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Introduction
Because of the finite speed of light, we see the
Moon as it was roughly a second ago, the Sun as it
was eight minutes ago, other nearby stars as they
were a few decades ago, the center of our Milky Way
Galaxy as it was 30,000 years ago, nearby galaxies
as they were millions of years ago, and distant
galaxies as they were billions of years ago. If we look
still deeper into space, we see all the way back to
the final stages of the big bang itself, when the
whole universe was filled with a blazing hot plasma
similar to the outer layers of the modern Sun. In
principle we see this plasma in all directions; it fills
the entire background of the sky. So why don’t we
notice it when we look up at the night sky? The
catch is that the light from it—originally visible or
infrared—over the course of its 13.7 billion-year
voyage from the plasma to us has gotten stretched
out as part of the overall expansion of the universe.
Specifically, the universe has expanded by a factor
of about 1100 from then till now, so what was
once a warm reddish glow with a wavelength
around 10,000 angstroms is now a bath of mi-
crowaves with a wavelength of about a millimeter.
So we cannot see the plasma with our eyes, but we
can see it with a microwave antenna.

If our eyes were sensitive to microwaves as well
as to visible light, a close-up view of the night sky
might look something like Figure 1. In the fore-
ground we see other galaxies as they were a few
billion years ago. In the background we see the 

omnipresent plasma as it was 380,000 years after
the big bang, a mere three one-thousandths of one
percent of the universe’s present age of 13.7 bil-
lion years. The plasma holds clues to the universe’s
birth, evolution, geometry, and topology. To har-
vest these clues, NASA launched the Wilkinson 
Microwave Anisotropy Probe (WMAP) on 30 June
2001. On 10 August 2001 WMAP reached its orbit
about the so-called second Lagrange point, where
the combined gravity of the Sun and the Earth are
just right to keep the satellite orbiting the Sun in
synchronization with the Earth, and WMAP began
its four years of observations (Figure 2). The ob-
served radiation from the plasma, known as the
Cosmic Microwave Background (CMB) radiation, 
is extremely uniform across the sky. Nevertheless,
it exhibits small temperature fluctuations on 
the order of 1 part in 105. These CMB temperature
fluctuations result from fluctuations in the density
(not temperature!) of the primordial plasma: pho-
tons arriving from denser regions do a little extra
work against gravity and arrive slightly cooler,
while photons arriving from less dense regions do
a little less work against gravity and arrive slightly
warmer. So in effect temperature fluctuations on
the microwave sky reveal density fluctuations in the
early universe.

Cosmologists’ current standard model posits
an essentially infinite Euclidean space created by
inflation and containing density fluctuations on 
all scales. On small scales WMAP observed these
fluctuations as predicted. However, on scales 
larger than about 60◦ degrees across the sky, the
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fluctuations all but disappear,1 leaving cosmolo-
gists with the Mystery of the Missing Fluctuations.

Finite Universe
One possible explanation for the missing large-
scale fluctuations is that the universe is simply
not big enough to support them. To take a simple
1-dimensional analogy, an infinite line supports
waves of all sizes, while the circumference of a unit
circle supports no wavelength longer than 2π. 
Similarly, if the real universe is a closed 3-manifold,
it can support no waves longer than its own “cir-
cumference”.

What 3-manifolds shall we consider? Observa-
tional evidence implies the observable universe is
homogeneous and isotropic to a precision of one
part in 104, so consider manifolds that locally look
like the 3-sphere S3, Euclidean space E3, or hyper-
bolic space H3. To construct a finite universe, take
the quotient X/Γ of the simply connected space
X = S3, E3, or H3 under the action of a discrete
fixed point free group Γ of isometries.

Observational data suggest the observable uni-
verse either is flat or has a small curvature that is
more likely positive than negative. More precisely,
on a scale where Ω < 1 indicates a hyperbolic uni-
verse, Ω = 1 indicates a flat universe, and Ω > 1
indicates a spherical universe, analysis of the WMAP
data yields Ω = 1.02± 0.02 at the 1σ level [2]. The

parameter Ω measures the average mass-energy
density of space, which by general relativity com-
pletely determines the spatial curvature, with low
density yielding a hyperbolic universe and high
density yielding a spherical universe. By definition
Ω is the ratio of the actual density to the critical
density that a flat universe would require.

