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Donald C. Spencer died on December 23, 2001. He was
born on April 25, 1912, in Boulder, Colorado. He was
an undergraduate at the University of Colorado (B.A.
in 1934) and at the Massachusetts Institute of Tech-
nology (B.S. in Aeronautical Engineering in 1936) and
a graduate student in mathematics at Cambridge
University (Ph.D. in 1939, Sc.D. in 1963). His doctoral
thesis, “On a Hardy-Littlewood problem of dio-
phantine approximation and its generalizations”,
was written under the direction of J. E. 
Littlewood and initiated Spencer’s remarkable math-
ematical career. Spencer taught at M.I.T. (1939–42),
at Stanford (1942–50 and 1963–68), and at Princeton
(1950–63 and 1968–78). He was the Eugene Higgins
Professor at Princeton (1971–72) and the Henry 
Burchard Fine Professor at Princeton (1972–78). He
received the degree Sc.D. honoris causa from 
Purdue University (1971) and was the joint recipi-
ent with A. C. Schaeffer of the Bôcher Memorial Prize
(1948). He was a member of the U.S. National Acad-
emy of Sciences (from 1961), a fellow of the Ameri-
can Academy of Arts and Sciences (from 1967), and
a recipient of the National Medal of Science (1989).
He was the author of numerous important research
papers and four influential books (see [1], [2], [3],
[4], [5]).

Spencer’s mathematical work is truly impressive
and spans many fields in which he made funda-
mental contributions. Before coming to Princeton,
he worked in number theory on lattice points and

on sequences of integers;
in applied mathematics on
fluid mechanics; and in the
theory of one complex vari-
able on univalent functions,
on conformal mappings,
and on Riemann surfaces.

At Princeton, Spencer’s
research turned to several
complex variables and com-
plex manifolds. He collabo-
rated with Kunihiko
Kodaira, who is also widely
recognized as one of the
great mathematical pioneers of the twentieth cen-
tury. Together, Spencer and Kodaira developed the
modern theory of deformations of complex mani-
folds into a major tool, the basis for a large body
of subsequent research. This work has had and
continues to have tremendous influence in large seg-
ments of mathematics, including the theory of sev-
eral complex variables, differential geometry, al-
gebraic geometry, and mathematical physics. In
fact, Spencer’s work with Kodaira was one of the
most remarkable mathematical collaborations of the
twentieth century; its only parallel is the famous
Hardy-Littlewood work. To give a feeling for the ex-
citement generated by these efforts, I quote from
the introduction to Kodaira’s book (Complex
Manifolds and Deformations of Complex Structures,
Springer-Verlag, 1981):

In order to clarify this mystery, Spencer
and I developed the theory of defor-
mations of compact complex manifolds.
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The process of the development was
the most interesting experience in my
whole mathematical life. It was similar
to an experimental science developed by
the interaction between experiments
(examination of examples) and theory.
In this book I have tried to reproduce
this interesting experience; however I
could not fully convey it. Such an ex-
perience may be a passing phenomenon
which cannot be reproduced.

Furthermore, in 1987 Kodaira wrote in his let-
ter to the President’s Committee on the National
Medal of Science:

Spencer’s contributions to mathematics
go far beyond his published papers. He
exerted tremendous influence on his col-
laborators and students. His enthusiasm
knew no limit and was contagious. In
Princeton he was always surrounded by
a group of mathematicians who shared
his enthusiasm and collaborated in the 
research of complex analysis (I was one
of them). In the 1950s the theory of com-
plex manifolds was developed extensively
in Princeton. The driving force behind
this development was in fact Spencer’s
enthusiasm.

At the same time, Spencer introduced the use
of potential theory in the study of complex mani-
folds with boundaries, and in particular formu-
lated the “d-bar-Neumann problem”, which has led
to very important developments in both several
complex variables and partial differential equa-
tions. In the last decade of his career, Spencer
worked on overdetermined systems of partial dif-
ferential equations and on pseudogroups.

In all his work Spencer shows remarkable origi-
nality and insight. His influence on his students, his
collaborators, and his many friends also has had a
lasting impact on twentieth-century mathematics.

Just as Spencer had an unfailing instinct for how
to approach mathematical research, so he also had
an unfailing instinct for how to inspire both stu-
dents and fellow mathematicians. Recently Victor
Guillemin, professor of mathematics at M.I.T., wrote
the following tribute:

When I first met Don Spencer, I was a
twenty-two-year-old graduate student,
and Spencer was in his mid-forties and at
the height of his fame. Kodaira-Spencer
was the most exciting development of
that era in differential geometry, the early
sixties equivalent of Seiberg-Witten, and
I and a lot of my fellow graduate students
were caught up in this excitement and
working on Spencer sequences, Spencer
cohomology, the Spencer theory of de-
formations, etc. This was the state of 
affairs when I first met Don in the fall of
1960; and therefore, not surprisingly, the
thing I most remember about him was
his incredible kindness and empathy for
young people. I have had several older
colleagues who have been able, as one
says, to “bridge the generation gap”, but
there is no one I’ve ever known who had
this quality to the extent that Spencer
did. Some of us took advantage of it and
must at times have bored him silly with
the catalogue of our accomplishments
and aspirations. But he was unfailing non-
judgmental and sympathetic. More than
that, one could feel that his interest in
these aspirations was the genuine com-
modity, and not just feigned to make us
feel good. One’s ego at 22 is a fragile 
vessel, and Don instinctively knew this.
For that (as for much else) I remember
Don as the kindest, nicest person I’ve
ever known.

In 1978 Spencer retired from Princeton and
moved to Durango, Colorado. There he became
very active in the conservation and ecology move-
ments and also an avid hiker. He soon made many
friends and became well known in the area. The city
of Durango designated April 25 as “Don Spencer
Day”. After his retirement, Don Spencer kept in
touch with his many friends and colleagues, al-
ways inspiring, supportive, and full of enthusiasm.

