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Every year a consortium of mathematics organi-
zations chooses a theme for the month of April, 
designated “Math Awareness Month” (see also
http://www.ams.org/ams/mam.html). This year’s
theme is networks. The importance of networks in
mathematics at the moment can be gauged by the
fact that the Notices has recently published two 
reviews of books on the topic and will publish an
article by Peter Sarnak on a related topic in the near
future. 

“Network” is the word everybody—physicists, 
biologists, sociologists, engineers—except mathe-
maticians and a few computer scientists, uses for
what this minority calls “graphs”, i.e., a set of nodes
linked together by edges. Variants exist: the edges
might be oriented or labeled, or the vertices clas-
sified. If there is a connotation to “network” as 
opposed to “graph”, it is that networks arise from
real life and are concerned with relations between
real objects. Important examples include meta-
bolic interactions of chemicals in living things,
hard-wired connections among servers on the 
Internet, links between World Wide Web pages, 
citations of references in scientific papers, conta-
gion, and electric power grids. Networks—very,
very large networks—are a routine and important
part of modern life. The World Wide Web has much
over 1 billion live nodes. How can we make sense
of something that complex?

The traditional way to analyze a graph is just to
draw it and look at it, but for large networks this
is ridiculous. One has to condense the information
available into a small package—in other words, to
compile statistics.

What does a typical graph look like? In the beau-
tiful theory originating mostly with Alfred Renyi and
Pál Erdős, a random graph is obtained by starting with
N nodes fixed in advance and then adding edges 
between random pairs with probability p. There are
an astonishing number of interesting results known
about such graphs, the most remarkable being that
certain phase transitions occur as p increases. The
degree of a node in a network is the number of edges
leading to it. In the random graph, distribution of
degrees is binomial, well approximated by a Poisson

distribution for small p. The mean degree of nodes
is µ = p(N − 1) . The best-known phase transition is
that as µ passes through 1, the largest connected
component starts to grow rapidly. For µ < 1 and
large N it contains a very small fraction of all nodes,
but as µ increases it takes up a sizeable part; for
µ > 1 the fraction f taken up is the unique root of
f = 1− e−µf . The sizes of the other components 
decrease dramatically as well. In the following two
figures a sequence of randomly constructed graphs
is shown for p = 0.8 and 1.5. The colored nodes are
those in the five largest components. Also shown is
the empirical distribution of nodal degrees.
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The figure above shows how the largest com-
ponent grows as µ increases through a sequence of
values for graphs of sizes 400 and 2500 constructed
randomly by a computer. The graph for N =∞
shows the theoretical fraction taken up by the
largest component for p > 1, a graph which 
the true fraction approximates more closely for
large N.

The traditional theory of random graphs is math-
ematically impressive and plays an important role
in estimates of the efficiency of many algorithms
dealing with graphs. But its role in explaining what
networks encountered in real life look like is min-
imal. Real networks do not spring out of nowhere;
they grow in one way or another, and the structure
they acquire depends on that growth. In particu-
lar, this causes them generally to look very differ-
ent from one of the Renyi-Erdős random graphs.
As far as I know, the first account of how real 
networks seem to grow dates to 1965, in a paper
by the remarkable polymath Derek de Solla Price.
He  was interested in the statistics of the science
citation network, where directed edges lead from
a paper to each paper it refers to. It had recently
become possible to scan efficiently through large
amounts of data based on the Science Citation
Index, and de Solla Price showed that a principle
of formation he called cumulative advantage led
to a stable degree probability distribution pk =
(1 + 1/m)B(k + 1,2 + 1/m). Here pk is the probabil-
ity of a node having degree k , m is the mean 
effective number of journal references in papers,
and B is Legendre’s beta function B(x, y) =
Γ (x)Γ (y)/Γ (x + y) . He also showed that there was
some agreement between his theory and the 
nature of citations in the real world. Cumulative 
advantage can be succinctly summarized as 
“them what has, gets”—a paper that is frequently
referred to will likely get more citations than one
referred to less often. (A warning: de Solla Price’s
paper will be sobering to a naive mathematician
who would like to think that a paper’s intrinsic 
quality plays a more important role than mere 
popularity.) What is perhaps surprising is that the
stable degree distribution is well approximated
even for small networks growing in this way, at 
least away from the tail end of highly cited 
papers. Because B(x, y) ∼ Γ (y)/xy for fixed y and 

increasing x , de Solla Price’s distribution is 
reasonably approximated by a power law where the
number of nodes of degree k is proportional to
some power 1/kα with α > 2, here 2 + 1/m. The 
following figure shows a degree distribution aris-
ing from a sample network grown by cumulative
advantage, along with the theoretical beta distrib-
ution, all plotted on a log-log graph so as to show
up the power law indicated by a straight line.

De Solla Price’s work seems to have been long
neglected, and his results were rediscovered, 
apparently independently, by Albert Barabási in
much cited recent work. Barabási introduced the
now popular term “preferential attachment” for
what de Solla Price calls cumulative advantage and
the term “scale free” networks for those that sat-
isfy a power law of degree distribution, although
it seems more reasonable to apply the term only
to those which, like the networks of de Solla Price,
retain a stable degree distribution as they grow.

Further Reading
There is a great deal of pseudoscience as well as
science in this field, which is enjoying a rapid
growth at the moment. The most difficult problem
is to fit theory with practice. A very good reference
for mathematicians is the recent article “The struc-
ture and function of complex networks” by Mark
Newman in volume 45 of the SIAM Review (2003),
recommended also by Rick Durrett in his March 
Notices review of Barabási’s book Linked. It contains
a large and useful list of references on the topic.
You can find listed there the papers of de Solla Price
as well as an interesting introduction to his 
research on citation networks.


