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The Riemann-Hilbert
Problem and Integrable

Systems
Alexander R. Its

I
n its original setting, the Riemann-Hilbert
problem is the question of surjectivity of the
monodromy map in the theory of Fuchsian
systems.

An N ×N linear system of differential equa-
tions

(1)
dΨ (λ)
dλ

= A(λ)Ψ (λ)

is called Fuchsian if the N ×N coefficient matrix
A(λ) is a rational function of λ whose singularities
are simple poles. Each Fuchsian system generates,
via analytic continuation of its fundamental solu-
tion Ψ (λ) along closed curves, a representation of
the fundamental group of the punctured Riemann
sphere (punctured at the poles of A(λ)) in the group
of N ×N invertible matrices. This representation
(or rather its conjugacy class) is called the mon-
odromy group of equation (1), and it is the princi-
pal object of the theory of Fuchsian systems. The
question of whether there always exists a Fuchsian
system with given poles and a given monodromy
group was included by Hilbert in his famous list as
problem number twenty-one. The problem got the
name “Riemann-Hilbert” for its obvious relation to
the general idea of Riemann that an analytic (vec-
tor-valued) function could be completely defined by
its singularities and monodromy properties.

Subsequent developments put the Riemann-
Hilbert problem into the context of analytic factor-
ization of matrix-valued functions and brought to

the area the methods of singular integral equations
(Plemelj, 1908) and holomorphic vector bundles
(Röhrl, 1957). This resulted eventually in a nega-
tive (!) solution, due to Bolibruch (1989), of the 
Riemann-Hilbert problem in its original setting and
to a number of deep results (Bolibruch, Kostov) con-
cerning a thorough analysis of relevant solvability
conditions. We refer the reader to the book of Anosov
and Bolibruch [2] for more on Hilbert’s twenty-first
problem and the fascinating history of its solution
(and for more details on the genesis of the name
“Riemann-Hilbert”).

Simultaneously, and to a great extent indepen-
dently of the solution of the Riemann-Hilbert 
problem itself, a powerful analytic apparatus—the
Riemann-Hilbert method—was developed for solv-
ing a vast variety of problems in pure and applied
mathematics. The Riemann-Hilbert method reduces
a particular problem to the reconstruction of an 
analytic function from jump conditions or, equiv-
alently, to the analytic factorization of a given 
matrix- or scalar-valued function defined on a curve.
Following a tradition that developed in mathe-
matical physics, it is these problems, and not 
just the original Fuchsian one, that we will call
Riemann-Hilbert problems.1 In other words, we are
adopting a point of view according to which the
Riemann-Hilbert (monodromy) problem is formally
treated as a special case (although an extremely im-
portant one) of a Riemann-Hilbert (factorization)
problem. The latter is viewed as an analytic tool, but
one whose implementation is not at all algorithmic
and which might use quite sophisticated and 
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“custom-made” analytic ideas (depending on the
particular setting of the factorization problem).

A classical example of the use of analytic factor-
ization techniques is the Wiener-Hopf method in 
linear elasticity, hydrodynamics, and diffraction.

The goal of this article is to present some new de-
velopments in the Riemann-Hilbert formalism which
go far beyond the classical Wiener-Hopf schemes
and, at the same time, have many important simi-
larities with the analysis of the original Fuchsian 
Riemann-Hilbert problem. These developments come
from the theory of integrable systems.

The modern theory of integrable systems has its
origin in the seminal works of Gardner, Green,
Kruskal, and Miura (1967), Lax (1968), Faddeev and
Zakharov (1971), and Shabat and Zakharov (1971),
where what is now widely known as the Inverse
Scattering Transform (IST) method in soliton 
theory originated (we will recall the essence of the
IST method later on; we point out the monograph
[16] as the principal reference). Integrable systems
is currently an expanding area that includes the
analysis of exactly solvable quantum field and 
statistical physics models; the theory of integrable
nonlinear partial differential equations (PDEs) and
ordinary differential equations (ODEs)—equations
of KdV and Painlevé types; and quantum and 
classical dynamical systems that are integrable in
the sense of Liouville. During the last thirty years,
the theory of integrable systems has developed
into an important part of mathematical physics and
analysis, and it has become one of the principal
sources of new analytic and algebraic ideas for
many branches of contemporary mathematics and
theoretical physics.2 The most recent “beneficia-
ries” are orthogonal polynomials, combinatorics,
and random matrices.

We call a system of (nonlinear) differential 
equations an integrable system if it can be repre-
sented as a compatibility condition of an auxiliary
overdetermined linear system of differential 
equations. Following the tradition in soliton theory,
we call this auxiliary linear system a Lax pair 3 of

the given (nonlinear) system, even though it actu-
ally might involve more than two equations. We also
require that the Lax pair depend rationally on an
auxiliary complex parameter, which is called a spec-
tral parameter. This requirement is crucial:4 it
makes an integrable system completely integrable
in the sense of Liouville and, even more importantly,
makes possible an effective evaluation of the 
commuting integrals of motion, the invariant 
submanifolds, and the corresponding angle vari-
ables (that is, an effective realization of the 
Liouville-Arnold integration algorithm). Indeed, the
presence of the spectral parameter in the Lax pair
brings the tools of complex analysis into the prob-
lem, and this ultimately transforms the original
problem of solving a system of differential equa-
tions into the question of reconstructing an ana-
lytic function from the known structure of its 
singularities. In turn, this question (almost) always
can be reformulated as a Riemann-Hilbert problem
of finding an analytic function (generally matrix-
valued) from a prescribed jump condition across
a curve. The Riemann-Hilbert problem, especially
in the matrix case, might itself still be a transcen-
dental one. But even then it describes the solution
of the differential system in terms independent of
the theory of differential equations. In this sense,
the original differential system is “solved”. In fact,
the solution might even be explicit: namely, given
in terms of elementary or elliptic or abelian func-
tions and a finite number of contour integrals of
such functions. In general, the Riemann-Hilbert
formalism provides a representation in terms of 
the solutions of certain linear singular integral
equations, which in turn can be related to the 
theory of infinite-dimensional Grassmannians and
holomorphic vector bundles.

This notion of integrable systems and the 
Riemann-Hilbert method of solving them was 
essentially worked out in the 1970s and 1980s in
the theory of nonlinear PDEs of KdV type, that is, in
the soliton theory. Since then, the Riemann-Hilbert
approach has gradually become a quite universal
analytic tool for studying problems from many 
areas of modern mathematics not previously con-
sidered as “integrable systems”. Moreover, some of
these problems in their initial setting are not neces-
sarily differential systems at all.

