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Combinatorial
Equivalence of Real
Moduli Spaces
Satyan L. Devadoss

Introduction

The Riemann moduli space Mn
g of surfaces of genus

g with n marked points has become a central 
object in mathematical physics. Its importance 
was emphasized by Grothendieck in his famous 
Esquisse d’un programme. The special case Mn

0 is
a building block leading to higher genera, playing
a crucial role in the theory of Gromov-Witten 
invariants, symplectic geometry, and quantum co-
homology. There is a Deligne-Knudsen-Mumford
compactification Mn

0 of this space coming from geo-
metric invariant theory which allows collisions of
points of the configuration space. This descrip-
tion comes from the repulsive potential observed
by quantum physics: pushing particles together
creates a spherical bubble onto which the particles
escape [11]. In other words, as points try to collide,
the result is a new bubble fused to the old at the
point of collision where the collided points are
now on the new bubble. The phenomena is dubbed
as bubbling; the resulting structure is called a 
bubble-tree.

Our work is motivated by the real points Mn
0(R)

of this space, the set of points fixed under com-
plex conjugation. These real moduli spaces have im-
portance in their own right, beginning to appear in
many areas. For instance, Goncharov and Manin 

[7] recently introduced Mn
0(R) in discussing 

ζ -motives and the geometry of Mn
0.

The real spaces, unlike their complex counter-
parts, have a tiling that is inherently present in
them. This allows one to understand and visualize
them using tools ranging from arrangements to 
reflection groups to combinatorics. This article
began in order to understand why the two pictures
in Figure 12 are the same: both of them have iden-
tical cellulation, tiled by 60 polyhedra known as 
associahedra. It was Kapranov who first noticed this
relationship, relating Mn

0(R) to the braid arrange-
ment of hyperplanes. We provide an intuitive, com-
binatorial formulation of Mn

0(R) in order to show
the equivalence in the figure. Along the way we 
provide a construction of the associahedron from
truncations of certain products of simplices.

A configuration space of n ordered, distinct par-
ticles on a manifold M is defined as

Cn(M) =Mn −∆,
where ∆ = {(x1, . . . , xn) ∈Mn | ∃ i, j, xi = xj}.

The recent work in physics around conformal field
theories has led to an increased interest in the
configuration space of n labeled points on the pro-
jective line. The focus is on a quotient of this space
by PGl2(C), the affine automorphisms on CP1. The
resulting variety Mn

0 is the moduli space of Riemann
spheres with n labeled punctures.

Definition 1. The real moduli space of n-punctured
Riemann spheres is

Mn
0(R) = Cn(RP1)/PGl2(R),
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where PGl2(R) sends three
of the points to 0,1,∞.

This moduli space encap-
sulates the new construc-
tions of the associahedra de-
veloped below.

The Simplex
For a given manifold M , the
symmetric group Sn acts
freely on the configuration
space Cn(M) by permuting
the coordinates, and the
quotient manifold
Bn(M) = Cn(M)/Sn is the
space of n unordered, dis-
tinct particles on M . The
closure of this space in the
product is denoted by
Bn〈M〉 . Let Aff(R) be the
group of affine transforma-
tions of R generated by
translating and scaling. The
space Bn+2(R)/Aff(R) is the
open n-simplex: the left-
most of the n+ 2 particles
in R is translated to 0, and
the rightmost is dilated to 1,
and we have the subset of
Rn where

(1) 0 < x1 < x2 < · · ·
< xn−1 < xn < 1.

The closure of this space is
the n-simplex ∆n whose
codimension k face can be
identified by the set of
points with exactly k equal-
ities of (1).

Notation . If we let I2 denote
the unit interval [0,1] ⊂ R
with fixed particles at the
two endpoints, then the n-
simplex can be viewed as
the closure Bn〈I2〉. We use
bracket notation to display
this visually: Denote the n
particles on the interval I2
as nodes on a path, with the
fixed ones as nodes shaded
black. When the inequalities
of (1) become equalities,
draw brackets around the
nodes representing the set
of equal points on the in-
terval. For example,

corre-
sponds to the configuration

x 1

2x

3x

( a )

2x

x 1

( b )

Figure 1. Labeling of vertices and edges of ∆2 and ∆3.

