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Is the universe a chaotic mess? Or, is it possible that
there is much more order than we realize? The ob-
vious answer to the second question is a resound-
ing yes. Otherwise, we would not be here to report
on a wonderful new book by Steve Strogatz, Sync:
The Emerging Science of Spontaneous Order. The
recent popularity of books on chaos and com-
plexity might lead their readers to assume that
chaos and complexity are the rule. Instead, what
Strogatz presents, through his personal scientific
experiences, is a contrasting point of view. Inter-
actions between individuals—be they fireflies, pen-
dula, or people—can often lead to the emergence
of coherent actions. The goal of this readable and
intuitive book is to convince us that this is so
through dozens of examples ranging from the
spread of rumors to Josephson junctions. The book
is autobiographical in tone, and Strogatz plays 
a central role in much of the science that is 
described. Part of the fun in reading this book 
is the sense of excitement that ensues from the
mere act of doing science and the discovery of a
solution to a long-pondered problem. Phrases like
“my hand was sweating as I wrote each new line of
the calculation” or “I unleashed the computer and

stared at the screen”
convey the passion-
ate appeal of mathe-
matical creativity.

Strogatz has con-
densed and simpli-
fied many complex
and technical sub-
jects into easily un-
derstood stories
which, remarkably,
are completely equa-
tion-free. He achieves
this through clever
analogies such as
runners on a circular
track (for synchro-

nization of phase-oscillators) or flushing toilets
(for excitable media). This is good for the scientif-
ically literate but mathematically naive reader. For
me, it was occasionally a source of frustration,
since I wanted more details of the underlying phe-
nomena. Of course, for the interested reader, Stro-
gatz provides thirty-three pages of endnotes which
include references, sources, and, importantly, the
many caveats. One of the major strengths of the
book is the way in which Strogatz finds so many
connections between seemingly disparate phe-
nomena. But this is also a weakness, as important
differences between the mechanisms underlying
these phenomena are sometimes glossed over.

Sync is organized into three areas, each divided
into several chapters: sync in living systems (cells,
animals, people), sync in inanimate objects (pen-
dula, lasers, electrons), and the “frontiers” of sync
(chaos, small worlds, vortex rings). The first three
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chapters of the book cover Strogatz’s (and oth-
ers’s) work on pulse-coupled oscillators, globally
coupled phase oscillators (“Kuramoto” model), and
sleep rhythms. The middle three chapters cover
pendula and planets; Josephson junctions and their
connections to the Kuramoto model; and my fa-
vorite of this section, the instability of the Millen-
nium Bridge in London. The last four chapters de-
scribe results on the synchronization of chaotic
attractors, Strogatz’s and Art Winfree’s work on the
topology of singular filaments in excitable media,
his work with Duncan Watts on “small-world” net-
works, and finally a summation which makes a
few allusions to synchrony and cognition.

In the remainder of this review I will attempt to
outline some of the mathematics that is hidden in
the pages of this book. I hope to also point out
places where the conclusions based on the simple
models hold firmly with some generality or fall to
pieces with the simplest modifications. The first two
sections of the book deal with coupled oscillators
in the strict sense; each individual generates a sta-
ble periodic solution. At issue is whether there is
any collective organization once these individuals
are coupled together. Almost all of Strogatz’s the-
oretical work deals with the case of “all-to-all” cou-
pling: the effects of any one unit on another are the
same for all possible pairs. In the final section of
the book he explores systems which either are not
intrinsically periodic or in which the connectivity
pattern has additional structure.

The term “sync” is short for “synchrony”, by
which Strogatz means the emergence of order in
time. Depending on whom you are talking to, “syn-
chrony” can have different meanings even within
the context of periodic phenomena. In the strictest
sense it means that each unit oscillator follows an
identical trajectory, xj (t) = X(t) for all units j. I will
call this strict synchrony. Alternatively, “synchrony”
is used interchangeably with “phase-locked”; each
unit is firing with the same period but there are
phase-shifts. Finally, there is a notion of synchrony
from statistical physics. Consider

X(t) = 1
N

∑
j
xj (t)

in the limit as N →∞. If X(t) = C a constant, then
the oscillators are said to be asynchronous. The
emergence of large temporal fluctuations of X(t)
is often defined to be the onset of synchrony. Thus,
it is the appearance of temporal order where there
was none before. I will make this latter definition
more precise when I need it. For systems in which
the individuals are, say, chaotic, synchrony is de-
fined as having identical trajectories.

