For
further information see: GORDON for a history of 
3-manifold theory up to 1960; HEMPEL for a pre-
sentation of the theory up to 1976; BING for a 
description of some of the difficulties associated
with 3-dimensional topology; JAMES for a general 
history of topology; WHITEHEAD for homotopy 

John Milnor is professor of mathematics at SUNY at Stony
Brook. His email address is jack@math.sunysb.edu.
1Names in small caps refer to the list of references at the
end. Poincaré’s terminology may confuse modern readers
who use the phrase “simply-connected” to refer to a space
with trivial fundamental group. In fact, he used “simply-
connected” to mean homeomorphic to the simplest possi-
ble model, that is, to the 3-sphere.

2Compare SMALE 1960, STALLINGS, ZEEMAN, and WALLACE

for dimension five or more, and FREEDMAN for dimension
four.
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theory; and DEVLIN for the Poincaré Conjecture as
a Millennium Prize Problem.)

Results Based on Piecewise-Linear Methods
Since the problem of characterizing the 3-sphere
seemed so difficult, Max DEHN (1878–1952) tried the
simpler problem of characterizing the unknot
within S3.

Theorem claimed by Dehn (1910). A piecewise-
linearly embedded circle K ⊂ S3 is unknotted if and
only if the fundamental group π1(S3 �K) is free
cyclic.

This is a true statement. However, Kneser, nineteen
years later, pointed out a serious gap in Dehn’s
proof. The question remained open for nearly fifty
years, until the work of Papakyriakopoulos.

Several basic steps were taken by James Wad-
del ALEXANDER (1888–1971). In 1919 he showed that
the homology and fundamental group alone are not
enough to characterize a 3-manifold. In fact, he de-
scribed two lens spaces which can be distinguished
only by their linking invariants. In 1924 he proved
the following.

Theorem of Alexander. A piecewise-linearly em-
bedded 2-sphere in S3 cuts the 3-sphere into two
closed piecewise-linear 3-cells.

Alexander also showed that a piecewise-linearly
embedded torus must bound a solid torus on at
least one of its two sides.

Helmut KNESER (1898–1973) carried out a further
step that has played a very important role in later
developments.3 He called a closed piecewise-linear
3-manifold irreducible if every piecewise-linearly
embedded 2-sphere bounds a 3-cell, and reducible
otherwise. Suppose that we start with such a man-
ifold M3 which is connected and reducible. Then,
cutting M3 along an embedded 2-sphere which
does not bound a 3-cell, we obtain a new manifold
(not necessarily connected) with two boundary 
2-spheres. We can again obtain a closed (possibly
disconnected) 3-manifold by adjoining a cone over
each of these boundary 2-spheres. Now either each
component of the resulting manifold is irreducible
or we can iterate this procedure.

Theorem of Kneser (1929). This procedure al-
ways stops after a finite number of steps, yielding
a manifold  M̂3 such that each connected compo-
nent of  M̂3 is irreducible.

In fact, in the orientable case, if we keep careful track
of orientations and the number n of nonseparating
cuts, then the original connected manifold M3 can

be recovered as the connected sum of the compo-
nents of ̂M3, together with n copies of the “handle”
S1 × S2. (Compare SEIFERT 1931, MILNOR 1962.)

In 1933 Herbert SEIFERT (1907–1966) introduced
a class of fibrations which play an important role
in subsequent developments. For our purposes, a
Seifert fibration of a 3-manifold can be defined as
a circle action which is free except on at most fi-
nitely many “short” fibers, as described below.
Such an action is specified by a map (x, t) �→ xt
from M3 × (R/Z) to M3 satisfying the usual 
conditions that x0 = x and xs+t = (xs )t. We require
that each fiber xR/Z should be a circle and that the
action of R/Z should be free except on at most 
finitely many of these fibers. Here is a canonical
model for a Seifert fibration in a neighborhood 
of a short fiber: Let α be a primitive n-th root of
unity, and let D ⊂ C be the open unit disk. Form
the product D×R and then identify each (z, t) with
(αz , t + 1/n). The resulting quotient manifold 
is diffeomorphic to the product D× (R/Z), but 
the central fiber under the circle action (z, t)s =
(z , t + s) is shorter than neighboring fibers, 
which wrap n times around it, since (0, t)1/n ≡ (0, t).