Don was my thesis adviser, mentor, colleague,
and friend. I consider myself fortunate to have
been so close to such a remarkable human being.
Here I will give a brief account of his mathemati-
cal contributions to the theory of partial differen-
tial equations (P.D.E.).

Don’s contributions to P.D.E. can be divided 
into three groups: (1) equations arising from fluid 
mechanics, (2) equations arising from complex

After retirement in Durango, CO.
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analysis, and (3) the theory of linear overdeter-
mined systems. His work in (1) is discussed below
by Paul Garabedian. The work in (2) is divided into
two parts: equations arising from one complex
variable and those from several complex variables.
Here I will concentrate on the work connected with
several complex variables. The contributions in (3)
are discussed by Hubert Goldschmidt.

The development of the theory of P.D.E. is closely
linked with advances in complex analysis; in fact,
Riemann’s approach to the study of conformal
mapping via the Dirichlet principle led to the sys-
tematic development of the theory of elliptic P.D.E.
and associated variational problems. The applica-
tion of these methods to the theory of several com-
plex variables was initiated by Hodge in his theory
of harmonic integrals on compact manifolds. It is
this work that led H. Weyl to prove the funda-
mental hypoellipticity theorem, known as Weyl’s
lemma, which in turn led to the development of the
general theory of elliptic P.D.E.

The theory of harmonic integrals on compact
manifolds is a crucial ingredient in the Kodaira-
Spencer theory of deformations of complex 
structures. An example of this is the fundamental
existence theorem proved by Kodaira, Nirenberg,
and Spencer (see [6]), which is described below by
P. A. Griffiths.

Spencer’s most spectacular contribution to the
theory of P.D.E., one which has been a major in-
fluence in mathematical research, is setting down
the program to generalize harmonic integrals to
noncompact manifolds. Spencer called this pro-
gram the ∂ -Neumann problem. Spencer’s contri-
butions were not simply confined to his papers:
they were also made through his teaching, lec-
tures, and principally his unique remarkable 
ability to communicate his ideas and his enthusi-
asm to so many students and colleagues. His first
papers in the direction of the ∂ -Neumann problem
were [7] with G. F. D. Duff and [8] with P. R. Garabe-
dian. The ∂ -Neumann problem for (p, q)-forms 
on a manifold Ω can be formulated as follows. Let
Lp,q2 (Ω) denote the space of square-integrable (p, q)-
forms on Ω, let ∂ : Lp,q2 (Ω) → Lp,q+1

2 (Ω) denote the
L2 closure of ∂ , and let ∂

∗
: Lp,q2 (Ω) → Lp,q−1

2 (Ω) de-
note the L2 adjoint of ∂ . The ∂ -Neumann problem
is: given α ∈ Lp,q2 (Ω) , does there exist a ϕ ∈ Lp,q2 (Ω)
that is in the intersection of the domains of ∂ and
of ∂

∗
with ∂ϕ in the domain of ∂

∗
and ∂

∗
ϕ in the

domain of ∂ such that

∂ ∂
∗
ϕ + ∂∗∂ϕ = α?

In [9] Spencer formulated this problem for the
case when Ω ⊂ X, where X is a complex manifold,
Ω is compact, and Ω has a smooth boundary, and
he outlined some of the important applications. The
main feature of the ∂ -Neumann problem on man-
ifolds with boundary is that it is a nonelliptic

boundary-value problem
for an elliptic operator
(the boundary values are
imposed by the require-
ment of belonging to the
domain of ∂

∗
). Spencer

and I (see [10]) studied
this phenomenon by in-
troducing the operator
∂τ = ∂ + τ∂ , setting up
the analogous ∂τ -Neu-
mann problem, and
studying its behavior for
small τ. In [10] we man-
aged to solve the problem
on balls in Cn by use of
spherical harmonics, but
this case is too special for
the important applica-
tions.

One of the main appli-
cations of the ∂ -Neumann
problem on (0,1)-forms,
envisioned by Spencer, is
the construction of holo-
morphic functions with specified properties. It is
this approach that C. B. Morrey used in [11] to
show that a compact real-analytic manifold M can
be embedded real analytically into euclidean space.
Thus Morrey wanted to use the ∂τ -Neumann prob-
lem with Ω a thin tubular neighborhood of M in
the complexification of M; if the ∂τ-Neumann prob-
lem could be solved on this Ω, then enough inde-
pendent holomorphic functions could be con-
structed to give the required embedding. In [11]
Morrey proved the following fundamental “1

2 esti-
mate”. There exists a constant C > 0 such that

‖ϕ‖2
1
2
≤ C(‖∂ϕ‖2 + ‖∂∗ϕ‖2 + ‖ϕ‖2)

for all (0,1)-forms ϕ whose coefficients are in
C∞(Ω) and which are in the domain of ∂

∗
. Here 

‖ · ‖ 1
2

denotes the Sobolev 12-norm. Morrey’s proof 

of this estimate works for any complex manifold
with smooth strongly pseudoconvex boundary.

Using the “1
2 estimate”, I proved (see [12]) that 

the solution of the ∂ -Neumann problem exists for
manifolds with strongly pseudoconvex smooth
boundaries and that, locally near the boundary,
the solution ϕ gains one derivative on α (in the 
interior it automatically gains two derivatives).
Hörmander, in [13], proved existence using a dif-
ferent approach. He used Morrey’s techniques to
obtain L2 estimates of ϕ with weights that are sin-
gular at the boundary. In this way he was able to
prove existence in L2 without assuming smoothness
of the boundary or strong pseudoconvexity; all
that is needed is weak pseudoconvexity. Because
of interior ellipticity, Hörmander’s solution gains

Receiving National Medal of Science
from President George Bush, 1989.
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Phillip A. Griffiths

Don Spencer and his friend and collaborator
Kunihiko Kodaira were the principal founders of
deformation theory—a central part of modern al-
gebraic geometry and indeed of modern mathe-
matics. The development of Kodaira-Spencer the-
ory, as it is now called, took place during the middle
and late 1950s. With the benefit of hindsight we
may see it as arising from a natural confluence of
Spencer’s previous interests and some of the major
mathematical developments at the time.