In this article we will describe the application 
of the Riemann-Hilbert formalism to integrable
systems, emphasizing the analytic aspects. We
shall start by explaining in more detail what 
Riemann-Hilbert (factorization) problems are and
what the advantage is of reducing a problem to 
Riemann-Hilbert type. Then we will consider the 

2Perhaps the most celebrated example of such influence
is quantum groups, which emerged out of the works of Fad-
deev, Sklyanin, Takhtajan, and other members of the
Leningrad group on the quantum version of the IST. A more
recent example is the quite remarkable appearance, in the
Seiberg-Witten N = 2 supersymmetric gauge theory, of
the so-called algebraically integrable systems (the Liouville
tori are Jacobi varieties), which have their roots in the the-
ory of periodic solutions of integrable PDEs developed in
the 1970s (see the review paper [9] and the monographs
[16] and [4] for the history and the main references con-
cerning the periodic version of the IST).
3Strictly speaking, the compatibility-condition general-
ization of the original Lax-equation formalism came after
Lax’s paper; it first appeared in 1974, in the work of
Novikov (periodic problem for KdV) and of Ablowitz, Kaup,
Newell, and Segur (sine-Gordon equation).

4 In fact, the more general settings due to Hitchin (1987)
and Krichever (2001) allow the spectral parameter to vary
in an algebraic curve. Also, one can consider difference
or differential-difference Lax pairs as well.
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appearance and use of Riemann-Hilbert problems
in the theory of special functions of Painlevé type.
Simultaneously, we will see that this area indeed
falls into the category of integrable systems.

Choosing Painlevé functions (all the necessary 
definitions and historical references will be given
later) as a principal example enables us to introduce
the Riemann-Hilbert scheme in a rather elementary,
although sufficiently general, manner. Also, this will
put us in the context of the Fuchsian monodromy 
theory where both the “original” Riemann-Hilbert
problem and the Painlevé equations belong. The 
drawback of the approach is that we will not have
room for many other exciting applications, which
range from integrable PDEs of KdV type to exactly
solvable quantum field and statistical mechanics
models and (most recently) to the theory of orthog-
onal polynomials, matrix models, and random per-
mutations. It is, however, worth mentioning that in
all these areas the Painlevé functions play an impor-
tant role as the relevant “nonlinear special functions”.

Here are some key references where the inter-
ested reader can find material concerning the 
topics mentioned above and which we are unable
to cover in this article. The Riemann-Hilbert method
for integrable PDEs originated in the works of 
Manakov, Shabat, and Zakharov done in 1975–1979,
and since then it has been widely used in soliton
theory. We refer the reader to the monographs
[16], [10], [1], and [3] for a detailed presentation of
the different aspects of the method. The Riemann-
Hilbert approach to quantum exactly solvable 
models was initiated in the beginning of the 1980s
by Jimbo, Miwa, Môri, and Sato, and it was further
developed in the late 1980s and in the 1990s in the
series of works of Izergin, Korepin, Slavnov, Deift,
Zhou, and this author. The method is presented 
in the monograph [14] (see also the more recent 
survey [5]). The Riemann-Hilbert approach to 
orthogonal polynomials and matrix models was
suggested in 1991 by Fokas, Kitaev, and this author,
and recently it helped in solving some of the 
long-standing problems in the asymptotics of 
orthogonal polynomials related to universalities
in random matrices (the works of Bleher, Deift,
Kricherbauer, McLaughlin, Venakides, Zhou, and
this author, done in the late 1990s) and random 
permutations (the 1999 work of Baik, Deift, and 
Johansson followed by an explosion of activity in
the area). We refer the reader to the monograph [6]
and the survey [7] for a detailed presentation of the
approach and for more on its history.

Riemann-Hilbert Problems
An analytic function is uniquely determined by its
singularities, in virtue of Liouville’s theorem. In a
way, this is the most general example of “integra-
bility”: the local properties of an object yield 
complete information about its global behavior.

Therefore, one can suggest the most general, and
hence quite tautological, “definition” of an inte-
grable system as a problem whose solution can be
reduced to reconstructing an analytic function from
the known structure of its singularities. In turn, 
as indicated in the introduction, this question 
(almost) always can be formulated as a Riemann-
Hilbert problem.

Roughly speaking, as already indicated, a 
Riemann-Hilbert problem is the problem of finding
an analytic function in the complex plane having a
prescribed jump across a curve.5 More precisely,
suppose Γ is an oriented contour in the complex 
λ-plane. The contour Γ might have points of self-
intersection, and it might have more than one 
connected component. Figure 1 depicts typical 
contours appearing in applications. The orientation
defines the + and the − sides of Γ in the usual way.
Suppose in addition that we are given a map G
from  Γ into the set of N ×N invertible matrices.
The Riemann-Hilbert problem determined by the
pair (Γ , G) consists in finding an N ×N matrix-val-
ued function Y (λ) with the following properties.6

• Y (λ) is analytic for λ in C \ Γ .
• The limit Y−(λ) of Y from the minus side of Γ and

the limit Y+(λ) from the plus side of Γ are related
for λ ∈ Γ by the equation

Y+(λ) = Y−(λ)G(λ).

5The more general settings are the so-called nonlocal 
Riemann-Hilbert problem and the ∂-problem which were
brought to the theory of integrable systems in the 1980s
in the works of Ablowitz, BarYaacov, Fokas, Manakov,
and Zakharov devoted to the 2+1 integrable PDEs.
6 It is an instructive exercise to reformulate as a Riemann-
Hilbert problem the standard question of reconstructing
a rational function from its poles and the principal parts
at the poles.

Figure 1. Typical contours Γ.
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elementary or special functions directly by exam-
ining the jump function G(λ).7

In the general nonabelian matrix case, formula (2)
does not work. A generic matrix Riemann-Hilbert
problem cannot be solved explicitly (this is a 
common belief, not a theorem!) in terms of contour
integrals. It can, however, always be reduced to the
analysis of a linear singular-integral equation. There-
fore replacing the original problem by a 
Riemann-Hilbert problem is still advantageous. 
Indeed, nonabelian Riemann-Hilbert problems usu-
ally arise when the original problem is nonlinear, so
a Riemann-Hilbert reformulation effectively 
linearizes an originally nonlinear system.