An astonishing example of spontaneous order
occurs in Southeast Asia, when thousands of male
fireflies congregate in trees and synchronously

flash at about once per second. Strogatz begins his
book with the following quote from Philip Laurent
writing in Science in 1917 [1]:

Some twenty years ago I saw, or
thought I saw, a synchronal or simul-
taneous flashing of fireflies. I could
hardly believe my eyes, for such a thing
to occur among insects is certainly con-
trary to all natural laws.

This intriguing phenomena was rigorously ad-
dressed by John Buck and his colleagues over a pe-
riod from the 1930s to the 1980s [2], but the the-
oretical mechanisms remained unknown. In 1975
Charlie Peskin suggested a simple model for the
synchronization of two oscillators, each of which
obeys the equation

(1)
dxj
dt

= I − xj, I > 1

and such that each time xj (t) crosses 1 it is reset
to 0 and the other oscillator is incremented by an
amount ε. Peskin analyzed the N = 2 oscillator
case by explicitly solving the ODEs. Strogatz and
his colleague Rennie Mirollo attacked the analogue
to this problem for arbitrary N and proved that ex-
cept for a set of initial data with measure zero, all
solutions will synchronize [3]. Thus, they were
among the first to rigorously analyze a system of
pulse-coupled oscillators. In the introduction of
their subsequent paper, they hinted that this global
pulse-like coupling provided the answer to the
enigma of firefly synchronization. In the discussion
section of said paper and here in the endnotes of
Sync, they explain that the actual mechanism for
fireflies is very much different from the simple
generalization of the Peskin model.

Instead of restricting their system to the above
equation, they assume that each oscillator follows
a proscribed temporal profile, xj (t) = f (t) with
f (0) = 0 and f (1) = 1. (I assume that the period is 1
without loss of generality.) Thus, if an oscillator
fires (hits 1), it is reset and all others are given a boost
of size ε. If the kick is enough to push xj past 1, then
this oscillator is “absorbed” into the pool of syn-
chronized oscillators. (That is, xj (t) =max(1, ε+
f (t)). ) We now come to some of the “difficulties” with
this model. First, should the effects of m oscillators
firing together add mε to all the others? If the im-
pulse of a firing event pushes an oscillator over 1,
then does that instantly increment all others? (In their
simulations, they don’t allow the oscillators that
were pushed over to fire until the next iteration.) The
method of proof is very clever and can be understood
by considering the case N = 2. The idea is to create
a map for the phase of oscillator B when oscillator
A crosses 1. Let φ = g(xB + ε) ≡ f−1(xB + ε) be the
phase of B after A fires. In the time it takes B to fire,
A moves to xA = f (1−φ) and then jumps to ε+ xA
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which has phase g(ε+ f (1−φ)) ≡ h(φ). Since all
we have done is interchange the roles of A and B,
the return map is just R(φ) = h(h(φ)). Strogatz and
Mirollo show that there is a unique fixed point and
that it is a repellor. To show the latter, they note
that

h′(φ) = −g
′(u+ ε)
g′(u)

for some u ∈ (0,1). They now invoke the first of
their hypotheses: f (t) is concave down. This means
that g′′ > 0 so that h′ < −1 and thus R′ > 1 for all
φ. Since there is a unique fixed point and it is a re-
pellor, iterations of the map must go to 0 or 1, which
is why the hypothesis of absorption is crucial.
Then, with technical difficulties aside, they prove
the general N case; any fixed points to the result-
ing map are unstable. The synchronous state is not
really even a fixed point of the map. If one starts
with A at 0 and B arbitrarily close to but less
than 1, then the phases of A and B are arbitrarily
close to each other on the circle. However, they will
not stay close; B will fire and A will jump, and they
will be nearly ε apart until A fires again. Small
changes in the model such as heterogeneity mean
that the system can synchronize only in the sense
of absorption. Since synchrony is not a fixed point
of the system, there is no notion of local stability,
so that small changes in the model can have dra-
matic effects. If the coupling is not “all-to-all”, 
another problem occurs: not all oscillators will be
advanced equally when there is a firing of some
group. For example, with nearest neighbors, is 
synchrony inevitable in this model?