There were dramatic developments in 3-manifold
theory, starting in the late 1950s with a paper by
Christos PAPAKYRIAKOPOULOS (1914–1976). He was a
quiet person who had worked by himself in
Princeton for many years under the sponsorship 
of Ralph Fox. (I was also working with Fox at 
the time, but had no idea that Papakyriakopoulos
was making progress on such an important project.)
His proof of “Dehn’s Lemma”, which had stood as
an unresolved problem since Kneser first pointed
out the gap in Dehn’s argument, was a tour de
force. Here is the statement:

Dehn’s Lemma (Papakyriakopoulos 1957).
Consider a piecewise-linear mapping f from a 
2-dimensional disk into a 3-manifold, where the 
image may have many self-intersections in the in-
terior but is not allowed to have any self-intersections
near the boundary. Then there exists a nonsingular
embedding of the disk which coincides with f
throughout some neighborhood of the boundary.

He proved this by constructing a tower of cover-
ing spaces, first simplifying the singularities of
the disk lifted to the universal covering space of a
neighborhood, then passing to the universal cov-
ering of a neighborhood of the simplified disk and
iterating this construction, obtaining a nonsingu-
lar disk after finitely many steps. Using similar
methods, he proved a result which was later sharp-
ened as follows.

Sphere Theorem. If the second homotopy group
π2(M3) of an orientable 3-manifold is nontrivial,
then there exists a piecewise-linearly embedded 
2-sphere which represents a nontrivial element of
this group.

3Parts of Kneser’s paper were based on Dehn’s work. In
a note added in proof, he pointed out that Dehn’s argu-
ment was wrong and hence that parts of his own paper
were not proven. However, the result described here was
not affected.



1228 NOTICES OF THE AMS VOLUME 50, NUMBER 10

As an immediate corollary, it follows that
π2(S3 �K) = 0 for a completely arbitrary knot
K ⊂ S3. More generally, π2(M3) is trivial for any 
orientable 3-manifold which is irreducible in the
sense of Kneser.

Within a few years of Papakyriakopoulos’s 
breakthrough, Wolfgang HAKEN had made sub-
stantial progress in understanding quite general 
3-manifolds. In 1961 Haken solved the triviality
problem for knots; that is, he described an effec-
tive procedure for deciding whether a piecewise-
linearly embedded circle in the 3-sphere is actually
knotted. (See SCHUBERT 1961 for further results in
this direction and a clearer exposition.)

Friedhelm WALDHAUSEN made a great deal of fur-
ther progress based on Haken’s ideas. In 1967a he
showed that there is a close relationship between
Seifert fiber spaces and manifolds whose funda-
mental group has nontrivial center. In 1967b he in-
troduced and analyzed the class of graph manifolds.
By definition, these are manifolds that can be split
by disjoint embedded tori into pieces, each of which
is a circle bundle over a surface. Two key ideas in
the Haken-Waldhausen approach seem rather 
innocuous but are actually extremely powerful:

Definitions. For my purposes, a two-sided piece-
wise-linearly embedded closed surface F in a closed
manifold M3 will be called incompressible if the fun-
damental group π1(F ) is infinite and maps injec-
tively into π1(M3) . The manifold M3 is sufficiently
large if it contains an incompressible surface.

As an example of the power of these ideas, Wald-
hausen showed in 1968 that if two closed ori-
entable 3-manifolds are irreducible and sufficiently
large, with the same fundamental group, then they
are actually homeomorphic. There is a similar state-
ment for manifolds with boundary. These ideas
were further developed in 1979 by JACO and SHALEN

and by JOHANNSON, who emphasized the importance
of decomposing a space by incompressible tori.

