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Billiards are dynamical systems. In the simplest case,
a “billiard table” is a compact domain Q ⊂ Rd with
a piecewise smooth boundary. For a large part of the
theory the class of smoothness plays no role. The
reader is invited to think about components of the
boundary ∂Q as subsets of C∞-submanifolds of 
codimension 1. The phase space M of the billiard is
the unit tangent bundle of Q with the natural iden-
tification at the boundary

(1) v′ = v − 2(v, n(q))n(q), q ∈ ∂Q
where n(q) is the inward-pointing unit normal vec-
tor at q. The reflection law (1) is not used at intersec-
tions of the several components of the boundary,
where it has no meaning.

The dynamics {St} of a billiard is the uniform
motion with unit speed inside Q of a point repre-
senting the billiard ball and with the reflections off
the boundary given by (1), −∞ < t <∞ . The group
{St} preserves the Liouville measure dqdωq(v)
where ωq is the uniform measure on the unit
sphere of tangent vectors to Q with given q.

Mechanical systems with elastic collisions often
give rise to billiards. For example, a system of
one–dimensional point particles with arbitrary
masses moving freely between elastic collisions
can be described as a billiard system inside a sim-
plex whose dimension equals the number of par-
ticles. The system of N hard balls of radius ρ in a
volume V is reduced to the billiard in the domain
V × V × · · · × V︸ ︷︷ ︸

N times

\C where C is the union of the

cylinders

Cij =
{
q(1), . . . , q(N), |q(i) − q(j)|2 ≤ (2ρ)2

}
.

All properties of a billiard system are deter-
mined entirely by the geometric properties of ∂Q.
In particular, the curvature of the configuration
space Q is concentrated at the boundary. In the 
two-dimensional setting billiards are intermediate

between geodesic flows and flows generated by
quadratic differentials where the curvature is con-
centrated at isolated points.

The most thoroughly studied billiards are the two-
dimensional billiards. Some are integrable, meaning
that the phase space M , minus some submanifolds
of smaller dimension, can be decomposed into two-
dimensional invariant tori, and the dynamics on each
torus is described by quasi-periodic functions. Ex-
amples of such billiards include: (1) billiards inside
parallelograms, (2) billiards inside equilateral trian-
gles, and (3) billiards inside ellipses. According to a
popular conjecture, the set of integrable billiards
can be fully described and is not much wider than this
list.

Billiards in general strictly convex smooth do-
mains have some properties of integrable billiards.
A curve γ ⊂ Q is called a caustic if any tangent ray
to γ after reflection remains tangent to γ. Caustics
play an important role, because some semiclassi-
cal approximations of eigenfunctions of Laplacians
are described in terms of caustics. V. F. Lazutkin
has shown that the set of tangent vectors to all caus-
tics is a set of positive measure in the phase space,
accumulating near the boundary. In spirit this re-
sult belongs to KAM-theory. J. Mather proved that
if the curvature of ∂Q is zero at one or several
points and negative otherwise, the billiard has no
caustics (remember the orientation of n(q)).

If Q is a polygon whose angles are rational mul-
tiples of π , then the velocity along each trajectory
of the billiard can take finitely many values. Fixing
these values we get a vector field on a two-
dimensional surface whose trajectories can be 
represented as canonical foliations generated by
quadratic differentials on Riemann surfaces. 
H. Masur and W. Veech have shown that typically
these fields are strictly ergodic; i.e., they admit a
unique invariant measure that naturally is ergodic.
The same statement holds true for the so-called 
interval exchange transformations (IET). These are
maps of [0,1] that arise if one cuts [0,1] into sev-
eral subintervals ∆1,∆2, . . . ,∆k and puts them in
a different order according to some permutation.
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IETs are closely connected with billiards in poly-
gons. The theory of such billiards is now an actively
studied topic in the theory of dynamical systems.
Almost nothing is known if the angles of a poly-
gon are incommensurate with π . Even the theory
of billiards in triangles with two irrational angles
awaits development.