How does this simple model compare to real fire-
flies or other systems coupled in a pulsatile fash-
ion? Little is known about the transduction of the
visual signal to the alteration of the oscillator.
However, it is possible to quantify this effect by
looking at phase transition curves (PTC). If a pulse
stimulus is given to an oscillator at phase φ, then
the phase will often be shifted to a new phase
F (φ); this function is called the phase transition
curve. Strogatz’s mentor, Art Winfree, tabulated and
measured such curves for a variety of biological os-
cillators. Frank Hanson (who worked with Buck)
measured F (φ) for several firefly species [4]. In
the Strogatz-Mirollo (SM) model, the phase is always
advanced from a stimulus no matter what the
phase. Furthermore, F (φ) is not one-to-one, since
a nonzero interval of phases is mapped to 1. How-
ever, in the insect Pteroptyx malaccae the PTC is
qualitatively like

F (φ) = φ− ε sin 2πφ

where ε is a small positive number. This PTC ob-
viates some of the difficulties that are inherent in
the SM model. As long as ε is small enough, F is
monotone, so no single stimulus can ever make the

oscillator fire instantly. Furthermore, the analo-
gous return map for this PTC has 0 as an asymp-
totically stable fixed point. In the all-to-all case, it
can also be shown that synchrony is asymptotically
stable for this PTC [5]. Whether sync is inevitable
in the all-to-all coupled case with the sinusoidal PTC
remains an open mathematical question.

In my opinion, Strogatz’s best work is his inci-
sive analysis of the Kuramoto model described in
Chapter 2. (This was the model which led to his
aforementioned sweaty palms.) The Kuramoto
model is a simple coupled system of phase oscil-
lators:

(2)
dθi
dt

=ωi +
K
N

N∑
j=1

sin(θj − θi).

Such models arise through averaging of systems of
weakly coupled nonlinear oscillators. Depending on
the specifics of the model, the function sin(θ) is re-
placed by an arbitrary periodic function. In a later
chapter in Sync, Strogatz shows that the Kuramoto
model is exact when the physical system is an
array of Josephson junctions. When Kuramoto first
proposed the model, he considered it to be a toy
model for the interactions of biological oscillators.
All-to-all coupling has many advantages over in-
teractions with a more specific topology, where
details of the boundary conditions and hetero-
geneities make a general analysis impossible. 
Kuramoto [6] was interested in the behavior as a
function of the coupling parameter K when ωi
are drawn from a symmetric probability density
function g(ω) with zero mean. Numerical solu-
tions for large N revealed that as K increased,
there was a transition from complete disorder to
order. Key to his subsequent analysis was the fact
that the sum in (2) can be written as

−R sin(θi)+Q cos(θi)

where

R = 1
N

∑
j

cosθj, Q = 1
N

∑
j

sinθj.

Kuramoto argued that since the frequency distri-
bution was symmetric about 0, then Q should be
zero, for then the equations are symmetric under
the transformation θ → −θ. Since the mean fre-
quency of the oscillators is zero, he needed to
solve:

(3) 0 =ωi −KR sinθi

along with the self-consistency condition

(4) R = 1
N

∑
j

cosθj.

Kuramoto’s insight was to divide the oscillators into
two groups: those for which equation (3) has a
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solution (|ω| < KR) and those for which it does not.
The latter oscillators drift around the circle, and
Kuramoto intuited that their contribution to (4)
should be zero over long time. The sum is just the
average of cosθ over the frequency distribution 
defined by g(ω), so that we can replace it by the
integral

R =
∫ KR
−KR

cos(θ(ω))g(ω)dω

where sin(θ(ω)) =ω/KR. A change of variables
leads to the following equation for R:

(5) R = KR
∫ 1

−1
g(KRσ )

√
1−σ 2 dσ.

Clearly, R = 0 is always a solution. However, a
nonzero solution bifurcates at the critical value

Kc =
2

πg(0)
.

This is a clever argument, but it is completely
heuristic. Strogatz relates how he and Nancy Kopell
worked on trying to make this rigorous with no re-
sults and how he was plagued by it for many years.
He then describes in breathless prose how it came
to him in a near-dream state: the oscillators are not
runners on a track, but like a fluid. Thus, he was
led to write an equation for the density of oscilla-
tors at phase θ and with natural frequency ω. The
density evolves as

(6)
∂ρ
∂t
= −∂(vρ)

∂θ

where v is the phase velocity given by

v(θ, t) =ω+K
∫∞
−∞
g(σ )dσ

×
∫ 2π

0
dφ sin(φ− θ)ρ(φ,σ, t).