On the one hand, through his work with Schaeffer
[17] and Schiffer [18], [19], [20], Spencer was inti-
mately familiar with moduli of Riemann surfaces:
firstly the by-then-classical theory of Teichmüller
for compact Riemann surfaces and secondly the
more general case where the Riemann surface may
have a boundary (to which Spencer and his collab-
orators made significant contributions). Central to
the former theory are the quadratic differentials on
the Riemann surface. As will be seen below, the
search for their higher-dimensional analogues was
a significant issue.

On the other hand, three aspects of the general
mathematical environment of the time were partic-
ularly relevant. Namely, this was a period of intense
activity in the areas of

(i) harmonic integrals,
(ii) sheaf theory, and
(iii) several complex variables.

The first was in the tradition of Riemann, Hodge,
and Weyl, among others, and was a subject to
which each of Kodaira and Spencer individually
made significant contributions (cf. [1], [2], [3]).
Much of this work was concerned with what is now
the “standard” linear elliptic theory on compact

Phillip A. Griffiths is director of the Institute for Advanced
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two derivatives locally in the interior, but there is
no control near the boundary.

The ∂ -Neumann problem and the mathematics
that grew out of it have had an enormous impact
on the theory of several complex variables, on the
theory of P.D.E., on analysis, and recently on alge-
braic geometry. In particular, Hörmander’s solution
has engendered “the L2 methods”, which have been
a very powerful tool. Hörmander has recently writ-
ten a paper (see [14]), dedicated to the memory of
D. C. Spencer, which exposes this approach and its
consequences. The approach, based on regularity
near the boundary, has led to numerous develop-
ments. Some of these are the study of subelliptic
estimates; the calculus of pseudodifferential 
operators; the study of the operators ∂b and �b
on CR manifolds and on the Heisenberg group;
and analysis on weakly pseudoconvex manifolds:
global regularity and irregularity, regularity of bi-
holomorphic and proper mappings, multiplier
ideals, etc. Multiplier ideals, which arose from the
study of estimates for the ∂ -Neumann problem, are
currently used effectively in Kähler geometry, 
algebraic geometry, and the study of degenerate 
elliptic P.D.E.

Don played an essential role in all this during
the 1950s and 1960s. Apart from his own contri-
butions, he communicated his ideas and enthusi-
asm to most mathematicians who worked on these
questions, students and colleagues alike. These in-
cluded: A. Andreotti, M. Ash, P. E. Conner,
H. Grauert, L. Hörmander, S. H. C. Hsiao, N. Kerz-
man, J. J. Kohn, M. Kuranishi, C. B. Morrey, L. Niren-
berg, H. Rossi, and W. J. Sweeney. All of us found
Don ready at any time to listen to us, encourage
us, challenge us, and make us appreciate the im-
portance of the enterprise. In the 1970s, 1980s, and
1990s the number of people working on these
questions increased dramatically, and I am sure that
Don had a direct influence on many of these also.
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manifolds, including those with boundary, and 
especially the Kähler case.

The second was a very general theory, which for
present purposes may be thought of as providing
a systematic framework for analyzing the ob-
struction to globally piecing together solutions to
a problem that has local solutions. This frame-
work introduces the higher cohomology groups
Hq(X,J) of a sheaf J on a space X. For X an 
n-dimensional compact complex manifold and J
the sheaf associated to a holomorphic vector bun-
dle, the duality theorem of Kodaira and Serre is

(1) Hq(X,J)∗ � Hn−q(X,ΩnX (J∗)).

For X a compact Riemann surface, taking q = 0 and
J = (Ω1

X
)⊗2

to be the sheaf of quadratic differen-
tials, (1) gives the natural isomorphism

(2)


 dual space to the

quadratic differentials
on X


 � H1(ΘX ),

where ΘX is the sheaf of holomorphic vector fields
on X. This observation was to provide a key hint
about how to measure variation of complex struc-
ture in higher dimensions.

From several complex variables, important were
results such as the direct-image theorem of Grauert
and, especially, the Cauchy-Riemann operator ∂ . A
complex manifold may be given either by a coor-
dinate covering {Uα, zα} with complex analytic
glueing data

(3)

{
zα = fαβ(zβ) in Uα ∩Uβ
fαβ(fβγ(zγ )) = fαγ (zγ ) in Uα ∩Uβ ∩Uγ

or by giving the ∂ -operator

∂ : A0(X) → A0,1(X)

satisfying the integrability conditions

(4) ∂
2 = 0.

Here, we are given an almost complex structure{
J : T (X) → T (X)
J2 = −Id

and Ap,q(X) denotes the space of global smooth dif-
ferential forms of type (p, q) relative to J. The
equivalence of the definitions amounts to proving
that (X, J) satisfying (4) has a covering by holo-
morphic coordinate charts; in effect it must be
shown that there are enough local solutions to

∂f = 0.

This was proved in the real-analytic case by Eckmann-
Frölicher and in the C∞ case by Newlander-Nirenberg.
These two approaches to complex manifolds are 
reflected respectively by the Čech and Dolbeault 
methods of representing sheaf cohomology; they will

also be reflected in the two equivalent approaches 
to Kodaira-Spencer’s deformation theory.