Figure 2. Associahedron K4. Figure 3. Compatibility of bracketings.

x1

3x

2x

( a ) ( b )

2x

x1

Figure 4. (a) Vertices and edges of K4 labeled. (b) Facets of K5 labeled.
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0 < x1 < x2 = x3 =
x4 < x5 < x6 = 1.

We call such a diagram a
bracketing .  Figure 1
depicts ∆2 and ∆3 along with
a labeling of vertices and
edges.

The associahedron is a
convex polytope originally de-
fined by Stasheff [12] for use
in homotopy theory in con-
nection with associativity
properties of H-spaces. It con-
tinues to appear in a vast
number of mathematical
fields, currently leading to nu-
merous generalizations.

Definition 2. Let A(n) be the
poset of bracketings of a path
with n nodes, ordered such
that a ≺ a′ if a is obtained
from a′ by adding new brack-
ets. The associahedron Kn is
a convex polytope of 
dimension n− 2 whose face
poset is isomorphic to A(n).

Example 3. Figure 2 shows
the two-dimensional K4 as the
pentagon. Each edge of K4 has
one set of brackets, whereas
each vertex has two. Fig-
ure 4(b) depicts K5 with only
the facets (codimension one
faces) labeled here.

Two bracketings are compat-
ible if the brackets of the su-
perimposition do not inter-
sect. Figure 3 shows an
example of two compatible
bracketings, (a) and (b). It fol-
lows from the definition of
Kn that two faces are adjacent
if and only if their bracket-
ings are compatible. Further-
more, the face of intersection
is labeled by the superim-
posed image (c). 

A well-known construction
of the associahedron from the
simplex via truncating hy-
perplanes is given in the ap-
pendix of [13]. A reformula-
tion from the perspective of
configuration spaces is as fol-
lows:

( a )

( b )

p

p

Figure 6. Bijection from B(n) to A(n).

Figure 5. Three types of simplicial products with three particles.

( a ) ( b ) ( c )

Figure 7. Truncation and labeling of ∆2 ×∆1.

Figure 8. Iterated truncations of polytopes resulting in K5.
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Construction 1. Choose the collection C of codi-
mension k faces of the n-simplex Bn〈I2〉 which 
correspond to configurations where k+ 1 adjacent
particles collide. Truncating elements of C in 
increasing order of dimension results in Kn+2 .

Remark. A proof of this construction using face
posets and bracketings in a general context of
graphs is given in [1, §5].

Example 4. Figure 4(a) shows K4 after truncating
the two vertices and of ∆2 given
in Figure 1. Each vertex is now replaced by a facet
given the same labeling as the original vertices.
However, the new vertices introduced by shaving
are labeled with nested parentheses, seen as the 
superimposition of the respective diagrams. Sim-
ilarly, Figure 4(b) displays K5 with facets diagrams
after first shaving two vertices and then three
edges of ∆3. Compare this with Figure 1.

This construction of Kn from the simplex is the
real Fulton-MacPherson [6] compactification of the
configuration space Bn(I2). We denote this as Bn[I2].
Casually speaking, one is not only interested in
when k adjacent particles collide but in resolving
that singularity by ordering the collisions. For ex-
ample, not just conveys that the three
particles have collided but that the first two par-
ticles collided before meeting with the third.

Remark. In the original closed simplex, the num-
ber of equalities (collisions) corresponds to the
codimension of the cell. After the compactification,
the codimension is given by the number of brack-
ets.

Products of Simplices
We extend the notions above to triple products of
simplices. In doing so, we see new combinatorial
constructions of the associahedron. Let S3 denote
a circle with three distinct fixed particles. The
space Bn〈S3〉 is combinatorially equivalent to the
product of three simplices ∆i ×∆j ×∆k , with
i + j + k = n . Indeed, the different types of sim-
plicial products depend on how the n particles are
partitioned among the three regions, each region
defined between two fixed particles. Note that each
configuration of k particles that fall between two
fixed particles gives rise to the k-simplex Bk〈I2〉.
Example 5. There are three possibilities when
n = 3: the simplex ∆3, the prism ∆2 ×∆1, and the
cube ∆1 ×∆1 ×∆1 as presented in Figure 5.