This approach has many advantages over the 
Kuramoto approach. It does not depend on the
fact that the interaction is sinusoidal. Furthermore, 
additive noise in the original model simply adds 
an additional flux term, D∂2ρ/∂θ2, to the density
equation. The key point is to notice that the 
asynchronous state is the state in which the 
phases are uniformly distributed around the cir-
cle: ρ(θ,ω, t) = 1/2π. Clearly, this is a stationary
state for (6). Thus, the question that Strogatz asked
was, how does the stability depend on the strength
of the coupling K? Linearizing about this station-
ary solution leads to an eigenvalue problem whose 
solution is

y(θ,ω, t) = eλteiθb(ω)

and

λb(ω) = −iω+ K
2

∫∞
−∞
g(ω)b(ω) dω.

Solving this for the discrete eigenvalue λ yields

1 = K
2

∫∞
−∞

λ
λ2 +ω2

g(ω) dω.

Rescaling ω = λσ results in

1 = K
2

∫∞
−∞

g(λσ )
1+σ 2

dσ.

Bifurcation occurs in the limit as λ→ 0, yielding the
Kuramoto result:

1 = πKc
2
g(0).

There are many subtleties to this full eigenvalue
problem (the essential spectrum), and the reader
is urged to consult the lovely review article [7]. But
the bottom line is that the phase density approach
finally resulted in a rigorous solution to Kuramoto’s
model. (I should point out that the large but finite
N case is still the subject of current research.) This
approach remains the method of choice when try-
ing to understand the stability of the asynchronous
state. This elegant calculation is the mathematics
which underlies Strogatz’s statement that “sync”
is inevitable. How general is this statement? J. D.
Crawford answered this question in a series of pa-
pers on the model

dθj
dt

=ωj +
K
N

∑
k

H(θk − θj )

where H is a more general interaction function. For
example, if H(θ) =∑n cn sinnθ, then for each n
there is a critical coupling strength,

Kn =
2n

g(0)πcn
.

If Kn is the minimal for n = n0, then the probabil-
ity distribution which bifurcates will have n0 peaks.
The Kuramoto case corresponds to n0 = 1 and so
there is “sync”. However, if, e.g., n0 = 2, then a
two-cluster state will bifurcate. Thus, “sync” is not
really inevitable; it was an accident of the model
choice.

The daily 24-hour rhythms which govern our
everyday behavior and which are the subject of
Chapter 3 are controlled by a small set of neurons
buried deep in a part of the brain called the
suprachiasmatic nucleus (SCN). In the last twenty
years, biologists have uncovered the mechanisms
of the genesis of these rhythms. However, the cou-
pling between them remains mysterious. It has
been suggested that coupling is through the release
of a chemical transmitter (gamma aminobutyric
acid, or GABA) that has been shown to affect the



316 NOTICES OF THE AMS VOLUME 51, NUMBER 3

phase of individual oscillators. It is possible that
this transmitter is pooled so that the cells are ef-
fectively coupled in an all-to-all manner. But cou-
pled oscillators play little role in this chapter of
Sync. Rather, Strogatz focuses on the rather extreme
experiments on human subjects kept in isolation
from all time cues. In early experiments, volunteers
were also isolated from other people and exhibited
a variety of psychological problems. Most inter-
estingly, after a long period with no temporal cues,
the sleep-wake cycle “separates” from the daily
body temperature fluctuations that are controlled
by the SCN. This spontaneous desynchronization
is what captured the attention of theoreticians.
The main idea of the theory is that there is a sleep-
wake oscillator and a circadian oscillator that are
coupled together but have different intrinsic fre-
quencies. Both are driven by the day-night cycle that
keeps them entrained at a 24-hour rhythm. In the
absence of the temporal cues, the coupling be-
tween the two oscillators is not enough to main-
tain locking, and they drift apart. Strogatz spends
a majority of the chapter describing his work with
Dick Kronauer, a modeler of circadian rhythms, and
how their data revealed that during certain times
of the day it is very difficult to stay awake (around
2:00 p.m., siesta time in many reasonable soci-
eties) or go to sleep (around 10:00 p.m., dinner time
in those same societies).