Another important development during these
years was the proof that every topological
3-manifold has an essentially unique piecewise-lin-
ear structure (see MOISE) and an essentially unique
differentiable structure (see MUNKRES or HIRSCH, to-
gether with SMALE 1959). This is very different from
the situation in higher dimensions, where it is es-
sential to be clear as to whether one is dealing with

differentiable manifolds, piecewise-linear mani-
folds, or topological manifolds.4

Manifolds of Constant Curvature
The first interesting family of 3-manifolds to be
classified were the flat Riemannian manifolds—
those which are locally isometric to Euclidean space.
David Hilbert, in the eighteenth of his famous prob-
lems, asked whether there were only finitely many
discrete groups of rigid motions of Euclidean n-
space with compact fundamental domain. Ludwig
BIEBERBACH (1886–1982) proved this statement in
1910 and in fact gave a complete classification of
such groups. This had an immediate application to
flat Riemannian manifolds. Here is a modern 
version of his result.

Theorem (after Bieberbach). A compact flat Rie-
mannian manifold Mn is characterized, up to affine
diffeomorphism, by its fundamental group. A given
group Γ occurs if and only if it is finitely generated,
torsionfree, and contains an abelian subgroup of 
finite index. Any such Γ contains a unique maximal
abelian subgroup of finite index.

It follows easily that this maximal abelian sub-
group N is normal and that the quotient group
Φ = Γ/N acts faithfully on N by conjugation. Fur-
thermore, N � Zn where n is the dimension. Thus
the finite group Φ embeds naturally into the group
GL(n,Z) of automorphisms of N. In particular, it fol-
lows that any such manifold Mn can be described
as a quotient manifold Tn/Φ , where Tn is a flat
torus, Φ is a finite group of isometries which acts
freely on Tn, and the fundamental group π1(Tn)
can be identified with the maximal abelian sub-
group N ⊂ π1(Mn). In the 3-dimensional orientable
case, there are just six such manifolds. The group
Φ ⊂ SL(3,Z) is either cyclic of order 1, 2, 3, 4, or 6
or is isomorphic to Z/2⊕ Z/2. (For further infor-
mation see CHARLAP, as well as ZASSENHAUS, MILNOR

1976a, or THURSTON 1997.)
Compact 3-manifolds of constant positive cur-

vature were classified in 1925 by Heinz HOPF

(1894–1971). (Compare SEIFERT 1933, MILNOR 1957.)
These included, for example, the Poincaré icosa-
hedral manifold which was mentioned earlier.
Twenty-five years later, Georges DE RHAM (1903–
1990) showed that Hopf’s classification, up to 
isometry, actually coincides with the classification
up to diffeomorphism.

The lens spaces, with finite cyclic fundamental
group, constitute a subfamily of particular inter-
est. The lens spaces with group of order 5 were in-
troduced already by ALEXANDER in 1919 as examples
of 3-manifolds which could not be distinguished
by homology and fundamental group alone. Lens
spaces were classified up to piecewise-linear home-
omorphism in 1935 by Reidemeister, Franz, and 
de Rham, using an invariant which they called 

4The statement that a piecewise-linear manifold has an
essentially unique differentiable structure remains true in
dimensions up to six. (Compare CERF.) However, KIRBY AND

SIEBENMANN showed that a topological manifold of dimen-
sion four or more may well have several incompatible 
piecewise-linear structures. The four-dimensional case is
particularly perilous: Freedman, making use of work 
of Donaldson, showed that the topological manifold R4

admits uncountably many inequivalent differentiable or
piecewise-linear structures. (See GOMPF.)
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torsion. (See MILNOR 1966 as well as MILNOR AND

BURLET 1970 for expositions of these ideas.) The
topological invariance of torsion for an arbitrary
simplicial complex was proved much later by CHAP-
MAN. One surprising byproduct of this classification
was Horst SCHUBERT’S 1956 classification of knots
with “two bridges”, that is, knots that can be placed
in R3 so that the height function has just two 
maxima and two minima. He showed that such 
a knot is uniquely determined by its associated 
2-fold branched covering, which is a lens 
space.