Before turning to that theory, I would call at-
tention to the important series of papers [7], [8],
[6], [9] by Kodaira and Spencer and the papers [21],
[22] by Spencer which systematically applied sheaf
cohomological methods to issues related to divi-
sors and arising from classical algebraic geometry.
Essentially, they introduced the exponential sheaf
sequence

0→ Z→ OX exp
�→ O∗X → 1

(exp f = e2π
√
−1f) and drew conclusions from its

exact cohomology sequence when the identification

H1(O∗X ) �
{

divisor class
group on X

}

is made. Particularly noteworthy was their proof of
the Lefschetz (1,1) theorem{

fundamental classes
of divisors

}
� Hg1(X)

where

Hg1(X) = H1,1(X,C)∩H2(X,Z)

is the Hodge group of integral (1,1) classes. I 
remember Don relating to me how he and Kodaira
excitedly presented their proof to Lefschetz, who
grumpily remarked that, first, he couldn’t under-
stand the fancy sheaf theory and, second, in any
case he had proved the theorem. (The latter needs
a caveat in that Lefschetz’s argument for the semi-
simplicity of monodromy acting in the homology
of a Lefschetz pencil was incomplete—only with
Hodge’s work was the result established. To this
day all proofs of the (1,1) theorem require Hodge
theory.)

Deformation theory had been on Spencer’s mind
for some time prior to his work with Kodaira (cf.
[18], [17], [20]). As he explained it to me, the issue
was that they did not know what should play the
role in higher dimension of quadratic differentials
in the Teichmüller theory on Riemann surfaces. The
breakthrough came with (2). With that major “hint”
everything began to fall into place, leading to the
papers [11], [5], [10], [12] (and relatedly [13], [14],
[23]), which brought deformation theory into the
core of complex algebraic geometry.

Before describing their theory, I want to say that
deformation theory seems to some extent to have
“been in the air”. In particular, the important work
by Frölicher-Nijenhuis independently established
the rigidity theorem stated below, and their papers
on the calculus of vector-valued differential forms
influenced the work of Kodaira-Spencer as well as
that of many others working in related areas.
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Turning to the Kodaira-Spencer deformation
theory, intuitively a deformation of a compact com-
plex manifold X is given by a family {Xt}t∈B of
compact complex manifolds containing X = Xt0 as
a member. In case X is a smooth complex projec-
tive algebraic variety given by homogeneous poly-
nomial equations

X = {Pλ(x0, . . . , xN ) = 0},

one may imagine deforming X by varying the poly-
nomials to Pλ(x0, . . . , xN, t), with Pλ(x0, . . . , xN,0) =
Pλ(x0, . . . , xN ), and setting

Xt = {Pλ(x0, . . . , xN, t) = 0},

provided that Xt remains of constant dimension for
|t| < ε (in which case it will be smooth). More for-
mally, a deformation of X is given by

(5)
X
↓ π
B

where X and B are complex manifolds and π is a
smooth (i.e., the differential π∗ has maximum rank)
proper holomorphic mapping. The fibres
Xt = π−1(t) of (5) are then compact, complex man-
ifolds, and we assume that Xt0 � X for a reference
point t0 ∈ B . The Kodaira-Spencer theory is local,
and so we may think of B as an open neighborhood
of the origin in Cm . For the most part, under-
standing the case m = 1 will suffice, and so unless
stated otherwise we will restrict to this situation
and denote by t a coordinate on B.

Kodaira and Spencer sought to understand as
fully as possible the properties of local deforma-
tions (5). They asked questions such as

1. When do deformations (5) exist?
2. What properties of X are stable under defor-
mation?
3. How do the cohomology groups Hq(Xt,Jt )
behave in a family (5)?

Here, we may think of J as the sheaf on X associ-
ated to a holomorphic vector bundle there, and then
Jt denotes the restriction of J to Xt.

To study these questions they used both of the
ways discussed above of describing a complex
manifold. We shall use the first local coordinate
method to define the basic invariant of (5), the 
Kodaira-Spencer mappings

(6) ρt : TtB → H1
(
ΘXt

)
.

Intuitively, these measure the first-order variation
of the complex structure. Since the projection 
mapping π in (5) has maximal rank, shrinking 
B if necessary we may cover X by coordinate 
neighborhoods Uα with local coordinates (zα, t)
such that

π (zα, t) = t.

Thus around a point of Xt0 the deformation is triv-
ial; i.e., is biholomorphic to a product. We may
then expect that the global nontriviality is measured
cohomologically. In overlaps we will have (cf. (3))

(7)

{
(i) zα = fαβ(zβ, t)
(ii) fαβ(fβγ(zγ, t), t) = fαγ (zγ, t).

If we think of the complex manifold as being de-
scribed by the glueing data (7)(i), the vector fields

(8) θαβ(t) =:
∂f iαβ(zβ, t)

∂t
∂
∂ziα

describe the variation of the glueing data and hence
the variation of the complex structure. Here,
θαβ(t) ∈ C1({Uα(t)},ΘXt ) is a Čech cochain for the
tangent sheaf ΘXt relative to the open covering
Uα(t) = Uα ∩Xt of Xt. Differentiation of (7)(ii) with
respect to t shows that the Čech coboundary

δ{θαβ(t)} = 0,

and hence there is defined a cohomology class

{θαβ(t)} ∈ H1
(
ΘXt

)
which gives the Kodaira-Spencer mapping (6). A
basic result of the theory is

(9)
The family (5) is locally trivial if, and only if,
all ρt are zero.

Behind this result are a number of subtleties: to
show that ρt is well defined, to understand the sit-
uation when ρt0 �= 0 but ρt = 0 for t �= t0 (jumping
of structure), etc.

The other way of describing the family (5) may 
be expressed as follows. First, the Kodaira-Spencer
mappings (6) give, in a precise sense, the obstruc-
tion to lifting ∂/∂t locally over the base to a 
holomorphic vector field on X. If ∂/∂t lifts to a holo-
morphic vector field v with π∗(v) = ∂/∂t, then the
holomorphic flow of v gives biholomorphisms

(10) Xt0
∼
�→ Xt

and therefore a trivialization

X � Xt0 × B.
Now, as may be seen using a partition of unity, there
is no obstruction to lifting ∂/∂t as a C∞ vector
field. The resulting diffeomorphisms (10) may be
used to transport the complex structures on Xt
back to Xt0 . Analyzing this carefully, on X we may
express the Cauchy-Riemann operator ∂t for Xt as

∂t = ∂ + θ(t),

where θ(t) is a ΘX-valued (0,1) form having the local
expression

θ(t) = θ(t) ji ∂/∂zj ⊗ dz̄i,
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The result (13) is also a consequence of Grauert’s
direct-image theorem.