The next three chapters deal with physical sys-
tems; the most notable (at least to me) is Huygens’s
clocks. This is a classic example of synchrony in
which two pendulum clocks mounted on a beam
phase-lock so that they operate a half a cycle 
out of phase. Strogatz refers to a recent paper by
Matthew Bennett and others [8] in which the mys-
tery of this locking is finally solved. Bennett’s model
is two pendula attached to a rigid beam that is 
allowed to move vertically. This movement is cru-
cial, since without it the two pendula could not be
coupled. It is easy to write down a Lagrangian for
this three degree-of-freedom model and solve it
numerically. By a simple linear approximation, they
reduce the behavior to a map. With this map, Bennett
et al. show that Huygens was incredibly lucky: 
had his pendula been heavier, they would have been
too weakly coupled to phase lock; and had they
been much lighter, then a solution in which one
pendulum rocks and the other is silenced would have
occurred. Strogatz uses the example of Huygens’s
clocks as a perfect illustration of how inanimate 
objects can sync. The remainder of Chapter 4 
gives more examples, such as the electrical grid
and the famous Kirkwood gaps in the asteroid belt
between Mars and Jupiter. Kirkwood noticed that
these occur at radii in which the orbital period is res-
onant with that of Jupiter. It took another hundred
years before a theory was developed that showed
this resonance could produce gaps [9].

Chapter 5 describes, mostly through analogies,
sync at the quantum level. Strogatz has a nice de-
scription of how lasers work, an example of quan-
tum phase coherence. The idea is that occasional
photons will join up in sync, and these will recruit
more and more of them, and thus there is a posi-
tive feedback to produce phase-coherent light. He
closes this chapter with a biography of one of the
most interesting characters in quantum mechan-
ics, Brian Josephson. The final chapter in this part
of the book contains the majority of Strogatz’s
contributions to “inanimate sync”. He makes con-
nections between quantum sync and the Kuramoto
model through his prolific work on coupled Joseph-
son junctions which obey the following differen-
tial equations:

βjφ′′
j +φ′

j + sinφj +Q′ = Ij

LQ′′ + RQ′ + C−1Q = 1
N

∑
k

φ′
k.

He first describes observations on the existence of
an invariant 2-torus when C−1 = L = 0. This is a dif-
ficult concept to explain to mathematicians, let
alone a general audience. But he neatly trumps this
difficulty by describing the torus as a sequence of
nested Russian dolls. In the limit of small Q′ (“weak
coupling”), it is possible to average the junction
equations, and this is how he ends up with
Kuramoto’s original model of sinusoidal all-to-all
coupling. Thus, while it may be hard to find a bio-
logical system that reduces to the exact form of
Kuramoto’s famous equations, Strogatz has shown
that at least one physical system is equivalent.

The middle section of the book concludes with
a great description of the Millennium Bridge in
London. This bridge was built to celebrate the new
millennium, and at its inaugural with all the tele-
vision cameras running, hundreds of people began
to walk across it. As Strogatz notes, “Within min-
utes it began to wobble, 690 tons of steel and alu-
minum swaying in a lateral S-shaped vibration like
a snake slithering on the ground.” He presents a
mechanism based on a combination of resonance
and phase-locking. This is not like the famous
Tacoma Narrows Bridge, which broke apart when
wind of a critical velocity blew across it. Rather,
when people walk they tend to swing from side to
side at roughly two strides per second. Engineers
found that the bridge itself had a resonant insta-
bility of about one cycle per second. If through
purely random chance a number of people tran-
siently synchronized their gaits, this net force
could begin to destabilize the bridge so that it
starts rocking slightly. If you try to walk on a sway-
ing platform, you tend to compensate by stepping
in sync with it. Thus this initially small kernel of
synchronous steppers recruited more and more
walkers, which further destabilized the bridge,
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leading to the moral equivalent of the Kuramoto
model! As a last word on inanimate sync, Strogatz
notes (with an implied wink) that three days after
the fiasco (and several months before the engi-
neers analyzed the problem), a letter appeared in
The Guardian giving essentially the above analy-
sis of the phenomena. The author: Brian Joseph-
son.