Although 3-manifolds of constant negative cur-
vature actually exist in great variety, few examples
were known until Thurston’s work in the late 1970s.
One interesting example was discovered in 1912 by
H. GIESEKING. Starting with a regular 3-simplex of 
infinite edge length in hyperbolic 3-space, he iden-
tified the faces in pairs to obtain a nonorientable
complete hyperbolic manifold of finite volume. 
SEIFERT AND WEBER described a compact example in
1933: starting with a regular dodecahedron of 
carefully chosen size in hyperbolic space, they 
identified opposite faces by a translation followed 
by a rotation through 3/10 of a full turn to obtain 
a compact orientable hyperbolic manifold. (An 
analogous construction using 1/10 of a full turn
yields Poincaré’s 3-manifold, with the 3-sphere 
as a 120-fold covering space.)

One important property of manifolds of nega-
tive curvature was obtained by Alexandre PREISSMANN

(1916–1990). (Preissmann, a student of Heinz Hopf,
later changed fields and became an expert on the
hydrodynamics of river flow.)

Theorem of Preissmann (1942). If Mn is a closed
Riemannian manifold of strictly negative curva-
ture, then any nontrivial abelian subgroup of
π1(Mn) is free cyclic.

The theory received a dramatic impetus in 1975,
when Robert RILEY (1935–2000) made a study of 
representations of a knot group π1(S3 �K) into
PSL2(C) . Note that PSL2(C) can be thought of either
as the group of orientation-preserving isometries
of hyperbolic 3-space or as the group of conformal
automorphisms of its sphere-at-infinity. Using 
such representations, Riley was able to produce a
number of examples of knots whose complement
can be given the structure of a complete hyperbolic
manifold of finite volume.

Inspired by these examples, Thurston devel-
oped a rich theory of hyperbolic manifolds. See the
discussion in the following section, together with
KAPOVICH 2001 or MILNOR 1982.

The Thurston Geometrization Conjecture
The definitive conjectural picture of 3-dimensional
manifolds was provided by William THURSTON in
1982. It asserts that:

The interior of any compact 3-manifold
can be split in an essentially unique way
by disjoint embedded 2-spheres and 
tori into pieces which have a geometric
structure. Here a “geometric structure”
can be defined most easily5 as a com-
plete Riemannian metric which is locally
isometric to one of the eight model struc-
tures listed below.

For simplicity, I will deal only with closed
3-manifolds. Then we can first express the mani-
fold as a connected sum of manifolds which are
prime (that is, not further decomposable as non-
trivial connected sums). It is claimed that each
prime manifold either can be given such a geo-
metric structure or else can be separated by in-
compressible tori into open pieces, each of which
can be given such a structure. The eight allowed
geometric structures are represented by the fol-
lowing examples:
• the sphere S3, with constant curvature +1;
• the Euclidean space R3 , with constant curva-

ture 0;
• the hyperbolic space H3, with constant curva-

ture −1;
• the product S2 × S1;
• the product H2 × S1 of hyperbolic plane and 

circle;
• a left invariant6 Riemannian metric on the 

special linear group SL(2,R) ;
• a left invariant Riemannian metric on the 

solvable Poincaré-Lorentz group E(1,1), which
consists of rigid motions of a 1+1-dimensional
spacetime provided with the flat metric
dt2 − dx2;

• a left invariant metric on the nilpotent Heisen-
berg group, consisting of 3× 3 matrices of the
form 


1 ∗ ∗
0 1 ∗
0 0 1


 .

In each case, the universal covering of the indi-
cated manifold provides a canonical model for the

5More formally, the canonical model for such a geometric
structure is one of the eight possible pairs (X,G) where X
is a simply-connected 3-manifold and G is a transitive group
of diffeomorphisms such that G admits a left and right 
invariant volume form such that the subgroup fixing any
point of X is compact and such that G is maximal as a group
of diffeomorphisms with this last property.
6See MILNOR 1976b §4 for the list of left invariant metrics
in dimension 3.
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corresponding geometry. Examples of the first
three geometries were discussed in the section on
constant curvature. A closed orientable manifold
locally isometric to S2 × S1 is necessarily diffeo-
morphic (but not necessarily isometric) to the 
manifold S2 × S1 itself, while any product of a sur-
face of genus two or more with a circle represents
the H2 × S1 geometry. The unit tangent bundle of
a surface of genus two or more represents the
SL(2,R) geometry. A torus bundle over the circle
represents the Poincaré-Lorentz solvegeometry,
provided that its monodromy is represented by a
transformation of the torus with a matrix such as[

2 1
1 1

]
which has an eigenvalue greater than one.