Some of the deepest results in the theory come
by using nonlinear elliptic theory. The joint paper [5]
with Louis Nirenberg was in response to the ques-
tion: Given a class {θ1} ∈ H1(ΘX ) , does there exist a
family (5) with

ρt0 (∂/∂t) = {θ1}?

From the discussion above, we see that what is 
required is to construct a convergent series

θ(t) = θ1t + θ2t2/2+ · · ·

such that (11) is satisfied. The first equation is 
automatic, but the second and higher ones present
cohomological obstructions: e.g., if

{[θ1, θ1]} �= 0 in H2(ΘX ) ,

then we cannot find θ2 satisfying the second equa-
tion in (11), and so forth. The main result in [5] is

(15) If H2(ΘX ) = 0, then there exists a family (5)
such that the Kodaira-Spencer mapping

ρt0 : Tt0B → H1(ΘX )

is an isomorphism.

These methods were extended by Kuranishi to
prove the existence of a local universal family (5)
where B is an analytic subvariety in an open neigh-
borhood of the origin in H1(ΘX ) with

dimB ≥ dimH1(ΘX )− dimH2(ΘX ).

Another stability result from Kodaira and
Spencer’s last paper [12] on deformations of 
complex structure is

(16) If X is a Kähler manifold, then the Xt are
also Kähler for t close to t0.

As shown later by Hironaka, this result is false
globally: the limit of Kähler manifolds may not be
Kähler.

Before turning to some other aspects of 
Kodaira-Spencer deformation theory and the work
it stimulated, I would like to mention one particu-
lar aspect of the one-variable work of Schiffer and
Spencer that has had significant impact in current
algebraic geometry. Namely, the projectivized tan-
gent space PH1(ΘX ) to the local deformation of a
smooth algebraic curve is, in a natural way, the
image space for the bicanonical mapping

(17) ϕ2K : X → PH1(ΘX ),

which one may think of as using a basis for the qua-
dratic differentials as homogeneous coordinates.
Mathematically, if for a point p ∈ X we let ΘX (p)
denote the sheaf of vector fields with a first order
pole at p, then there is an exact sheaf sequence

where

θ(t) = θ1t + θ2t2/2+ · · ·

is a convergent series in t . The integrability con-
dition

∂
2
t = 0

gives a series of relations

(11)




∂θ1 = 0

∂θ2 + 1
2 [θ1, θ1] = 0

...

The first one implies that θ1 defines a Dolbeault
cohomology class

{θ1} ∈ H0,1
∂ (ΘX ).

The second implies that the Dolbeault cohomology
class

{[θ1, θ1]} ∈ H0,2
∂ (ΘX )

defined by the bracket [θ1, θ1] should be zero. 
Collectively the equations (11) are equivalent to

∂tθ(t) = 0

so that
{θ(t)} ∈ H0,1

∂t

(
ΘXt

)
.

The relation between the two approaches is 
expressed by the result

(12) Under the Dolbeault isomorphism

H1(ΘXt ) � H0,1
∂t

(ΘXt )

one has
ρt (∂/∂t) = {θ(t)}.

This shows quite clearly how the Kodaira-Spencer
classes give the variation of complex structure.

The second method is more amenable to using
the methods of linear elliptic partial differential
equations for deformation theory. For example,
using the continuity of the eigenvalues in the dis-
crete spectrum of an elliptic operator, Kodaira and
Spencer showed

(13) (Upper semi-continuity): For t close to t0,

dimHq(Xt,Jt ) ≤ dimHq(Xt0 ,Jt0 ).

If Hq−1(Xt,Jt0 ) = Hq+1(Xt,Jt0 ) = 0, then
equality holds.

As a corollary of this together with (9), they deduced
the following result, which was proved indepen-
dently by Frölicher and Nijenhuis.

(14) IfH1(X,ΘX ) = 0, then the family (5) is locally
trivial.
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(18) 0→ ΘX → ΘX (p) → ΘX (p)
∣∣
p → 0 .

In terms of a local coordinate z centered at p, 
sections of ΘX (p) are

θ =
(a
z
+ b0 + b1z + · · ·

)
∂/∂z

and ΘX (p)
∣∣
p � C is a skyscraper sheaf supported

at p, and the right-hand mapping in (18) is

θ � a.

The bicanonical mapping (17) then sends p to the
line in H1(ΘX ) spanned by

(19) δ
(a
z
∂
∂z

)
, a �= 0,

where δ is the coboundary map

ΘX (p)
∣∣
p

δ
�→ H1(ΘX )

in the exact cohomology sequence of (18). By def-
inition, ϕ2K(p) is the Schiffer variation associated
to p. From (19) we see that

ϕ2K(p) = 0 in PH1(ΘX (p)).

As explained to me by Don, this has the following
intuitive geometric meaning: To first order, the de-
formation with tangent ϕ2K(p) arises by leaving un-
changed the complex structure on X \ {p} and
changing it at p by a δ-function. This can all be
made mathematically precise, and Schiffer varia-
tions have had a variety of important applications
in contemporary algebraic geometry, including re-
sults on the global moduli of Riemann surfaces and
on the higher Chow groups of algebraic cycles by
Collino and others.

In addition to variation of complex structures,
Kodaira and Spencer also considered deformations
of holomorphic principal bundles [11] (and their
associated vector bundles) and the relative case of
deformations of a compact complex codimension-
one submanifold within a fixed ambient complex
manifold [15], [10] (the higher codimension case
being done by Kodaira). In all these cases there is
a Kodaira-Spencer map encoding the first-order
variation, and results (including an existence 
theorem) analogous to those given above were 
established. In [11] a rich set of examples illus-
trating the general theory is worked out in detail.