Construction 2. Let B(n) be the poset of bracket-
ings of S3 with n− 2 additional nodes partitioned
into the three regions, where no bracket contains
more than one of the three marked nodes of S3.
Order them such that b ≺ b′ if b is obtained from

b′ by adding new brackets. The face poset A(n) of
Kn is isomorphic to B(n).

Choose any one of the three fixed particles of
S3 and call it p. The particles of S3 − p can be
viewed as n particles on the line. If a bracket does
not contain p, preserve this bracketing on the line;
see Figure 6(a). If a bracket does contain p, choose
the bracket on the line that encloses the comple-
mentary set of particles; see Figure 6(b). This is a
bijection of posets, since a bracket on S3 can con-
tain at most one fixed particle.

Remark . Each partition of the n− 2 nodes in S3

gives rise to a different poset that is isomorphic
to A(n).

We look at the compactification Bn[S3]. Analo-
gous to Construction 1, we specify certain faces of
∆x ×∆y ×∆z to be truncated, namely the codi-
mension k faces where k+ 1 adjacent particles
collide. Indeed, each facet of the polytope Bn[S3]
will correspond to a unique way of adding a bracket
around the n+ 3 particles (n free and 3 fixed) in
S3. The restriction will be that no bracket will in-
clude more than one fixed particle, for this would
imply that the fixed particles inside the bracket
would be identified.

Example 6. Figure 7(a) shows the prism in
Figure 5 with labeling of the top dimensional
faces. Figure 7(b) shows the labeling of the
vertices, along with the new facet obtained by
shaving a vertex (codimension three) where four
adjacent particles collide. Similarly, part (c) is the
labeling of the edges, along with the truncation
of three of them. Notice that the resulting
polytope is combinatorially equivalent to K5.

Construction 3. Choose the collection of
codimension k faces of ∆x ×∆y ×∆z which
correspond to configurations where k+ 1
adjacent particles collide. Truncating elements
of this collection in increasing order of
dimension results in Kx+y+z+2 .

An n-polytope is simple if every k-face is contained
in n− k facets. Since ∆x ×∆y ×∆z is simple, trun-
cating a codimension k face F replaces it with a
product F ×∆k−1. Label the faces of F ×∆k−1 with
superimposition of neighboring faces. Truncating all
elements produces a face poset structure isomor-
phic to B(n). Then use Construction 2.

Corollary 7. Let pk(n) be partitions of n into 
exactly k parts. There are

p3(n− 3) + p2(n− 2) + 1
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different ways of obtaining Kn from iterated trun-
cations of simplicial products.

Indeed, for each triple product of simplices there
exists a method to obtain the associahedron from
iterated truncations of faces. Figure 8 shows K5

from truncations of the three polytopes in Fig-
ure 5. Figure 13 displays the Schlegel diagrams of
four 4-polytopes: the (a) 4-simplex, (b) tetrahedral
prism, (c) product of triangles, and (d) product of
triangle and square. Each is truncated to (combi-
natorial equivalent) K6 associahedra, each with
seven K5 and seven pentagonal prism facets.

The Braid Arrangement
We relate the combinatorial structure of the asso-
ciahedron to a tiling of spaces. This yields an ele-
gant framework for associating Coxeter complexes
to certain moduli spaces. We begin with some back-
ground [2]. The symmetric group Sn+2 is a finite re-
flection group acting on Rn+2 as reflections (ij)
across the hyperplanes {xi = xj}, forming the braid
arrangement of hyperplanes H . The essential sub-
space under the action of Sn+2 is the hyperplane
Vn+1 defined by Σxi = 0. This space is tiled by sim-
plicial cones, defined by n+ 1 inequalities

(2) xi1 ≤ xi2 ≤ · · · ≤ xin+1 ≤ xin+2 .

Let SVn be the sphere in Vn+1. The braid arrange-
ment gives these spaces a cellular decomposition
into (n+ 2)! chambers. Each chamber of SVn is an
n-simplex, defined by (2) where not all inequalities
are equalities.1

Definition 8. A cellulation of a manifold M is
formed by gluing together polytopes using com-
binatorial equivalence of their faces, together with
the decomposition of M into its cells.