The main benefit of reducing originally nonlin-
ear problems to the analytic factorization of given
matrix functions arises in asymptotic analysis. In
typical applications, the jump matrices G(λ) are
characterized by oscillatory dependence on exter-
nal large parameters, say space x and time t . The
asymptotic evaluation of the solution Y (λ, x, t) of
the Riemann-Hilbert problem as x, t →∞ turns out
to be in some (not all!) ways quite similar to the 
asymptotic evaluation of oscillatory contour inte-
grals via the classical method of steepest descent.
Indeed, after about twenty years of significant 
efforts by several authors, starting from the 1973
works of Shabat, Manakov, and Ablowitz and Newell
(see [8] for a detailed historical review), the devel-
opment of the relevant scheme of asymptotic 
analysis of integrable systems finally culminated
in the nonlinear steepest descent method for oscil-
latory Riemann-Hilbert problems, which was 
introduced in 1992 by Deift and Zhou. In complete
analogy to the classical method, it examines the 
analytic structure of G(λ) in order to deform the
contour Γ to contours where the oscillatory factors
involved become exponentially small as x, t →∞ ,
and hence the original Riemann-Hilbert problem 
reduces to a collection of local Riemann-Hilbert
problems associated with the relevant saddle
points. The noncommutativity of the matrix setting
requires, however, developing several totally new
and rather sophisticated technical ideas, which, in
particular, enable an explicit solution of the local
Riemann-Hilbert problems.8 For more details we
refer the reader to the original papers of Deift and
Zhou, and also to the review article [8]. Remarkably,
the final result of the analysis is as efficient as the
asymptotic evaluation of the oscillatory integrals.

7The possibility of an explicit factorization might actually
occur in (very) special matrix cases as well; in fact, certain
problems in diffraction are solved by using such factor-
izations.
8 It is worth mentioning that as a by-product a new col-
lection of matrix functions admitting an explicit analytic
factorization has been obtained.

• Y (λ) tends to the identity matrix I as λ→∞.
The precise sense in which the limit at ∞ and

the limits from the two sides of Γ exist are techni-
cal matters that should be specified for each given
pair (Γ , G) . The highly nontrivial questions con-
cerning the minimal restrictions on the contour Γ
and the allowable functional classes for the mapG
are issues of the general theory of analytic matrix
factorization. For a detailed exposition of this 
extremely interesting and deep area of modern
complex analysis we refer the reader to the 1981
monograph of Clancey and Gohberg and to the
1987 monograph of Litvinchuk and Spitkovskii
(see also [3], the works of Zhou on the Riemann-
Hilbert approach to inverse scattering, and the
most recent works of Deift and Zhou on the L2-
Riemann-Hilbert theory). The general facts estab-
lished in this area, especially the ones concerning
the properties of the Cauchy operators defined 
on contours with self-intersections, are extremely
important; they provide the Riemann-Hilbert 
formalism with the necessary mathematical rigor.

Why should it help if a problem can be reduced
to a Riemann-Hilbert problem? The advantage is 
immediate in the scalar case, N = 1. Indeed, in this
case the original multiplicative jump condition 
can be rewritten in the additive form

logY+(λ) = logY−(λ)+ logG(λ).

An additive jump relation of the form y+(λ) =
y−(λ) + g(λ) can always be resolved by means of the
contour integral

y(λ) = 1
2πi

∫
Γ

g(µ)
µ − λ dµ

(the Cauchy-Plemelj-Sokhotskii formula). In the
scalar case, therefore, or more generally in the
abelian case when

[G(λ1), G(λ2)] ≡ G(λ1)G(λ2)−G(λ2)G(λ1) = 0

for all λ1 and λ2 in Γ, the solution of the Riemann-
Hilbert problem admits an explicit integral repre-
sentation

(2) Y (λ) = exp

{
1

2πi

∫
Γ

logG(µ)
µ − λ dµ

}
.

There is a subtle matter of how to treat this
equation if the problem has a nonzero index, that
is, if ∂Γ = 0 and ∆ logG|Γ ≠ 0. Still, formula (2),
after a suitable modification in the case of nonzero
index (see, e.g., Gakhov’s monograph Boundary
Problems), yields a contour-integral representation
for the solution of the original problem. Moreover,
in typical concrete situations one can evaluate the
integral in (2) in closed form or, equivalently, one
can find an explicit formula involving known
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The easiest way to make the problem nontrivial is
to let the constant mapG (the jump matrix) become
piecewise constant. The Riemann-Hilbert problem
that arises in this way is exactly the kind of fac-
torization problem that appeared in the classical
work of Plemelj devoted to solving Hilbert’s twenty-
first problem. Figure 2 depicts the Fuchsian (i.e.,
piecewise-constant) Riemann-Hilbert problem in
more detail. There, the contour Γ is a polygonal path,
Γ = [a1, a2]∪ [a2, a3]∪ . . . ∪[an−1, an]∪ [an, a1] ,
and the jump matrix G(λ) is defined by

G(λ) =M1M2 · · ·Mk, λ ∈ (ak, ak+1),

where {M1,M2, . . . ,Mn} is a given set of nonsin-
gular constant matrices. For generic Mk satisfying
the cyclic relation M1M2 · · ·Mn = I, the unique 
solution Y (λ) of this Riemann-Hilbert problem 
exists (Plemelj). Moreover, it satisfies a Fuchsian 
differential equation whose poles are ak and whose
monodromy group is generated (see Figure 2) by 
the matrices M1, . . . ,Mn; that is,

τγk (Y )(λ) = Y (λ)Mk,

where τγ denotes the operator of analytic contin-
uation along the loop γ. This relates the Riemann-
Hilbert problems with piecewise-constant jump
matrices to the theory of Fuchsian systems. Plemelj
used this relation in his near solution of Hilbert’s
twenty-first problem. A principal difficulty arises
when we drop the word “generic” in the descrip-
tion of the given matrices Mk . In the general
case, as was shown by Kohn and by Arnold and
Il’yashenko, Plemelj’s proof has gaps. The very 
surprising fact that these gaps cannot be closed 
was shown by Bolibruch by a counterexample (see
[2] for further details).

(iii) As already indicated in the introduction, the
modern theory of integrable systems began with
the discovery of the Inverse Scattering Transform
method. The essence of the method is a lineariza-
tion of a nonlinear (integrable) PDE via a direct
scattering transform generated by the spatial part

Later we will illustrate this statement by an exam-
ple from the modern theory of integrable ODEs.

In summary, our major point is that to have a
solution to a (nonlinear) problem represented in
terms of the function Y (λ) defined via the factor-
ization of a given matrix function is just as good 
as to have the solution written in terms of contour
integrals. In other words, the Riemann-Hilbert rep-
resentation extends the notion of “integral repre-
sentation” to the nonlinear, noncommutative case.

We conclude this section with a few additional
general remarks concerning Riemann-Hilbert prob-
lems.

(i) The following simple observation strengthens
the idea of viewing the Riemann-Hilbert formalism
as a noncommutative analog of contour integral
representation. Let

(3) L =
∫
Γ
g(λ)dλ

be a contour integral, and define the matrix 
function

(4) Y (λ) =




1
∫
Γ

g(µ)
µ − λ dµ

0 1


 .