Soon after the publication of the fundamental pa-
pers [11] there was a flood of results applying the
general theory. Among these were the rigidity of 
simply connected homogeneous Kähler manifolds
(Bott) and the rigidity of hyperbolic symmetric
compact complex manifolds having no unit disc 
factor in their universal coverings (Calabi-Vesentini).
In the case of a compact Kähler manifold, a varia-
tion of complex structure leads to a variation of

Hodge structure, which has had rich applications
in algebraic geometry. Moreover, the Kodaira-
Spencer framework quickly spawned a number of
deformation theories of other structures, including
discrete subgroups of semisimple Lie groups 
(Calabi, Weil, and Matsushima, among others), 
and deformation theory of algebras (Gerstenhaber).
Over the years these theories have been refined, 
expanded, extended, and applied. (I shall not 
attempt any summary.)

In the setting of general algebraic geometry, the
Kodaira-Spencer theory became quickly absorbed,
adapted, and greatly extended by Grothendieck
and his school. Together with the complementary
study of global moduli, most especially of marked
algebraic curves initiated by David Mumford, one
sees that some nearly fifty years after its inception,
deformation theory, both local and global, is 
absolutely central in modern algebraic geometry
and its interfaces with other areas, including string
theory (quantum cohomology) and mirror sym-
metry (Calabi-Yau manifolds).
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Hubert Goldschmidt

I first met Don Spencer when I was a sophomore
at Princeton University during the winter of
1960–61. I first encountered his vision of mathe-
matics through his Advanced Calculus book [6]
written with H. Nickerson and N. Steenrod, which
had such an influence on a whole generation of 
undergraduates at Princeton, and then through an
informal seminar held in his office. Don was to be
my thesis advisor for my senior thesis. His enthu-
siasm and romantic view of mathematics, his 
passion for the subject permeated his teachings:
research in mathematics was something to be 
enjoyed. His boundless energy was legendary. He
also taught us to persevere in one’s vision, not to
be led astray and not to deviate from one’s path.

I was fortunate to have been associated with Don
as his student, colleague, and collaborator; to have
been led by him to the forefront of an exciting new
field at its very outset; and to have witnessed all
its beautiful developments over the years.

In 1960 Kodaira and Spencer began extending
their theory of deformation of complex structures
to other classes of geometric structures. First, in [3]
Kodaira considered structures corresponding to
Élie Cartan’s primitive pseudogroups of biholo-
morphic transformations. Then Kodaira and

Spencer [4] studied deformations of a class of 
G -structures which generalize foliations on a 
manifold.

In his seminal paper [7], Spencer undertook a
program to extend these results to structures 
corresponding to the pseudogroups of Lie and Élie
Cartan. He had a complete vision about how to 
approach the theory of overdetermined systems 
of partial differential equations through a whole 
series of new tools and to use them to study the
theory of deformations of pseudogroup structures.
Most of it is described in [7]; it would take many
years to fully understand, to develop and refine
everything which he formulated there, and to carry
out his program. Spencer’s ideas exerted a profound
influence on most mathematicians who worked in
this field, in particular, on M. Kuranishi, R. Bott,
S. Sternberg, D. Quillen, V. Guillemin, B. Malgrange,
A. Kumpera, Ngô Van Quê, and me.

The pseudogroups of Lie and Cartan arise as
transformation groups of geometric structures 
and are defined by systems of partial differential
equations. Spencer’s program consisted in first
studying the geometric structures in terms of the
associated systems of partial differential equa-
tions. Subsequently, it would lead to a deformation
theory of structures on manifolds defined by
pseudogroups which would incorporate all the 
fundamental mechanisms of the theory of defor-
mation of complex structures. In particular, an 
extension of the Newlander-Nirenberg theorem to
elliptic pseudogroups would be required to obtain
coordinates for the deformed structures and to
prove the existence of local deformations.

The first step was carried out by studying 
the system of linear partial differential equations
associated to a pseudogroup in terms of Ehres-
mann’s theory of jets and constructing a resolution
of the sheaf of vector fields which are the infini-
tesimal transformations of the pseudogroup. This
resolution was introduced in order to interpret 



infinitesimal deforma-
tions as elements of a 
cohomology group.
Here, Spencer intro-
duced fundamental
tools for the theory of
overdetermined systems
of partial differential
equations, which marks
the beginning of a new
era in their study. His
approach—now called
Spencer theory—was
more in the spirit of Lie,
with a full use of modern
concepts; the equations
are studied directly, in
contrast to the existing
Cartan-Kähler theory,
where they are recast
within the framework of
exterior differential sys-
tems. It was soon real-
ized that this work was
not limited to equations
arising from pseudo-
groups, and a systematic
study of the formal the-
ory of overdetermined

systems incorporating these methods was under-
taken. In fact, the methods introduced in [7] turned
out to provide most of the crucial elements for the
study of overdetermined systems both from the for-
mal point of view and within the context of real-
analytic systems, and we now evoke several of
their aspects:

1. To a system of linear equations or to a linear
differential operator, Spencer associated complexes
of differential operators, the so-called naive and 
sophisticated Spencer sequences. Intrinsic con-
structions of these sequences were later given by
Bott, Quillen, and Goldschmidt. The cohomology of
these complexes, which is now called the Spencer
cohomology of the operator (or of the equations),
is a crucial ingredient in the study of overdeter-
mined systems; in fact, it was later shown to be
equal to the cohomology arising from the com-
patibility conditions for the given differential 
operator. Quillen also provided the proof of
Spencer’s assertion made in [7]: if the system is 
elliptic, the associated sophisticated Spencer 
sequence is an elliptic complex. This result is in 
fact critical for the deformation theory of structures
defined by elliptic pseudogroups.