Proposition 9. Let Cn〈R〉 denote the closure of
Cn(R)/Aff(R) . Then Cn〈R〉 has the same cellula-
tion as SVn−2.

Proof. Let v = 〈v1, . . . , vn〉 ∈ Cn〈R〉. Define the map
ϕ : Cn+2〈R〉 → SVn−2

such that

ϕ(v) =
∑
vi �ai

|∑vi �ai|
.

It is easy to show that ϕ is a homeomorphism. Since
a codimension k face of both spaces is where ex-
actly k equalities in 〈v1, . . . , vn〉 occur, the cellula-
tion naturally follows.                                          

Indeed, each simplicial chamber of SVn corre-
sponds to an arrangement of n+ 2 particles on an
interval, resulting in Bn〈I2〉. A chamber of PVn, the
projective sphere in Vn+1, identifies two antipodal

chambers of SVn . Figures 9(a) and 9(b) depict the
n = 2 case. Observe that quotienting by translations
of Aff(R) removes the inessential component of the
arrangement, scaling (by a factor of s ∈ R+) pertains
to intersecting Vn with the sphere, and dilating
(by a factor of s ∈ R∗) results in PVn. 

The collection of hyperplanes {xi = 0 | i =
1, . . . , n} of Rn generates the coordinate arrange-
ment. Let M be a manifold and D ⊂M a union of
codimension one submanifolds which dissects M
into convex polytopes. A crossing (of D) in M is nor-
mal if it is locally isomorphic to a coordinate
arrangement. If every crossing is normal, then M
is right angled. An operation which transforms
any crossing into a normal crossing involves the
algebro-geometric concept of a blowup.

Definition 10. For a linear subspace X of a vector
space Y, we blow up PY along PX by removing PX ,
replacing it with the sphere bundle associated to
the normal bundle of PX ⊂ PY , and then projecti-
fying the bundle.

Blowing up a subspace of a cell complex trun-
cates faces of polytopes adjacent to the subspace.
As mentioned above with truncations, a general col-
lection of blowups is usually noncommutative in
nature; in other words, the order in which spaces
are blown up is important. For a given arrangement,
De Concini and Procesi [4] establish the existence
(and uniqueness) of a minimal building set, a col-
lection of subspaces for which blowups commute
for a given dimension and for which the resulting
space is right angled.

For an arrangement of hyperplanes, the method
developed by De Concini and Procesi compactifies
their complements by iterated blowups of the min-
imal building set. In the case of the arrangement
Xn − Cn(X) , their procedure yields the Fulton-
MacPherson compactification of Cn(X). We can view
PVn as a configuration space, where the codimen-
sion k elements of the minimal building set are the
subspaces

(3) xi1 = xi2 = · · · = xik+1

of PVn where k+ 1 adjacent particles collide. Let
PVn# denote the space PVn after iterated blowups
along elements of the minimal building set in in-
creasing order of dimension.

Theorem 11. [8] PVn# is tiled by 12 (n+ 2)! copies of
associahedra Kn+2 .

Indeed, this is natural, since the blowup of all codi-
mension k subspaces (3) truncates the collection
C of codimension k faces of the simplex defined
in Construction 1. Figure 9(d) shows PV 2

# tiled by
12 associahedra K4.

A combinatorial construction of PVn# is pre-
sented in [5] by gluing faces of the 12 (n+ 2)! copies
of associahedra. Associate to each Kn+2 a path with

1The point where all equalities exist is at the cone point,
which is not contained in the sphere.
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n+ 2 labeled nodes, with two such labelings equiv-
alent up to reflection. Thus each face of an asso-
ciahedron is identified with a labeled bracketing.
A twist along a bracket reflects all the elements
within the bracket (both labeled nodes and brack-
ets).

Theorem 12. [5] Two bracketings of a path with
n+ 2 labeled nodes, corresponding to faces of Kn+2 ,
are identified in PVn# if there exists a sequence of
twists along brackets from one diagram to another.