Part three of the book covers what is called the
“frontiers of sync”. I am not exactly sure what this
means; Strogatz’s work on singular filaments in ex-
citable media (Chapter 8) was done nearly twenty
years ago. Nevertheless, the other chapters in this
section describe more recent work on chaotic syn-
chronization, small worlds, and a very small bit on
neuronal synchrony.

Lou Pecora’s work occupies a good part of the
text in Chapter 7. He has written a number of pa-
pers on synchronization of chaotic systems [10].
Chaotic synchronization asks the simple question
as to whether two or more coupled chaotic systems
will stably synchronize. Let me start with a very gen-
eral model that will work for periodic oscillations
as well as synchronous rhythms. Consider:

dXj
dt

= F (Xj )+
∑
k

cjkM(Xk,Xj ), j = 1, . . . ,N,

where X ∈ Rm and M(X,X) = 0 . The coupling
strength is encoded in the scalars cjk. Suppose
that X′ = F (X) has a solution U (t) that may be
chaotic or periodic but which is time-varying.
Clearly Xj (t) = U (t) is a synchronous solution. Sta-
bility is determined from the linearized equation
Xj = U + Yj where

dYj
dt

= A(t)Yj +
∑
k

djkB(t)Yk.

where A,B are time-varying m×mmatrices and djk
is the same as cjk except for j = k where
djj = cjj −

∑
k cjk. Let (ν,Ψ ) be an eigenvalue-

eigenvector pair for the N ×N matrix D = (djk).
Write Yj = ΨjZwhere Z ∈ Rm and Ψj is the jth com-
ponent of Ψ . This has the effect of putting the sys-
tem into block diagonal form, leaving us with only
the set of problems:

(7)
dY
dt

= A(t)Y (t)+ νB(t)Y (t)

where ν is an eigenvalue of D. Suppose the solu-
tion U (t) is chaotic. Then stability is determined by
looking at the maximal Liapunov exponents of (7).
Since 0 is an eigenvalue of D corresponding to ho-
mogeneous perturbations, this means that for a
chaotic system there is always at least one positive
Liapunov exponent. But, it is in the homogeneous
eigenspace; thus this instability cannot break the
symmetry of synchrony. Pecora’s idea for chaotic

synchronization is very easy. Find regions in the
complex ν-plane for which the Liapunov exponents
are all negative. This will characterize the types of
coupling that can stabilize the synchronous chaotic
state. Suppose, for example, B(t) = bI where b is a
scalar and the maximal Liapunov exponent of the
uncoupled system is λ. If the nonzero eigenvalues
of D are negative, then for b large enough, the
synchronous system is stable. If B(t) is a constant
nonscalar matrix, then there can be limitations on
the strength of the coupling in order to get chaotic
synchronization. The methods described here 
work as well for coupled oscillators. Stability of the
synchronous chaotic state is an exercise in linear
algebra coupled with numerics.

In the first two-thirds of Sync the interactions
between individuals is “all-to-all”, so that the be-
havior of the ensemble is pretty simple: there is
synchrony or asynchrony, but, of course, no spa-
tial structure. Not until Chapter 8, “Sync in Three
Dimensions”, does Strogatz break away from this
simplifying constraint. Here he first describes how
he came to know one of his heroes, Art Winfree,
who tragically died last year and to whom the book
is dedicated. Winfree was studying active media in
the form of the Belousov-Zhabotinsky (BZ) reagent,
a mixture of chemicals which generates sponta-
neous oscillations and spiral waves in a thin layer.
(When I first met Winfree at a conference, he passed
out specially treated millipore filters and small
vials of clear liquid. When you poured the liquid
on the filter paper, the BZ reaction took place and
spiral waves appeared miraculously on the paper.)
Winfree was interested in what could happen in
three dimensions and recruited Strogatz to work
with him one summer. Imagine a stack of spiral
waves exactly lined up; the centers or cores of the
spirals produce a straight line (called a singular fil-
ament). This produces a scroll wave. Now suppose
that we could take such a filament and join the 
ends to form a ring. The resulting object is called
a scroll ring, and associated with each point on the
ring is a two-dimensional spiral wave. It is easy to
imagine more complex objects such as a trefoil
knotted ring or linked rings. In a series of papers
published between 1983 and 1984, Winfree and
Strogatz [11], [12] described the kinds of patterns
that are consistent with chemical and biological 
excitable media. First, consider a simple planar 
spiral wave. The isophase lines of this spiral con-
verge in a phase-singularity at the center of the 
spiral wave. Thus, our filament represents a curve
of phase singularities. Consider the simple twisted
scroll ring which is obtained as follows. Take a
scroll (spiral waves stacked up with the arms
aligned) and give it a 360-degree twist and then join
the ends. Now imagine a torus that encloses the
twisted ring. A surface of the wave at a fixed phase
intersects the torus in a closed ring. At the equator
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of the torus, the isophase points wind around 
exactly once. Now plug the hole in the torus with
a disk; the isophase lines must come together at
another singularity. Thus the twisted scroll ring 
cannot exist in isolation. Using clever arguments
like this, Winfree and Strogatz show that more 
exotic possibilities are realizable: for example, a pair
of linked twisted scroll rings. The above-mentioned
trefoil knot untwisted cannot exist; however, with
a twist it is realizable. In later work (not with 
Strogatz) Winfree simulated a simple excitable
medium and found apparently stable (or at least
long-lasting) knotted twisted scroll rings.