2. Essential information about a system of differ-
ential equations is contained in its δ-cohomology
(now also called Spencer cohomology) groups. In 
fact, they are the cohomology groups of the so-called
δ-complex, which first appeared as a subcomplex 
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of the Spencer sequence. Spencer asserted that this
cohomology is finite-dimensional and foresaw the
implications of the vanishing of certain groups. Mum-
ford pointed out to Spencer in 1961 that the dual of
the δ-complex is a Koszul complex; this remark gave
a direct proof of Spencer’s assertion. This led Guillemin
and Sternberg to conjecture that Cartan’s notion of
involutiveness, as reformulated by Matsushima, is
equivalent to the vanishing of the δ-cohomology. This
equivalence was proved by Serre using commutative
algebra and would provide the link between Spencer’s
theory and Cartan’s methods. It is a remarkable 
fact that Cartan’s notion of involutiveness can be 
recast in terms of this cohomology. Techniques from 
homological algebra and commutative algebra could
now provide tools for the study of overdetermined
systems and for new proofs of the celebrated Cartan-
Kuranishi prolongation theorem.

3. In view of proving the existence of solutions
of real-analytic systems, Spencer formulated the 
so-called δ-estimate in terms of the δ-complex.
For a real-analytic system satisfying appropriate
conditions, it would give the convergence of power
series solutions and thus the existence of local 
solutions. The δ-estimate was subsequently proved
by Ehrenpreis, Guillemin, and Sternberg, and later
by Sweeney. Malgrange realized that this estimate
is essentially equivalent to the “privileged neigh-
borhood theorem” of Grauert and used this 
theorem together with the method of majorants 
to prove a direct existence theorem for analytic 
systems (see [5]).

These methods would give rise to the basic 
existence theorems for overdetermined systems
of partial differential equations which guarantee the
existence of sufficiently many formal solutions for
an arbitrary system, linear or nonlinear. In the case
of real-analytic systems, the results mentioned
in (3) would then provide us with the existence of
local solutions.

In [8] Spencer formulated a generalization of the
∂ -Neumann problem for overdetermined elliptic
systems on small convex domains in the hope of
proving the exactness of the sophisticated Spencer
sequence associated to such equations. That this
exactness holds in general for such systems is now
called the Spencer conjecture. The Spencer-
Neumann problem was solved, and the exactness
of the Spencer sequence was proved in several 
special cases by Spencer’s students MacKichan,
Sweeney, and Rockland (see [1], Chapter X). By
adapting Henri Cartan’s argument for the exactness
of the Dolbeault sequence, in [7] Spencer also
proved the exactness (in the C∞-sense) of the
Spencer sequence under the assumption that the
elliptic operator has real-analytic coefficients.

This last result implies that the Spencer se-
quence of an elliptic pseudogroup, whose equations
have real-analytic coefficients, is exact and gives rise
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Enrico Bombieri

The earliest mathematical works of Don Spencer,
reflecting the influence of his advisor J. E. Little-
wood and Littlewood’s collaborator, G. H. Hardy,
were in analytic number theory. A particularly im-
portant problem on which Spencer worked was to
show that a progression-free sequence of positive
integers cannot have positive density. The paper
[1], written jointly with Raphaël Salem, disproved
in a clever fashion a then widely held conjecture.
The particular problem has been of lasting inter-
est, with major progress by Szemerédi and quite
recently by Gowers, who was awarded a Fields
Medal in part for his work on it. In addition to this

to an interpretation of the infinitesimal deforma-
tions as elements of a cohomology group, just as
in the case of complex structures. Another aspect
of the methods of [7] for studying deformation
theory is the recasting of the notion of an almost-
structure (corresponding to the pseudogroup) as
a section of one of the vector bundles appearing
in a nonlinear sequence corresponding to the naive
or to the sophisticated Spencer sequence. The 
integrability condition for the almost-structure is
then formulated in terms of this sequence. The
second fundamental theorem for a pseudogroup
asserts the existence of coordinates for an almost-
structure satisfying this requisite integrability con-
dition. For elliptic pseudogroups whose equations
have real-analytic coefficients, the second funda-
mental theorem was proved by Malgrange in [5]. The
proof of this generalization of the Newlander-
Nirenberg theorem was inspired by the one which
Spencer gave for the exactness (in the C∞-sense) of
the sophisticated linear Spencer sequence and re-
quires all of the mechanism developed by Spencer.
This completed Spencer’s program for studying
deformations of structures initiated in [7] and
showed that indeed Spencer had introduced all
the essential components for the study of the de-
formation theory of pseudogroup structures.

In [5] Malgrange introduced the formalism of 
differential calculus à la Grothendieck into the
study of pseudogroups and reworked the Spencer
mechanism for studying deformations of struc-
ture. Also, he clarified the correspondence between
the linear Lie equations and their finite forms.
Many of Spencer’s ideas concerning pseudogroups
now appeared in a rigorous form. Malgrange’s work
was utilized by Goldschmidt and Spencer in their
paper [2] to study the second fundamental theo-
rem for an arbitrary pseudogroup. They introduced
the nonlinear Spencer cohomology of a transitive
pseudogroup, whose vanishing implies the valid-
ity of the second fundamental theorem for the
pseudogroup. By means of a spectral sequence 
argument involving the nonlinear sequences, they
showed that this nonlinear Spencer cohomology 
depends only on the Lie algebras of all formal 
infinitesimal transformations of the pseudogroup.
Many of the main ingredients of their solution of
the “integrability problem” for flat pseudogroups
appear here. In fact, their results concerning
Spencer cohomology allowed them to use
Guillemin’s Jordan-Hölder decompositions and 
Galois theory type methods to provide a proof of
the second fundamental theorem for all transitive
pseudogroups on Euclidean space containing the
translations, the so-called flat pseudogroups.
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and the related paper [2], Spencer’s main other
works in analytic number theory were in Dio-
phantine approximations, again reflecting the in-
terest of the English school at that time.
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Bohous Cenkl

We always called him Don. He disliked formal-
ities and despised political intrigue. As practically
the only visitor permitted from Czechoslovakia to
Stanford in the 1960s, I had the good fortune to
first meet him there. That was the time that the
Stanford Linear Accelerator (SLAC) was being built.
Don’s primary research focus was the study of
overdetermined linear systems, but his passion
for theoretical physics was one of many side in-

terests that he shared with Ko-
daira. Expanding on Don and Ko-
daira’s seminal work on
deformations of complex struc-
tures, Hermann was running a
seminar on deformations in the
physics department. During that
year, Don and I spent endless
hours discussing all types of prob-
lems beyond just mathematics and
physics. Don was always pushing
me to learn things that I felt were
well beyond my capabilities.