Assuming that all the integrals and limits make
sense (e.g., g(λ) and Γ are continuous, and Γ is
bounded), we can write

(5) L = − lim
λ→∞

[λY12(λ)]
(
= resλ=∞ Y12(λ)

)
.

On the other hand, the matrix function Y (λ) can 
alternatively be defined (again by the Cauchy-
Plemelj-Sokhotskii formula) as the unique solution
of the Riemann-Hilbert problem determined by the
pair (Γ , G) , where

(6) G(λ) =

1 2πig(λ)

0 1


 .

Hence the evaluation of the contour integral (3) 
is equivalent to the analytic factorization of the 
matrix function (6).9 Since the matrices G(λ) for 
different values of λ commute with each other,
the equation (4) is just the integral representation
(2) in the triangular case.

(ii) Let Γ be a closed Jordan curve that divides
the λ-plane into two open connected sets: the in-
terior domain Ω+ and the exterior domain Ω− . Let
G be a constant map, say G(λ) ≡ G0. Then the
Riemann-Hilbert problem can be solved immedi-
ately: namely,

Y (λ) =
{
I for λ ∈ Ω−,
G−1

0 for λ ∈ Ω+.

9The reader might find it amusing to try to evaluate, via
the factorization of the relevant triangular matrices, stan-
dard integrals of the form 

∫ b
a R(x)dx and 

∫+∞
−∞ R(x)eix dx ,

where R(x) is a rational function.

 

Figure 2. Fuchsian Riemann-Hilbert problem.
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The Airy functions are defined as solutions of
the linear ordinary differential equation

(7) uxx = xu.

As mentioned above, the Airy functions belong to
the family of classical special functions. Before we
proceed with the derivation of the Riemann-Hilbert
formalism for the Airy function, we address the fol-
lowing basic issue: What is so “special” about the
special functions in general and the Airy function
in particular? One way to answer this question is
the following.

Equation (7) is a particular case of a linear dif-
ferential equation of the form

(8) uxx = p(x)u,

where p(x) is a polynomial. Unless p(x) is of a very
special type, this equation cannot be solved in
terms of elementary functions. However, one can
always find the elementary asymptotic solutions,
u±(x|a±), to the equation as x→ ±∞. Here the a±
indicate sets of asymptotic parameters. The prin-
cipal question is this: Suppose that u+(x|a+) and
u−(x|a−) represent the asymptotics of the same
solution. Can one describe the map a+ � a− in
terms of elementary functions or finitely many
contour integrals of elementary functions (i.e.,
avoiding the necessity of solving an integral equa-
tion)? In other words, does equation (8) admit ex-
plicit connection formulae? For a generic polynomial
p(x) the answer is “no”,10 but for the Airy equation
the answer is “yes”. From the analytic point of
view, this fact justifies the title “special” for the Airy
function. Similarly, the other classical special func-
tions of hypergeometric type, such as the Bessel
functions and the Whittaker functions, all are de-
fined as solutions of second-order linear differen-
tial equations possessing this extremely special
property—each of them admits explicit asymptotic
connection formulae.11

The analytic mechanism that yields explicit con-
nection formulae for Airy (as well as for Bessel,
Whittaker, etc.) functions is the contour integral rep-
resentations which are available for all the special
functions of hypergeometric type. Therefore, ac-
cording to our idea of viewing contour integrals as
abelian Riemann-Hilbert problems, there should
be a Riemann-Hilbert representation for the Airy
functions as well. In order to obtain it, we have to
recall the Airy integral formulae.

Consider the collection of six rays

of the corresponding Lax pair. This reduces the 
solution of an integrable nonlinear PDE to the 
solution of the inverse scattering problem for a 
relevant linear differential operator. It was appar-
ently first realized by Shabat in 1979 (although
some of the basic ideas can be found in old works
of Krein) that the inverse scattering problem can
be reformulated as a Riemann-Hilbert problem of
analytic factorization of the scattering matrix. This
was how the Riemann-Hilbert approach in inte-
grable PDEs started. It is significant to notice that
the “first” Riemann-Hilbert problem, i.e., the Fuch-
sian one, and the inverse scattering Riemann-Hilbert
problem represent the two opposite ends of the
whole spectrum of possible Riemann-Hilbert prob-
lems: the Fuchsian problem is the first nontrivial
problem, while the inverse scattering problem is the
most general one, as its jump matrix G(λ) allows
a virtually arbitrary dependence on λ.

(iv) The use of the Riemann-Hilbert problem as
an analytic apparatus goes back to the beginning
of the twentieth century. The main examples are
the Wiener-Hopf method in linear diffraction and
the theory of Toeplitz operators. The principal
player in these fields is a scalar, that is, an abelian
Riemann-Hilbert factorization, and the principal 
objects are linear PDEs. The basic reference for
the classical aspects of the theory and applica-
tions of the Riemann-Hilbert problem is the 1968
monograph of Muskhelishvili. There is a very in-
teresting revival of the “linear theme” in the recent
works of Fokas, where a unified approach is sug-
gested, based on the Riemann-Hilbert method, for
solving initial-boundary-value problems for linear
PDEs with constant coefficients and integrable 
nonlinear PDEs.

(v) Although this article deals with only the an-
alytic aspects of the Riemann-Hilbert method, the
method has two other very important and inter-
twining components. One is geometric: the relation
to holomorphic vector bundles. Another is alge-
braic: the relation to loop groups. For these, see the
survey [17] and the monographs [2] and [10].

“From Gauss to Painlevé”
This is the main section of the article. The title, but
not the content, is borrowed from the 1991 book
on special functions of Iwasaki, Kimura, Shimo-
mura, and Yoshida.

Using the Airy equation and its natural nonlin-
ear analog—the second Painlevé equation—as the
basic examples of linear (Gauss) and nonlinear
(Painlevé) special functions, we will describe the
principal analytic ideas and the kind of results
that can be obtained via the Riemann-Hilbert
method in the theory of integrable systems. At the
same time, we will explain why the special functions
make integrable systems.

10Strictly speaking, this is again the general belief, not a
theorem.
11It is worth noticing that asymptotic connection formu-
lae are exactly what is most frequently needed from the
special functions in applications.
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(9) Γk =
{
λ : argλ = 2k− 1

6
π
}
, k = 1,2, . . . ,6,

oriented towards infinity, and let Γ, indicated in bold
in Figure 3, be the union of the rays Γ2, Γ4, and Γ6.
The classical integral representation of the general
solution of the Airy equation (7) can be written as

(10)

u(x) = i
π

{
s2

∫
Γ2
+s4

∫
Γ4
+s6

∫
Γ6

}
e−

8i
3 λ

3−2ixλ dλ,

where the complex parameters s2, s4, and s6 satisfy
a single restriction, the cyclic relation12

(11) s2 + s4 + s6 = 0.