Much can be said if the curvature of ∂Q is strictly
positive on some components of the boundary and
is zero on the others. Such billiards are called hy-
perbolic. This condition links the theory of hyper-
bolic billiards with geodesic flows on manifolds of
negative curvature, Anosov flows, and the general
theory of hyperbolic dynamical systems. A similar
definition can be easily given in the multidimen-
sional case. Probably the first person who noticed
the analogy between systems with elastic colli-
sions and related billiards and geodesic flows on
manifolds of negative curvature was the Soviet
physicist N. S. Krylov. In the two-dimensional case
the simplest examples of hyperbolic billiards are
squares from which one or several strictly convex
scatterers are cut out.

L. Bunimovich showed that the billiard inside a
“stadium” is in a natural sense also a hyperbolic
billiard. A stadium is a domain bounded by two
semicircles and two parallel straight segments.
Later, Bunimovich and Donnay extended this result
to a wider class of domains in which semicircles
can be replaced by general strictly convex curves
and the straight segments are allowed to be non-
parallel. The motion of a billiard ball on a table that
is the complement of a random or periodic con-
figuration of strictly convex scatterers is called a
Lorentz gas and is one of the most popular mod-
els in nonequilibrium statistical mechanics.

Bunimovich stadia and similar billiards are pop-
ular models in the theory of quantum chaos, which
studies the connections between eigenfunctions of
Laplacians and ergodic properties of underlying clas-
sical dynamical systems. One of the reasons is their
simplicity and amenability to numerical methods.

In the hyperbolic theory of dynamical systems
a stable (unstable) manifold of a point x ∈M is
a local submanifold γ(s)(x) (γ(u)(x)) such that
dist(Sty, Stx) ≤ C(x) exp{−λ|t|}, t > 0 (t < 0), for
all y ∈ γ(s)(x) (y ∈ γ(u)(x)), where C(x) and λ are 
positive numbers. In the case of geodesic flows 
on manifolds of negative curvature, stable and 
unstable manifolds are horocycles (d = 2) and
horospheres (d > 2) . In the case of hyperbolic 
billiards, almost every point also has a stable (sm)
and unstable (um) manifold. This statement is a
particular case of the general Hadamard-Perron 
theorem and is a relatively simple part of the 
theory. The new feature compared to the smooth
situation is the appearance of cusp-type singular-
ities on these manifolds, which are created by 
trajectories that were tangent to the boundary at

some time in the past. A typical form of sm is
given in the accompanying figure.

This existence of sm and um is a manifestation
of the intrinsic instability of the dynamics. There-
fore, hyperbolic billiards are among the most pop-
ular models of deterministic chaos.

The main problem related to hyperbolic billiards
is the problem of their ergodicity. There is a 
general argument due to E. Hopf that gives the 
ergodicity if sm and um have a property called
“local transitivity”, meaning that for any two close
points x, y ∈M one can construct a continuous
path from x to y which consists of finitely many
components such that each component belongs
either to sm or to um. For smooth systems where
the sum of dimensions of sm and um is 2d − 2,
local transitivity follows directly from their general
properties. It is not so for billiards, because smooth
components of sm or um can be arbitrarily small.
This difficulty can be overcome with the help of the
Fundamental Theorem for hyperbolic billiards,
which has several versions. The first one says that
in an arbitrary small neighborhood U of a typical
point and an sm ⊂ U , the probability (in a natural
sense) of points in sm for which the size of um is
not smaller than the size of the initial sm is greater
than some constant. This property is enough to
carry out Hopf’s argument.

In the second version, based on the so-called
Chernov-Sinai Ansatz, it is shown that local tran-
sitivity holds because there are no submanifolds
of codimension 1 that separate different subsets
with the property of local transitivity; therefore, this
subset is unique.
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A typical form of a stable manifold.