There was a constant stream of
visitors in Don’s office—Borel, Hör-
mander, Hermann, Kohn, Niren-
berg, Sternberg, and many others.
Don made every one of us feel spe-
cial. He never singled anyone out,
but rather devoted his endless en-

ergy to those with no Ivy League education and to
future Nobel Prize winners alike. He never suc-
cumbed to any attempt by some to use his name
for self-promotion.

After a heavy dose of mathematics, Don always
planned various outdoor activities for us, like a 
hike above Palo Alto on the ranch of his friend Jim 
Rapley, a retired commander in the U.S. Navy. I have
fond memories of numerous trips on horseback to
the Sierras with Don and his family. I greatly respected
him and his life philosophy. I am personally grateful
for the opportunity to have had Don as a teacher and
a very close friend to me and my family.
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Paul Garabedian

Don Spencer started his career at the Massa-
chusetts Institute of Technology doing research in
the theory of functions of one complex variable.
During World War II he came under the influence
of Courant at New York University and started to
apply variational methods to the coefficient prob-
lem for univalent functions. Max Schiffer had al-
ready initiated similar studies in Palestine that
were to change the whole climate in this field. After
the war they combined forces both at Stanford and
at Princeton and made significant contributions
to our knowledge about Riemann surfaces. Don re-
cruited Arthur Grad to write a Ph.D. thesis at Stan-
ford on univalent functions, and Grad went on to
guide early efforts in support of applied mathe-
matics at the Office of Naval Research and at the
National Science Foundation.

Al Schaeffer joined Don in a study of the dif-
ferential equations for extremal functions in con-
formal mapping that contributed significantly to
steady progress on the Bieberbach conjecture that
ended with the complete solution of the problem.1

Their work was recognized by an award of the
Bôcher Prize from the AMS. I was fortunate to be
collaborating with Don during the period when he
turned his attention from one variable to focus on
major questions about complex manifolds. His
generous and vigorous encouragement of his 
graduate students and younger colleagues led him
to exert a strong influence on the direction of
mathematical research in this country during the
second half of the last century.

Louis Nirenberg

I think I first met Don Spencer when I was a grad-
uate student or young instructor. He came to visit
Courant occasionally and would sometimes be in-
vited to Courant’s home in New Rochelle during a
weekend, as I was. Later we joked about having 
to help take care of Courant’s garden.

We became friends, and it was always a great
pleasure to meet with Don in Stanford, Princeton,
or wherever. His love and enthusiasm for mathe-
matics were contagious. I heard him speak many
times, and though I usually had trouble following,
I came away with a positive glow—I liked the
melody.

Don’s early work was on analytic functions of
one variable, but later he expanded to complex
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manifolds. He wrote a series of famous papers
with Kodaira on deformation of complex struc-
ture. I visited the Institute for Advanced Study dur-
ing the spring of 1958 and had the good fortune
to write a joint paper with them. When Don tried
to describe the problem to me, he kept putting it
in extremely general terms. Finally I asked if he
could write down a simple case. He had trouble
doing this, but then Kodaira stepped to the black-
board and without saying a word, wrote down a few
simple equations. Later, after the work was done,
I heard Don speak on it at his and Kodaira’s “Noth-
ing Seminar”. I had trouble following the talk, for
Don liked to use very abstract and most general con-
cepts.

About the “Nothing Seminar”: it was a seminar
they ran which was completely informal, no planned
program. People would talk about what they were
working on, thinking about, or were stuck on. It was
usually held around lunchtime and was indeed
very informal. I remember once a participant had
brought in his lunch, hard-boiled eggs, whose shells
he scattered on the floor while Don lectured. Don
didn’t raise an eyebrow.

In 1963 we participated in a joint Soviet-American
conference on partial differential equations in
Novosibirsk. There were about two dozen American
and one hundred twenty-five Soviet mathemati-
cians. Toward the end of the conference the Soviet
guides and translators, mainly women, voted Don
the most handsome participant.

Incidentally on his way to the Soviet Union, Don
stopped in Cambridge, England; he had received his
Ph.D. there some decades earlier. On his arrival he
went to a bank to change money. The clerk looked
at him and said, “Nice to see you again, Dr. Spencer.”
On that visit to England he bought an umbrella, one
of those long, rolled, elegant umbrellas we know
from movies. Throughout the Novosibirsk confer-
ence I kept admiring it. At the end he simply 
presented it to me. I treasured it for years.

Don had a wonderful, open personality. He was
the same natural person with everyone. He was 
extremely generous in giving of himself, offering
warmth, friendship, and attention to everyone,
concerned about their problems. I consider him the
most considerate person I have ever met—a great
gentleman.

Once, at a dinner party, people were talking
about Don, praising him, etc. At the end, my wife
said, “Everyone loves Don, but I like him anyway.”

I found it difficult to keep up with his later
work. After he moved to Durango, Colorado, 
we didn’t meet very often, but as always, each 
meeting was a great pleasure. Once my wife and I
visited him in Durango. He took us on a tour—to
various bars and taverns. He was warmly welcomed
in every one.