Finally, any nontrivial circle bundle over a torus rep-
resents the nilgeometry. Six of these eight geome-
tries, all but the hyperbolic and solvegeometry
cases, correspond to manifolds with a Seifert fiber
space structure.

Two special cases are of particular interest. The
conjecture would imply that:

A closed 3-manifold has finite funda-
mental group if and only if it has a 
metric of constant positive curvature. 
In particular, any M3 with trivial fun-
damental group must be homeomorphic
to S3 .

This is a very sharp version of the Poincaré Conjec-
ture. Another consequence would be the following:

A closed manifold M3 is hyperbolic if
and only if it is prime, with an infinite
fundamental group which contains no
Z⊕ Z.

In the special case of a manifold which is sufficiently
large, Thurston himself proved this last statement
and in fact proved the full geometrization conjec-
ture. (See MORGAN, THURSTON 1986, and MCMULLEN

1992.) Another important result by Thurston is that
a surface bundle over the circle is hyperbolic if and
only if (1) its monodromy is pseudo-Anosov up to
isotopy and (2) its fiber has negative Euler charac-
teristic. See SULLIVAN, MCMULLEN 1996, or OTAL.

The spherical and hyperbolic cases of the
Thurston Geometrization Conjecture are extremely
difficult. However, the remaining six geometries are
well understood. Many authors have contributed
to this understanding (see, for example, GORDON AND

HEIL, AUSLANDER AND JOHNSON, SCOTT, TUKIA, GABAI,
and CASSON AND JUNGREIS). See THURSTON 1997 and
SCOTT 1983b for excellent expositions.

The Ricci Flow
A quite different method was introduced by Richard
HAMILTON 1982. Consider a Riemannian manifold
with local coordinates u1 , . . . , un and with metric
ds2 =

∑
gijdui duj . The associated Ricci flow is a

one-parameter family of Riemannian metrics
gij = gij (t) satisfying the differential equation

∂gij/∂t = −2Rij ,

where Rij = Rij ({ghk}) is the associated Ricci 
tensor. This particular differential equation was
chosen by Hamilton for much the same reason
that Einstein introduced the Ricci tensor into his
theory of gravitation7—he needed a symmetric 
2-index tensor which arises naturally from the 
metric tensor and its derivatives ∂gij/∂uh and
∂2gij/∂uh∂uk. The Ricci tensor is essentially the
only possibility. The factor of 2 in this equation 
is more or less arbitrary, but the negative sign is
essential. The reason for this is that the Ricci flow
equation is a kind of nonlinear generalization of
the heat equation

∂φ/∂t = ∆φ

of mathematical physics. For example, as gij varies
under the Ricci flow, the associated scalar curva-
ture R =

∑
gijRij varies according to a nonlinear

version
∂R/∂t = ∆R + 2

∑
RijRij

of the heat equation. Like the heat equation, the
Ricci flow equation is well behaved in forward time
and acts as a kind of smoothing operator but is usu-
ally impossible to solve in backward time. If some
parts of a solid object are hot and others are cold,
then, under the heat equation, heat will flow from
hot to cold, so that the object gradually attains a
uniform temperature. To some extent the Ricci
flow behaves similarly, so that the curvature “tries”
to become more uniform, but there are many com-
plications which have no easy resolution.

To give a very simple example of the Ricci flow,
consider a round sphere of radius r in Euclidean
(n + 1)-space. Then the metric tensor takes the
form

gij = r2ĝij

where ĝij is the metric for a unit sphere, while the
Ricci tensor

Rij = (n− 1)ĝij

is independent of r . The Ricci flow equation reduces
to

dr2/dt = −2(n− 1) with solution

r2(t) = r2(0) − 2(n− 1) t.

Thus the sphere collapses to a point in finite time.
More generally, Hamilton was able to prove the
following.