Each element of the minimal building set cor-
responds to subspaces such as (3), where blowing
up the subspace seeks to resolve the order in which
collisions occur at such intersections. Crossing
from a chamber through the blown-up cell into its
antipodal one in the arrangement (from projecti-
fying the bundle) corresponds to reflecting the el-
ements {xi1 , xi2 , . . . , xik+1} in the ordering. Blowing
up a minimal cell identifies faces across the an-
tipodal chambers, with twisting along diagonals
mimicking gluing antipodal faces after blowups.

Figure 10 shows a local tiling of PV 2
# by K4, with

edges (in pairs) and vertices (in fours) being iden-
tified after twists. Notice that after twisting a
bracket containing a fixed node, the new right- (or
left-)most node becomes fixed by the action of
Aff(R) .

Remark . This immediately shows PVn# to be right-
angled: a codimension k face of an associahedron
of PVn# has k brackets, with each twist along a
bracket moving to an adjacent chamber. There are
2k such possible combinations of twists, giving a
normal crossing at each face.

Kapranov’s Theorem
We start with properties of the manifold before
compactification.

Proposition 13. Let PVnH denote PVn minus the
braid arrangement H . Then Mn+3

0 (R) is isomorphic
to PVnH .

Proof. Let (x1, . . . , xn+3) ∈ Cn+3(RP1) . Since a pro-
jective automorphism of P1 is uniquely determined
by the images of three points, we can take
xn+1, xn+2, xn+3 to 0,1,∞, respectively. Therefore,

Mn+3
0 (R) = {(x1, . . . , xn) ∈ (RP1)n | xi ≠ xj , xi ≠ 0,1,∞}

= {(x1, . . . , xn) ∈ (R1)n | xi ≠ xj , xi ≠ 0,1}
= {(x1, . . . , xn) ∈ Rn | xi ≠ xj , xi ≠ 0,1}.

We construct a space isomorphic to PVnH : intersect
Cn+2(R) with the hyperplane {xn+2 = 0} instead of
the more symmetric hyperplane {Σxi = 0} to ob-
tain

{(x1, . . . , xn+1) ∈ Rn+1 | xi ≠ xj, xi ≠ 0}.

We projectify by choosing the last coordinate to be
one, resulting in

{(x1, . . . , xn) ∈ Rn | xi ≠ xj, xi ≠ 0,1}.

This is isomorphic to PVnH , and the equivalence is
shown.                                                                  

Since Mn+3
0 (R) is isomorphic to the n-torus

(RP1)n minus the hyperplanes {xi = xj, xi =
0,1,∞} , it follows that

Mn+3
0 (R) = Cn(S3)

with the three fixed points identified to 0,1,∞. As
PVn is tiled by simplices, the closure of Mn+3

0 (R)
is tiled by triple product of simplices, namely
Bn〈S3〉 . The compactification Mn+3

0 (R) is obtained
by iterated blowups of Mn+3

0 (R) along nonnormal
crossings in increasing order of dimension [13,
§3]. The codimension k subspaces

xi1 = xi2 = · · · = xik+1

and
xi1 = xi2 = · · · = xik = f ,

where f ∈ {0,1,∞}, form the minimal building set,
configurations where k+ 1 adjacent particles col-
lide on S3. Similar to PVn# , the blowup of all mini-
mal subspaces truncates the chambers into asso-
ciahedra as defined by Construction 3.

Although the closures of Mn+3
0 (R) and PVnH are

clearly different (the torus Tn and RPn respec-
tively), Kapranov [8, §4] remarkably noticed that
their compactifications are homeomorphic.2 We
give an alternate proof of his theorem.

Theorem 14. Mn+3
0 (R) is homeomorphic to PVn# .

Moreover, they have identical cellulation.

Proof. Both Mn+3
0 (R) and PVn# have the same num-

ber of chambers by Proposition 13. Each tile of the
closure of Mn+3

0 (R) corresponds to a triple prod-
uct of simplices. Since the building set of Mn+3

0 (R)
corresponds to the faces of Bn〈S3〉 to be truncated
in Construction 3, Mn+3

0 (R) is tiled by associahe-
dra Kn+2, more precisely by Bn[S3]. We still need to
show this tiling is identical to that of PVn# .