In my mind this chapter is not so well connected
to the rest of the book. Let me try to smooth the
seams a bit by returning to the coupled phase-
models that play a role in Chapter 2 of Sync:

(8)
dθj
dt

=ωj +
∑
k

cjkH(θk − θj ),

j = 1, . . . ,N.

The Kuramoto model is a special case of this gen-
eral coupling, where H(θ) = sinθ and cjk = 1/N.
We have already seen that for the all-to-all case the
Kuramoto story is more complex if the coupling is
not a pure sinusoid. The zoo of exotic waves de-
scribed in this chapter is far more complex than
sync. Sync for these media, which are essentially
homogeneous, would represent either a stable rest-
ing state or a bulk oscillation. For chemical and
other media these simple states are stable. So where
do these exotic creatures originate? The answer lies
in the interactions in the medium. Unlike all of the
previous models in Sync, interactions between in-
dividual elements are local in space; coupling is not
“all-to-all”. Stirring the chemical bath destroys any
hope of finding spirals and scroll waves. So, let’s
make the question really simple. Is sync inevitable
in equation (8) when coupling is local and the
medium is homogeneous? Consider first a ring of
nearest neighbor sinusoidal phase oscillators:

dθj
dt

=ω+ sin(θj+1 − θj )+ sin(θj−1 − θj ),
j = 1, . . . ,N.

We identify j = 0 with j = N and j = N + 1 with
j = 1. One possible solution to this model is a ro-
tating wave, θj =ωt + 2πj/N. It is asymptotically
stable as long as N > 4. However, if we increase the
range of the coupling sufficiently far beyond the
nearest neighbor coupling, all that can occur is
sync. One might object that the ring is special com-
pared to a simple linear array. Indeed, for a linear
nearest-neighbor array of sine models, the follow-
ing can be proved: suppose that −π/2 < θj+1(0)−
θj (0) < π/2. Then all solutions go to synchrony. So,
based on this, one could conjecture that for

nearest-neighbor linear arrays of sine oscillators,
synchrony is inevitable.

However, what may be surprising is the behav-
ior when we go to two dimensions. Sync is not 
inevitable for a nearest-neighbor array of sine 
oscillators on a square grid:

θij
dt

=ω+
∑

(i′, j′)∈N(i,j)

sin(θi′j′ − θij ),

where N(i, j) is the set of nearest neighbors of
(i, j) . Thus (1,1) only has two neighbors, (1,2) and
(2,1). For a nearest-neighbor sine model on an
2m× 2m grid (m > 1), there are stable rotating
patterns that are the discrete analogues of spiral
waves in the two-dimensional excitable medium
[13]. For m small the basin of attraction of these
oscillating but nonsynchronous patterns is small,
but for m large the basin for synchrony shrinks.
Thus spirals and other patterns are consequences
of having a well-defined notion of space such as in
locally coupled media. Stacking these sine-model
rotating spirals up in a three-dimensional array
results in the analogue of a simple scroll wave.
Whether exotic structures like scroll rings exist in
three-dimensional arrays of locally coupled oscil-
lators remains an open question.