Theorem of Hamilton. Suppose that we start with
a compact 3-dimensional manifold whose Ricci ten-
sor is everywhere positive definite. Then, as the

7For relations between the geometrization problem and
general relativity, see ANDERSON.
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manifold shrinks to a point under the Ricci flow, it
becomes rounder and rounder. If we rescale the 
metric so that the volume remains constant, then it
converges towards a manifold of constant positive
curvature.

Hamilton tried to apply this technique to more
general 3-manifolds, analyzing the singularities
which may arise, but was able to prove the
geometrization conjecture only under very strong
supplementary hypotheses. (For a survey of such
results, see CAO AND CHOW.)

In a remarkable trio of preprints, Grigory PERELMAN

has announced a resolution of these difficulties and
promised a proof of the full Thurston conjecture
based on Hamilton’s ideas, with further details to
be provided in a fourth preprint. One way in which
singularities may arise during the Ricci flow is that
a 2-sphere in M3 may collapse to a point in finite
time. Perelman shows that such collapses can be
eliminated by performing a kind of “surgery” on the
manifold, analogous to Kneser’s construction  
described earlier. After a finite number of such 
surgeries, he asserts that each component either:

1. converges towards a manifold of constant
positive curvature which shrinks to a point in 
finite time, or possibly

2. converges towards an S2 × S1 which shrinks
to a circle in finite time, or

3. admits a Thurston “thick-thin” decomposition,
where the thick parts correspond to hyperbolic
manifolds and the thin parts correspond to the
other Thurston geometries.

I will not attempt to comment on the details of
Perelman’s arguments, which are ingenious and
highly technical. However, it is clear that he has 
introduced new methods that are both powerful
and beautiful and made a substantial contribution
to our understanding.
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About the Cover

Regular Polytopes
The recipe for producing all regular polyhedra in Euclidean
space of arbitrary dimension does not seem to be as well
known as it should be, although it is the principal result of the
popular and well-beloved book Regular polytopes by the late
H. S. M. Coxeter, memorials of whom appear in this issue.

Start with a finite group generated by reflections in Euclidean
space, which may be identified with a group of transformations
of the unit sphere. The hyperplanes of all reflections in this group
partition the unit sphere into spherical simplices, called cham-
bers. If one chamber is fixed, then the reflections in its walls
generate the entire group, and the chamber is a fundamental
domain. If the walls of this fixed chamber are colored, then all
the walls of all chambers may be colored consistently.

The Coxeter graph of this configuration has as its nodes the
generating reflections, and its links, which are labeled, record
the generating relations of the products of the generators. There
is implicit order 3 on unlabeled links, and no link for a com-
muting pair. The red and green reflections, for example, on the
first cover image generate a group of order ten, thus giving rise
to the link of the graph labeled by 5.

If one node of the graph is chosen and the walls labeled by the
complementary colors are deleted, there results a partition of
the sphere by spherical polytopes. On the cover, deleting the red
and green edges gives rise to a partition by spherical pentagons.
This in turn will correspond to a polytope of one dimension
larger inscribed in the sphere, a dodecahedron in this case.

The principal result in the subject is that this polytope will
be regular if and only if the Coxeter graph is connected and
linear (thus excluding the graphs called Dn and En), and the
node is an end. On the cover the two choices of end node give
rise to the dodecahedron and icosahedron, but the choice of
middle node only to a semiregular solid. All regular polytopes
arise in this way. Thus the connected, linear Coxeter graphs
associated to finite reflection groups, together with a choice
of end node, classify regular polytopes completely.

This beautiful formulation of nineteenth-century results is
due to Coxeter and explained in his book. It clarifies enormously
the classical theory of Book XIII of the Elements. This result has
also more recently been intriguingly generalized by Ichiro Sa-
take in a paper (Ann. of Math. 71, 1960) well known to specialists
in representation theory, in which he describes all the facets
of the convex hull of the reflection group orbit of an arbitary
point in Euclidean space. He uses this generalization in his de-

scription of compactifications of
symmetric spaces. In view of Sa-
take’s results, it is not too surpris-
ing that these convex hulls also play
an important role in modern work
on automorphic forms, particularly
that of James Arthur.
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