In view of equations (3)–(6), the integral represen-
tation (10) implies that

u(x) = 2 lim
λ→∞

[λY12(λ)],

where the matrix function Y (λ) ≡ Y (λ, x) is the so-
lution of the (abelian) 2× 2 matrix Riemann-Hilbert
problem for the contour Γ. The corresponding jump
matrix G(λ) is the upper-triangular oscillatory ma-
trix function defined by

(12) G(λ) ≡ G(λ, x) =


1 ske−

8i
3 λ

3−2ixλ

0 1


 ,

λ ∈ Γk, k = 2, 4, 6. The oscillatory factor in (12) and
the choice of the contour Γ are consistent with the
normalization condition at λ = ∞. Indeed, the ma-
trix function G(λ) rapidly approaches the identity
matrix as λ→∞ along the contour Γ. This makes
the Airy Riemann-Hilbert problem well posed.

Similar considerations, based on the relevant
contour integrals, easily produce Riemann-Hilbert
representations for all the other classical special
functions, including even those which are not of
the hypergeometric type, e.g., the Euler Γ-function
(Kitaev, 2002) and the Riemann zeta-function (see
the end of this article).

Although the Riemann-Hilbert treatment of the
classical special functions does not seem to have
a big technical advantage over integral represen-
tations, it does lead, via a natural nonabelianiza-
tion procedure, to the next, more exotic, analytic
objects, the Painlevé transcendents.

A simple way to obtain a nonabelian general-
ization of the Airy Riemann-Hilbert problem is to
augment the contour Γ by the three complementary
rays Γ1, Γ3, and Γ5 (shown in Figure 3 by dashed

lines), simultaneously complementing equations
(12) by three more equations defining the jump 
matrix on the new rays (note the change of the 
triangularity and of the sign of the exponent):

G(λ) ≡ G(λ, x) =




1 0

ske
8i
3 λ

3+2ixλ 1


 ,

λ ∈ Γk, k = 1, 3, 5. Along the augmented contour
Γ, we still have the asymptotic consistency condi-
tion that G(λ) tends to the identity matrix as λ→∞.
The nonabelian extension leads to the following
nonlinearization of the Airy cyclic relation (11):

(13) sk+3 = −sk, k = 1,2,3, s1− s2+ s3+ s1s2s3 = 0.

We will see shortly that, just as in the case of their
linear counterpart, these relations are needed to
eliminate the possible singularity of the function
Y (λ) at λ = 0 .

Let Y (λ, x) be the solution of this nonabelian 
Riemann-Hilbert problem, and define the function
u(x) again by the same limit formula as in the 
linear case; i.e., put

(14) u(x) = 2 lim
λ→∞

[λY12(λ)].

Then, in place of the linear Airy equation (7), the
following nonlinear second-order differential equa-
tion arises:

(15) uxx = xu+ 2u3.

Unlike in the linear case, the proof of (15) is 
not straightforward. Indeed, we no longer have an
explicit formula for Y (λ) or for u(x), so the very ex-
istence of the solution Y (λ) of the Riemann-Hilbert
problem and its “good” analytic properties with re-
spect to the parameter x are now quite nontrivial
analytic facts. They can be established by using

Γ
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Figure 3. Airy-Painlevé Riemann-Hilbert problem.

12The proof of the integral representation for the Airy 
functions is straightforward. Differentiating under 
the integral shows that uxx − xu is equal to a constant times{
s2
∫
Γ2 +s4

∫
Γ4 +s6

∫
Γ6

}
d
(
e−

8i
3 λ

3−2ixλ
)
, and this expres-

sion equals 0 because of the cyclic relation and the

asymptotic behavior e−
8i
3 λ

3−2ixλ → 0as λ→∞ in Γ.
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13Theorem 1 as stated was proved recently by Bolibruch,
Kapaev, and this author. It may also properly be viewed
as a refinement of earlier work of Fokas and Zhou and of
Novokshenov and this author, and apparently it also can
be extracted from more general results of Malgrange,
Palmer, and Mason and Woodhouse.

techniques based on the Fredholm analysis of the
associated singular integral equation or by apply-
ing methods of holomorphic vector bundles based
on the generalized Birkhoff-Grothendieck theorem
with parameters. A precise statement concerning
the solution Y (λ) ≡ Y (λ, x) reads as follows.13

Theorem 1. Suppose the set s ≡ (s1, . . . , s6) satis-
fies the cyclic relation (13). Then there exists a
countable subset Xs of the complex x-plane, hav-
ing the point at ∞ as its only accumulation point,
and a matrix function Y (λ, x) solving the non-
abelian Airy Riemann-Hilbert problem for all x ∉ Xs.
Moreover, if Ωk denotes the sector in the complex
λ-plane bounded by the rays Γk−1 and −Γk, then each
restriction Yk(λ, x) ≡ (Y |Ωk) (λ, x) is holomorphic
in Ωk × (C \Xs ) and meromorphic along Ωk ×Xs .
The normalization condition at λ = ∞ extends to
the full asymptotic series

(16) Y (λ, x) ∼ I +
∞∑
j=1

mj (x)
λj

, λ→∞,

which is differentiable with respect to λ and x. The
coefficient functions mj (x) are meromorphic in x
and have the set Xs as the set of their poles.

The x-meromorphicity is a new analytic feature
of the function Y (λ, x) in the nonabelian case (in
the linear—abelian—case, the function Y (λ, x) is en-
tire with respect to x). In fact, the solutions of all
Riemann-Hilbert problems arising in the theory of
special functions are meromorphic with respect to
the relevant parameters.

Theorem 1 allows us to differentiate the 
functions Y (λ, x) and u(x), and the proof of the 
differential equation (15) becomes relatively easy.
Nevertheless, it involves ingredients which are 
central to the whole modern theory of integrable
systems: the Lax pair formalism and the isomon-
odromy deformation. Here is a sketch of the proof.

Let θ(λ) = 4
3λ

3 + xλ , let σ3 denote the Pauli ma-
trix 

(
1 0
0 −1

)
, and put Ψ (λ) = Y (λ)e−iθ(λ)σ3. The diag-

onal matrix e−iθ(λ)σ3conjugates the jump matrix
G(λ) into constant matrices:

(17) G(λ) = e−iθ(λ)σ3Skeiθ(λ)σ3 , λ ∈ Γk,

where Sk is upper (lower) triangular if k is even
(odd), has unit diagonal, and has sk as its nontriv-
ial off-diagonal entry. In terms of the function Ψ ,
the jump relation becomes

(18) Ψ+(λ) = Ψ−(λ)Sk, λ ∈ Γk,

while the normalization condition at λ = ∞ trans-
forms into the asymptotic condition

(19) Ψ (λ) =
(
I +O

(
1
λ

))
e−iθ(λ)σ3 .