The penultimate chapter in Sync covers Stro-
gatz’s work with Duncan Watts on the “six degrees
of separation” problem. There is a famous game
called the “Kevin Bacon” game that started in a
Pennsylvania college. The idea is to pick any Hol-
lywood actor and connect him to Kevin Bacon in
as few steps as possible. For example, to connect
Kevin Bacon to Woody Allen, we note that Bacon
was in Footloose with Dianne Wiest, who was in 
Hannah and Her Sisters with Woody Allen. Mathe-
maticians play this game with Paul Erdős. You can
imagine a network with each actor as a node and
links drawn between each actor that appeared in
a movie together. Such a network is somewhere 
between a completely local one and one which is
completely random. Many realistic networks have
a similar structure to the Erdős and Bacon net-
works, such as the Internet, the national power
grid, the neurons of the nematode C. elegans, and
many social networks. There are many local links
and a few nodes that have links to many other
nodes, some quite distant. This type of network is
called a “small world network”. The material in
this chapter is mainly taken from Watts’s Ph.D.
thesis and subsequent book [15], reviewed in the
Notices [14]. I should point out that Barabási and
his collaborators have developed an alternate 
theory for scale-free networks [16].

The final chapter is a miscellany of results on
the “human side of sync”, covering such things as
the spread of fads and an interesting phenomena
regarding hand clapping. In Eastern Europe, after
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a good concert the audience often claps rhythmi-
cally. This rhythmic clapping can suddenly become
asynchronous and then switch back to synchrony.
This was recently quantified in [17] by looking at
the maximal correlation between a ceiling record-
ing of the audience, c(t), and a sinusoidal function
of t . The mechanism is rather interesting. In order
to synchronize, the audience must slow down their
clapping. But this results in a diminution of the
sound intensity of the clapping, contradicting their
desire to make the applause as loud as possible.
Thus, they speed up and lose synchrony. This leads
to a waxing and waning of the synchronous be-
havior. At high frequencies the spread of individ-
ual clapping rates is much greater than at low fre-
quencies, so that the authors suggest that the onset
of sync at low frequencies is through the Kuramoto
mechanism. There is another possible reason for
the loss of synchrony: coupled neural oscillators
can often switch from synchrony to asynchrony as
the frequency changes, even when the oscillators
have identical frequencies [18], [19].

This leads me to the last part of Sync, in which
Strogatz briefly dives into the neural synchrony tar
pit. He touches on work by Charlie Gray, Wolf
Singer, and others in which it was suggested that
synchronous oscillations may have some impor-
tance in cognition; this remains a major controversy
in the field. He also cites the famous story in which
hundreds of Japanese got seizures from watching
an episode of Pokemon that featured flashing red
lights at a particularly sensitive frequency. The
highlight of this chapter, however, is his very funny
story about a lunch with Alan Alda in the MIT
lunchroom.

Like his textbook on nonlinear dynamics, the pre-
sent book is a model of clarity. Reading Sync has
been fun and intellectually stimulating. I can think
of about a dozen mathematical questions that
came to mind while reading different parts of the
book. While it is written for the layperson, there is
plenty of interesting mathematics behind the
scenes; the endnotes provide many references. I
hope that Sync will be read by many nonmathe-
maticians so that they can appreciate both the use-
fulness of mathematics and other forms of “pure”
science. And the next time someone asks what I do
for a living, I cannot think of a better place to point
her.
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About the Cover
Synchronizing Peskin’s heart

The cover this month illustrates how beat
synchronization occurs in a heart model pro-
posed around 1975 by Charles Peskin (in the
Courant Institute notes “Mathematical aspects

of heart physiology”).
The heart contains

a large number of vir-
tually identical cells
that must fire more
or less simultane-
ously (in a healthy
heart), and if dis-
turbed, they must re-
turn to the synchro-
nized state. In
Peskin’s model the
state of each cell is

characterized by its phase, and the system it-
self is also characterized by a function of phase
whose graph is concave (as in the middle row
of the cover). At the end of every cycle, each
cell fires and adjusts the phase of every other
cell, translating it into synchronization with it-
self or adjusting its phase so as to raise the
value of the function by a fixed amount.

Renato Mirollo and Steven Strogatz were
the first to prove that Peskin’s model incor-
porates synchronization of an arbitrary popu-
lation (SIAM Journal of Applied Mathematics 50
(1990)). An informal explanation is given in
the book by Strogatz reviewed here.

The cover shows how this process works
with three cells. It demonstrates roughly how
concavity of the graph plays a role.

—Bill Casselman
(notices-covers@ams.org)


