WHAT T§...

Energized by the success of wavelets, the last two
decades saw the rapid development of a new field,
computational harmonic analysis, which aims to
develop new systems for effectively representing
phenomena of scientific interest. The curvelet trans-
form is a recent addition to the family of mathe-
matical tools this community enthusiastically builds
up. In short, this is a new multiscale transform with
strong directional character in which elements
are highly anisotropic at fine scales, with effective
support shaped according to the parabolic scaling
principle length? ~ width.

To fix ideas (although this is a distortion of re-
ality) it is useful to think about curvelets as obtained
by applying parabolic dilations, rotations, and
translations to a specifically shaped function y;
they are indexed by a scale parametera (0 < a < 1),
a location b, and an orientation € and are nearly
of the form

Wap,oX) =a 3 *@(DaRo(x — b)),
1/a 0
p-(100)
Here D is a parabolic scaling matrix, Ry is a rota-
tion by 0 radians, and for (x1, x2) € R2, P(x1,X2) is
some sort of admissible profile (analogs exist in
higher dimensions). The geometry of a curvelet is
now apparent: if the function y is supported near
the unit square, we see that the envelope of Y, p ¢
is supported near an a by /a rectangle with
minor axis pointing in the direction 6. An impor-
tant property is that curvelets obey the principle
of harmonic analysis stating that it is possible
to analyze and reconstruct an arbitrary function

f(x1,x2) as a superposition of such templates.
One can, indeed, easily expand an arbitrary func-
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tion f(x1,X2) as a series of curvelets, much like
an expansion in an orthonormal basis. (The ques-
tion of whether there exist orthonormal bases of
curvelets is open.) Continuing at an informal
level of exposition, there is a discretization of
scale/location/angle which roughly goes like

aj=277, j=0,1,2,..., 0;p=2m¢ 2721 f=
0,1,...,2102 — 1, and b{"" = Ry, (k1277 ky27972),
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All right. So curvelets comprise an interesting new
multiscale architecture which gives very concrete
representations. There are many others. Why should
we care?

Curvelets for What?

It is well known that discontinuities destroy the
sparsity of a Fourier series. This is the Gibbs
phenomenon; we need many, many terms to re-
construct a discontinuity to within good accuracy.
Wavelets, because they are localized and multi-
scale, do much better in one dimension, but because
of their poor orientation selectivity, they do not rep-
resent higher-dimensional singularities effectively.
What makes curvelets interesting and actually
motivated their development is that they provide
amathematical architecture that is ideally adapted
for representing objects which display curve-
punctuated smoothness—smoothness except for
discontinuity along a general curve with bounded
curvature—such as images with edges, for exam-
ple. The curvelet transform is organized in such
a way that most of the energy of the object is
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localized in just a few coefficients. This can be
quantified. Simply put, there is no basis in which
coefficients of an object with an arbitrary singu-
larity curve would decay faster than in a curvelet
frame. This rate of decay is much faster than that
of any other known system, including wavelets.
Improved coefficient decay gives optimally sparse
representations that are interesting in image-
processing applications, where sparsity allows for
better image reconstructions or coding algorithms.

Beyond Scale-Space?

A beautiful thing about mathematical transforms
is that they may be applied to a wide variety of prob-
lems as long as they have a useful architecture. The
Fourier transform, for example, is much more than
a convenient tool for studying the heat equation
(which motivated its development) and, by exten-
sion, constant-coefficient partial differential equa-
tions. The Fourier transform indeed suggests a
fundamentally new way of organizing information
as a superposition of frequency contributions, a
concept which is now part of our standard reper-
toire. In a different direction, we mentioned before
that wavelets have flourished because of their
ability to describe transient features more accu-
rately than classical expansions. Underlying this
phenomenon is a significant mathematical archi-
tecture that proposes to decompose an object
into a sum of contributions at different scales and
locations. This organization principle, sometimes
referred to as scale-space, has proved to be very
fruitful—at least as measured by the profound
influence it bears on contemporary science.
Curvelets also exhibit an interesting architecture
that sets them apart from classical multiscale rep-
resentations. Curvelets partition the frequency
plane into dyadic coronae and (unlike wavelets)
subpartition those into angular wedges which
again display the parabolic aspect ratio. Hence,
the curvelet transform refines the scale-space view-
point by adding an extra element, orientation, and
operates by measuring information about an
object at specified scales and locations but only
along specified orientations. The specialist will rec-
ognize the connection with ideas from microlocal
analysis. The joint localization in both space and
frequency allows us to think about curvelets as
living inside “Heisenberg boxes” in phase-space,
while the scale/location/orientation discretization
suggests an associated tiling (or sampling) of
phase-space with those boxes. Because of this
organization, curvelets can do things that other sys-
tems cannot do. For example, they accurately model
the geometry of wave propagation and, more gen-
erally, the action of large classes of differential
equations: on the one hand they have enough
frequency localization so that they approximately
behave like waves, but on the other hand they have
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enough spatial localization so that the flow will
essentially preserve their shape.

Research in computational harmonic analysis
involves the development of (1) innovative and
fundamental mathematical tools, (2) fast compu-
tational algorithms, and (3) their deployment in
various scientific applications. This article essen-
tially focused on the mathematical aspects of the
curvelet transform. Equally important is the sig-
nificance of these ideas for practical applications.

Multiscale Geometric Analysis?

Curvelets are new multiscale ideas for data repre-
sentation, analysis, and synthesis which, from a
broader viewpoint, suggest anew form of multiscale
analysis combining ideas of geometry and multi-
scale analysis. Of course, curvelets are by no means
the only instances of this vision which perceives
those promising links between geometry and mul-
tiscale thinking. There is an emerging community
of mathematicians and scientists committed to
the development of this field. In January 2003, for
example, the Institute for Pure and Applied Mathe-
matics at UCLA, newly funded by the National Science
Foundation, held the first international workshop
on this topic. The title of this conference: Multiscale
Geometric Analysis.

References

[1] E. J. CanDEs and L. DEMANET, Curvelets and Fourier in-
tegral operators, C. R. Math. Acad. Sci. Paris 336 (2003),
395-398.

[2] E. J. CanpEs and D. L. DoNoHO, New tight frames of
curvelets and optimal representations of objects with
piecewise C 2 singularities, Comm. Pure Appl. Math.,
to appear.

[3] H. F. SmitH, Wave equations with low regularity coef-
ficients, Doc. Math., Extra Volume ICM 1998, I1 (1998),
723-730.

VoLuME 50, NUMBER 11