The main point is that the λ- and x-independence
of the matrices Sk implies that the “logarithmic 
derivatives”

(20) A(λ) := ΨλΨ−1 and U (λ) := ΨxΨ−1

have no jumps across the rays Γk. In addition, the
cyclic relation (13), which can be rewritten as the
matrix equation

(21) S1S2 . . .S6 = I,

implies that the logarithmic derivatives ΨλΨ−1 and
ΨxΨ−1 have no singularities at λ = 0. Hence the
matrix functions A(λ) and U (λ) are entire functions
of λ. In view of (19), we have that ΨλΨ−1 =
−4iλ2σ3+· · · and ΨxΨ−1=−iλσ3 + · · · as λ→∞.
Hence the entire functions A(λ) and U (λ) are, in
fact, polynomials of the second and the first 
degree, respectively:

A(λ) = −4iλ2σ3 + λA1 +A0

and

U (λ) = −iλσ3 +U0.

The matrix coefficients A1, A0 , and U0 can be 
easily evaluated in terms of the matrix coefficients
mj of the asymptotic series (16). After elementary
algebra and a few more technical tricks, the matrix
coefficients A1, A0, and U0 can be expressed in
terms of a single functional parameter u ≡ u(x)
defined according to (14) (note that u = 2(m1)12).
In fact, the following equations result:

(22)
A(λ) = −4iλ2σ3 − 4λuσ2 − 2uxσ1 − (ix+ 2iu2)σ3

and

(23) U (λ) = −iλσ3 − uσ2,

where σ1 and σ2 denote the Pauli matrices 
(

0 1
1 0

)
and 

(
0 −i
i 0

)
, respectively.

After establishing the polynomial structure of
A(λ) and U (λ), we can reinterpret (20) as saying that
the matrix function Ψ (λ) ≡ Ψ (λ, x) is a solution of
the linear overdetermined system

(24)

{
Ψλ = A(λ)Ψ ,
Ψx = U (λ)Ψ .

The compatibility condition Ψλx = Ψxλ yields the fol-
lowing relation on the coefficient matrices:

(25)
Uλ(λ)−Ax(λ) = [A(λ), U (λ)], identically in λ.
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concerning the representation (14) for solutions of
differential equation (15).

Proposition 1. The map defined by equation (14)
is a bijection of the algebraic manifold

{s = (s1, s2, s3) ∈ C3 : s1 − s2 + s3 + s1s2s3 = 0}
into the set of solutions of the differential equa-
tion (15). In particular, the notation u(x) ≡ u(x; s)
for solutions of (15) is justified.

An important corollary of Theorem 1 and Propo-
sition 1 is the following global analytic property of
the solutions of equation (15).

Proposition 2. Every solution of the differential
equation (15) is a meromorphic function of the
complex variable x. If s is the corresponding mon-
odromy data, then the set of poles of the solution
coincides with the set Xs of points where the 
nonabelian Airy Riemann-Hilbert problem fails 
to be solvable.

It is now time to reveal the name of the differ-
ential equation (15). It is (a particular case) of the
second equation from the Painlevé-Gambier list of
ordinary differential equations having the so-called
Painlevé property. A second-order differential equa-
tion of the form uxx = F (x,u, ux), where F is mero-
morphic in x and rational in u and ux, is said to
have the Painlevé property if every solution has a
meromorphic continuation to the universal cover-
ing of a punctured x-Riemann sphere which is de-
termined by the equation only. This is a statement
concerning the global behavior of a general solu-
tion, and as such it is often taken as a definition
of the very concept of integrability.15

At the turn of the last century, Painlevé and
Gambier showed that there exist, up to proper
transformations of the dependent and indepen-
dent variables, only fifty equations satisfying the
Painlevé property. Moreover, each of these equa-
tions can be either integrated by quadrature or 
reduced to a linear equation or reduced to one of
a list of six nonlinear equations (for more details
see [11]). These six equations, which are called 
the Painlevé equations, are not integrable in terms
of the classical “linear” special functions and 
classical “nonlinear” special functions (elliptic
functions).16 The solutions of Painlevé equations
are called Painlevé functions or Painlevé transcen-
dents. As already indicated, equation (15) is the 
second equation of Painlevé’s list.

14Assuming in (17) the abelian reduction, i.e., sk = 0 for
k = 1 , 3, 5, and repeating the same arguments based on
the analysis of the logarithmic derivatives ΨλΨ−1 and
ΨxΨ−1 , we arrive again at the Lax pair (24), but this time
with the upper triangular coefficient matrices A(λ) and
U (λ) . The zero-curvature equation (25) in this case is
equivalent to the Airy equation. This Lax pair for Airy func-
tions was suggested by Kapaev, Kitaev, and this author in
1988 in a paper where (it seems) the Lax-pair point of view
was applied to the classical special functions for the first
time. The method of this paper (slightly different from the
one presented here) has been further extended by Kitaev
in his 2000 paper (Acta Appl. Math. 64) where the devel-
opment of a unified “isomonodromic” approach to both
linear and nonlinear special functions has been essen-
tially completed.

A straightforward calculation shows, in view of
(22) and (23), that this matrix identity is equivalent
to the scalar differential equation (15) for the 
functional parameter u(x).

According to the terminology of integrable 
systems, the linear system (24) and the nonlinear
equation (25) are the Lax pair and the zero-
curvature (or Lax) representation of the nonlinear
ordinary differential equation (15).14

The Lax pair (24) puts the nonabelian Airy 
Riemann-Hilbert problem into the context of the
theory of linear ODEs with rational coefficients. 
Notice, however, that the λ-equation of the system
(24) is not Fuchsian. Its only singular point is the
irregular singular point at λ = ∞. This means that
the fundamental solutions of the equation behave
exponentially as λ→∞. In fact, this is exactly the
behavior which is indicated by equation (19). 
Simultaneously, equation (18) manifests the rele-
vant Stokes phenomenon, that is, different funda-
mental solutions with the same asymptotics. In
this context, the matrices Sk are the Stokes multi-
pliers, and the set {Sk} represents a set of gener-
alized monodromy data of the first equation in
(24). This implies that, similar to the Fuchsian case,
the Riemann-Hilbert problem itself can be inter-
preted as an example of the inverse monodromy
problem. In fact, this is the first nontrivial case 
of the Riemann-Hilbert-Birkhoff problem, i.e., the
inverse monodromy problem for linear systems
allowing irregular singularities.