As in Theorem 12, crossing a chamber through
the blown-up cell into its antipodal one in the
arrangement corresponds to reflecting the ele-
ments within a bracket of Bn[S3]. This is encapsu-
lated by the twisting operation on S3, similar to PVn# .
Finally, Construction 2 gives us the isomorphism
of cellulations between Mn+3

0 (R) and PVn# .          

Example 15. Figure 9(c) shows PV 2
H tiled by open

simplices and Figure 11(a) shows M5
0(R) , the

2Kapranov actually proves a stronger result for the com-
plex analog of the statement using Chow quotients of
Grassmanians [9].
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2-torus minus the hyperplanes {x1 = x2,
xi = 0,1,∞} tiled by open simplices and squares.
After minimal blowups, the resulting (homeomor-
phic) manifolds are #5RP2 in Figure 9(d) and
T 2 #3RP2 in Figure 11(b), both tiled by 12 associ-
ahedra K4.

Example 16. Figure 12(a) shows RP3 along with five
vertices (shaded orange) and ten lines (shaded
blue) blown up, resulting in PV 3

# . All chambers
have been truncated from the simplex to K5. Fig-
ure 12(b) is the blowup of the 3-torus into M6

0(R)
along three vertices (orange) and ten lines (blue).
Notice the appearance of the associahedra as in Fig-
ure 8. The resulting manifolds are homeomorphic,
tiled by 60 associahedra. The lower-dimensional
moduli spaces PV 2

# and M5
0(R) can be seen in the

figures due to a product structure that is inherent
in these spaces.

Remark. The iterated blowup of the minimal build-
ing set (that is, the Fulton-MacPherson compactifi-
cation) is the key to this equivalence. Iterated blowups
along the maximal building set (also known as the
polydiagonal compactification of Ulyanov)—the 
collection of all crossings, not just the nonnormal
ones—yield different manifolds for PVnH and
Mn+3

0 (R) . For example, the blowup of PV 2
H is 

homeomorphic to #8RP2 tiled by 12 hexagons 
(permutohedra), whereas M5

0(R) is homeomorphic
to T 2 #9RP2 tiled by 6 hexagons and 6 octagons.

Conclusion
Although the motivating ideas of Mn

0 are now clas-
sical, the real analog is starting to develop richly.
We have shown Mn

0(R) to be intrinsically related to
the braid arrangement, the Coxeter arrangement of
type An . By looking at other Coxeter groups, an en-
tire array of compactified configuration spaces has
recently been studied, generalizing Mn

0(R) from
another perspective [1]. Davis et al. [3, §5] have
shown these novel moduli spaces to be aspherical,
where all the homotopy properties are completely
encapsulated in their fundamental groups. Fur-
thermore, both Mn

0(R) and PVn# have underlying op-
erad structures: the properties of Mn

0(R) are com-
patible with the operad of planar rooted trees [10],
whereas the underlying structure for PVn# is the mo-
saic operad of hyperbolic polygons [5].

This area is highly motivated by other fields,
such as string theory, combinatorics of polytopes,
representation theory, and others. We think that
Mn

0(R) will play a deeper role with future devel-
opments in mathematical physics. In his Esquisse,
Grothendieck referred to M5

0 as ‘un petit joyau’. By
looking at the real version of these spaces, we see
structure determined by combinatorial tilings, 
jewels in their own right.

Acknowledgments. We thank Jim Stasheff for con-
tinued encouragement and Mike Carr, Ruth Char-
ney, and Mike Davis for helpful discussions.
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Figure 9. (a) SV 2, (b) PV 2 , (c) PV 2
H , and (d) PV 2

# .

Figure 11. M5
0(R) before and after compactification.Figure 10. A local tiling of PV 2

# displaying twisting.

1 2 3 41 2 3 4

1 23 4

1 234

1 2 34

1 2 3 41 234

1 234

1 23 4

1 2 3 4

1 23 4

1 234

1 2 34

1 2 34

1 2 341 23 4

Figure 12. Iterated blowups of (a) RP3 to PV 3
# and (b) T 3 to M6

0(R) are both homeomorphic with a tiling by 60
associahedra.
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Figure 13. Schlegel diagrams of the iterated truncations of 4-polytopes resulting in K6.