The x-independence of the matrices Sk , which
is responsible for the x-equation in (24), indicates
that the zero-curvature equation (25) describes the
isomonodromy deformations of the λ-equation. 
Indeed, as was shown in 1980 by Flaschka and
Newell, one can derive directly from the zero-
curvature equation (25) that the Stokes matrices
Sk ≡ Sk(x,u, ux) of the λ-equation in (24) are the
first integrals of motion of the differential equa-
tion (15). This and the uniqueness property of 
Riemann-Hilbert problems (an easy fact) yield 
the following strengthening of the statement 

15Although, as the example of a general linear second-
order equation indicates, the Painlevé property does not
necessarily yield explicit connection formulae.
16Strictly speaking, this fact was proved completely 
rigorously only recently in the works of Umemura and his
collaborators in the framework of differential Galois 
theory.
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19These results were first obtained in 1986 by Kapaev and
this author; some technical gaps that were present in the
original proof were filled in by the papers of Deift and Zhou
(1995) and Fokas, Kapaev, and this author (1994).

It is becoming increasingly evident that Painlevé
transcendents should be considered as new non-
linear special functions. It is amazing in how many
apparently different applications they appear. Here
we cannot go further into the modern theory of
Painlevé transcendents, so we refer the reader to
the monographs [1], [13], [15], and the review paper
[12].17

Analogously to our discussion of the second
Painlevé equation (15), a Riemann-Hilbert formal-
ism can be developed for each of the six Painlevé
transcendents, and for all but the first one it can
be developed starting from the relevant linear
counterpart. In particular, each Painlevé transcen-
dent admits a Riemann-Hilbert representation and
an isomonodromy deformation interpretation.18

These can be used to provide a monodromy data
parametrization of the solution manifolds of the
Painlevé equations and to prove the analog of
Proposition 2 (the Painlevé property) for each of the
Painlevé functions. In fact, one can do more.

According to our view of Riemann-Hilbert repre-
sentations as a nonabelian version of contour inte-
gration, one might wonder about the possibility of
carrying out a comprehensive global asymptotic
analysis of the Painlevé functions, including explicit
connection formulae, as x approaches relevant 
critical points (the “Painlevé-punctures” of the 
x -Riemann sphere) along different directions in 
the complex plane. That this can indeed be done 
was apparently unknown to Painlevé and his con-
temporaries. To give the reader the flavor of these
modern developments, which in our view make the
strongest case for the Riemann-Hilbert approach in
integrable systems, we present a complete descrip-
tion of the asymptotic behavior of the second Painlevé
transcendent u(x; s) as x→ ±∞ in the case ̄s3 = −s1.
This restriction on the monodromy data corresponds
to selecting second Painlevé functions that are purely

17Painlevé equations have extremely deep relations, due
to Clarkson, Dubrovin, Hitchin, Manin, Okamoto,
Umemura, and their collaborators, with group theory and
algebraic geometry. We do not touch upon these at all, nor
upon issues of the explicit particular solutions of Painlevé
equations (Gromak, Lukashevich, Tsegel’nik) and the
Hamiltonian formalism (Boalch, Flaschka, Harnad,
Krichever, Newell, Okamoto). In fact, all these subjects
can be also treated in the framework of the Riemann-
Hilbert approach, although not all the connections (e.g.,
with Okamoto’s parametrization of the space of initial
data) are completely clear at the moment.
18It also should be mentioned that the isomonodromy inter-
pretation of all six Painlevé equations was first obtained in
the classical works of Fuchs, Garnier, and Schlesinger. It was
rediscovered and put in the context of the modern theory of
integrable systems by Flaschka and Newell, and by Miwa,
Jimbo, and Ueno in the early 1980s. The Lax pair (22)–(24)
was first obtained by Flaschka and Newell as a result of a self-
similar reduction of the Lax pair for the mKdV equation.

imaginary for real x and hence (by an easy calcula-
tion) have no poles on the real line.

Theorem 2.19 An arbitrary purely imaginary solu-
tion u(x) of the second Painlevé equation (15) has
the following oscillatory asymptotic behavior as
x→ −∞:

u(x) = i(−x)−1/4α(26)

× sin
{

2
3 (−x)3/2 + 3

4α
2 log(−x)+ϕ

}
+ o((−x)−1/4).

Here the constants α > 0 and ϕ ∈ R (mod 2π) can
be any real numbers; they determine the solution
u(x) uniquely and hence form a set a− ≡ (α,ϕ) of
asymptotic parameters at −∞.

Let

∆(α,ϕ) ≡ 3
2α

2 log 2− π
4 − arg Γ

(
i α

2

2

)
−ϕ,

where Γ (z) denotes Euler’s gamma function. The be-
havior of u(x) ≡ u(x;α,ϕ) as x→ +∞ depends on
the value of ∆(α,ϕ) . If (generic case)

(27) ∆(α,ϕ) �= 0 (mod π ),

then the solution u(x) oscillates and tends to
±i
√
x/2 as x→ +∞; more precisely, one has

u(x) = σi
√
x
2

(28)

+σi(2x)−1/4ρ cos
{

2
√

2
3 x

3/2 − 3
2ρ

2 logx+ θ
}

+ o(x−1/4) as x→ +∞,

where σ = ±, ρ > 0, and θ ∈ R (mod 2π ). If instead

∆(α,ϕ) = 0 (mod π ),

then the solution u(x) decreases exponentially as
x→ +∞; indeed in this case the asymptotics are the
same as for the Airy function Ai(x); i.e.,

(29) u(x) = σi ρ
2
√
π
x−1/4e−(2/3)x3/2

(1+ o(1))

as x→ +∞, where σ = ± and ρ > 0. The set a+ of
asymptotic parameters at +∞ is the triple (ρ,θ,σ )
in the generic situation and the pair (ρ,σ ) in the
special case.

The following explicit connection formulae give
the map a− � a+:
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20It is worth noticing that in the limit of small α the spe-
cial-case connection formulae (31) become the classical Airy
connection formulae.

approach was inspired by the pioneering paper of
Zakharov and Manakov (1976) on the asymptotic
analysis of integrable PDEs, and its implementation
required a nontrivial development (see, e.g., the
works of Kapaev on the first and second Painlevé
equations and the 1998 work of Bassom, Clarkson,
Law, and McLeod on the second Painlevé equation)
of the classical WKB method in the complex domain
(see the monograph [13] and the review article 
[12] for more details; see also the recent works of
Bleher and this author on the asymptotics of 
orthogonal polynomials). The second approach,
the nonlinear steepest descent method, was 
developed, as already mentioned, in the beginning
of the 1990s by Deift and Zhou. The Deift-Zhou 
approach suggests an extremely elegant direct 
asymptotic analysis of the relevant Riemann-Hilbert
problems, so that no prior information about the
asymptotic behavior of the solutions is needed.
The essence of the nonlinear steepest descent
method was briefly outlined in the first section of
this survey.

(d) The first connection formulae for specific
families of Painlevé transcendents were obtained
in 1977 by Ablowitz and Segur (the one-parame-
ter family (29) of the solutions of (15)) and by
McCoy, Tracy, and Wu (a one-parameter family of
solutions of the third Painlevé equation arising in
the 2D Ising model). Ablowitz and Segur used the
Zakharov-Manakov formulae and the fact that the
second Painlevé equation is a self-similar reduction
of the KdV equation. The Ablowitz-Segur connec-
tion formulae were rigorously justified in the later
work of Clarkson and McLeod and of Suleimanov.
The work of McCoy, Tracy, and Wu was actually the
first rigorous work on the Painlevé connection 
formulae. Remarkably, it was done before the 
discovery of the Riemann-Hilbert formalism for
Painlevé equations. There is, however, an important
technical point specific to the one-parameter 
family considered in the McCoy-Tracy-Wu work: it
admits a certain Fredholm determinant represen-
tation, which, in a sense, is a “shadow” of the 
Riemann-Hilbert formalism. The “Fredholm deter-
minant branch” of the Riemann-Hilbert approach
has been further developed in the recent works 
of Tracy and Widom devoted to some important
special classes of solutions of an integrable 
higher-order generalization of the third Painlevé
equation.

(e) A large number of results concerning the as-
ymptotic descriptions in the full complex domain,
including the connection formulae and an explicit
evaluation of the distributions of poles near the 
relevant critical points, have been already obtained
for the first five Painlevé equations, mostly in the
works of Kapaev, Kitaev, and Novokshenov. The 
asymptotics and connection formulae for a generic
case of the Painlevé VI equation were evaluated via

(30)
ρ2 = α2 − 1

π log
(
2(eπα2 − 1)1/2| sin∆(α,ϕ)|

)
,

θ = − 3π
4 − 7

2ρ
2 log 2+ arg Γ (iρ2)

+ arg
(
1+ (eπα2 − 1)e2i∆(α,ϕ)

)
,

σ = −sign (sin∆(α,ϕ)),

if ∆(α,ϕ) ≠ 0 (mod π ) , and

(31) ρ = (eπα2 − 1)1/2, σ = (−1)n,

if ∆(α,ϕ) = nπ.20

Here are some remarks about Theorem 2.
(a) Some parts of the theorem can be obtained

without using the Riemann-Hilbert formalism. This
is true for the existence, for a given pair (α,ϕ), of
a solution u(x) with the asymptotics (26) (the works
of Abdulaev, 1985) or the asymptotics (28) and
(29). Since these are local statements, they do not
reflect the integrability of the second Painlevé equa-
tion. The global fact that formulae (26) and (28)–(29)
describe all the possible types of asymptotic be-
havior of the purely imaginary solutions of the
second Painlevé equation (15) as x→ ±∞ can also
be proved, in principle, without appealing to the
Riemann-Hilbert representation—this was done in
the 1988 and 1992 works of Joshi and Kruskal, but
already one has to make use of the integrability of
equation (15); indeed, Joshi-Kruskal’s construc-
tions essentially exploit the Painlevé property.

Without using the Riemann-Hilbert formalism,
it does not seem feasible to obtain the parts of the
theorem concerning the bifurcation condition (27)
and the connection formulae (30)–(31).

(b) The derivation of the connection formulae
(30)–(31) is based on the prior evaluation, via the
asymptotic analysis of the second Painlevé Riemann-
Hilbert problem, of the asymptotic parameters a±
in terms of the monodromy data s1. The connection
formulae (30)–(31) follow by eliminating the com-
mon parameter s1 from the equations a± = a±(s1).

(c) There are two major approaches to the as-
ymptotic analysis of the oscillatory Riemann-Hilbert
problems appearing in the theory of integrable
systems and, in particular, in the theory of Painlevé
equations. The first scheme, the isomonodromy
method developed in the 1980s and 1990s in the
works of Andreev, Kapaev, Kitaev, Novokshenov,
Suleimanov, and this author, is based on the as-
ymptotic solution of the direct monodromy prob-
lem for the corresponding λ-equation and on the
interpretation of the monodromy data as first in-
tegrals of motion of the Painlevé equations. This
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the Riemann-Hilbert approach in 1982 by Jimbo. Im-
portant special cases, not covered by Jimbo’s results,
were worked out in the recent works of Doyon,
Dubrovin, Guzzetti, and Mazzocco.

A Riemann-Hilbert Problem for the
Riemann Zeta-function
We think it is relevant to conclude this article with
the following simple observation, which brings in
the name of Riemann in one more fundamental way
and which the reader might find intriguing.

Starting with the Riemann integral representa-
tion for the Riemann zeta-function ζ(s) (see, e.g.,
the book of Titchmarsh), we should, according to
(3)–(6), arrive at a representation of type (5) for ζ(s)
in terms of the solution Y (λ; s) of the Riemann-
Hilbert problem posed, with the proper regular-
ization, on the positive real line (λ > 0) with the
jump matrix defined by the equation

(32) G(λ; s) =


1 πiλ

s
2−1θ3(0; iλ)

0 1


 ,

where θ3(z;τ) =∑ eπiτm2+2πizm is the Jacobi theta-
function.21 Put Ψ (λ) = Y (λ)λ( s4−

5
8 )σ3 and consider

the “logarithmic derivatives”

σ3Ψ
(

1
λ

; 5− s
)
σ3Ψ−1(λ; s)

and

Ψ (λ; s + 2)Ψ−1(λ; s).

Due to the well-known symmetry properties of the
theta-constant, the Ψ jump matrix is invariant with
respect to the transformations (λ, s) → (1/λ, 5− s)
and s → s + 2. Analogously to the derivation of the
differential Lax pair (24), these properties would
lead to the “discrete-discrete” Lax pair


σ3Ψ

(
1
λ

; 5− s
)
σ3=A(s)Ψ (λ; s),

Ψ (λ; s + 2) =U (λ; s)Ψ (λ; s)

whose compatibility condition has the form of the
cyclic equation

σ3U
(

1
λ

; 3− s
)
σ3A(s + 2)U (λ; s)A−1(s) = I,

and it yields, surely, the classical functional equa-
tion for ζ(s) . One can now proceed with the process
of nonabelianization of the Riemann-Hilbert 
problem (32) and arrive at a notion of a “nonlin-
ear” Riemann zeta-function.

We are not taking this construction too seri-
ously. At least not yet!

21 The regularization mentioned consists in the 
replacement of θ3(0; iλ) by θ3(0; iλ)− 1 for λ > 1 and 
by θ3(0; iλ)− λ−1/2 for 0 < λ < 1.