The huge sphere on which we observe the pri-
mordial plasma is called the horizon sphere, and
its radius in the modern universe is our horizon 
radius. If we live in a finite universe X/Γ , then our
injectivity radius is the radius of the smallest Earth-
centered sphere that “reaches all the way around
the universe” and intersects itself. Equivalently,
the injectivity radius is the radius of the largest
Earth-centered sphere whose interior is embed-
ded. Twice the injectivity radius is thus the mini-
mal circumference of the universe, starting from
Earth. If our horizon radius exceeds our injectiv-
ity radius, then we can trace two different lines of
sight to the same distant region of space, meaning
that in principle we see multiple images of the
same astronomical sources (galaxies, quasars,
plasma,…) in different parts of the sky, making de-
tection of the universe’s topology vastly easier.

A flat manifold E3/Γ allows no a priori rela-
tionship between the horizon radius and the 
injectivity radius, because the latter is essentially
arbitrary. Given any proposed Euclidean group Γ,
we may easily stretch or shrink its translational
components, via a similarity, to obtain any pre-
scribed injectivity radius. We therefore have no
reason to expect the injectivity radius to be com-
parable to our horizon radius. Thus successfully
detecting a flat topology E3/Γ would require a 
huge amount of luck. In spite of the long a priori
odds against it, the possibility of a finite flat uni-
verse E3/Γ continues to receive a fair amount of 
attention, because WMAP’s Ω = 1.02± 0.02 result 

1Spergel et al. report the missing fluctuations in one of a
series of papers released along with the first-year WMAP
data [1]. Their Figure 16 compares predictions to obser-
vations, showing, in their words, “the lack of any corre-
lated signal on angular scales greater than 60 degrees.”
More conservative observers point out that the signal is
not totally missing, but merely very weak. Spergel et al.
estimate the probability that such a weak signal could arise
by chance to be either 0.0015 or 0.003, depending on
which of their best-fit flat space models one compares to.

Figure 1. The primordial plasma provides a background for the whole sky. However, we see it not in the visible
spectrum but in microwaves. The left panel shows a portion of the Hubble Deep Field image as we see it with our
eyes. The right panel simulates what we might see if our eyes were sensitive to microwaves as well as to visible
light.
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Figure 2. A million miles from
Earth, the Wilkinson

Microwave Anisotropy Probe
observes deep space from
near the second Lagrange

point, L2. In the (rotating) Sun-
Earth coordinate system, the

Lagrange points are the critical
points of the effective

gravitational potential. The
second Lagrange point is a

saddle point, unstable in the
radial direction but stable in

both the horizontal and
vertical tangential directions.

The satellite traces a gentle
orbit about L2 in the vertical

plane, with a slight nudge
every few months to keep it

from drifting towards or away
from the Sun. The backward-

facing solar panels support a large protective disk blocking microwave interference from the Sun, Earth, and
Moon, giving the outward-facing microwave receivers an unobstructed view of deep space.
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comfortably includes it and because the Mystery
of the Missing Fluctuations still begs for an expla-
nation.

Even though the 1σ estimate Ω = 1.02± 0.02
leaves plenty of room for a hyperbolic universe, a
finite hyperbolic topology H3/Γ would be difficult
to detect. As the complexity of a hyperbolic group
Γ increases, the volume of its quotient H3/Γ in-
creases as well, in contrast to spherical groups Γ
whose quotient spaces S3/Γ get smaller as the
group gets larger. Moreover, even in the smallest
hyperbolic manifolds, the injectivity radius Rinj is
typically larger than the horizon radius Rhor. As-
trophysicists know our horizon radius to be about
46 billion light-years.2 Geometers, however, want
to know our horizon radius not in light-years but
in units of the curvature radius Rcurv. In other
words, geometers want to know the dimension-
less ratio Rhor/Rcurv , which tells the horizon radius
in radians or “the usual hyperbolic units”. Even
though the horizon radius Rhor in light-years is
known, the curvature radius Rcurv depends strongly
on Ω. If Ω = 0.98, then the curvature radius Rcurv
is about 98 billion light-years, the geometer’s hori-
zon radius works out to Rhor/Rcurv = 0.47, and
randomly placed observers in the ten smallest

known hyperbolic topologies H3/Γ would have
roughly a 50-50 chance of living at a point where
their horizon radius exceeds the injectivity radius.
However, if Ω = 0.99, then the curvature radius
Rcurv increases to about 139 billion light-years, the
dimensionless horizon radius drops to
Rhor/Rcurv = 0.33, and a randomly placed observer
has only about a 10 percent chance of living at a
point where the horizon radius exceeds the injec-
tivity radius. As Ω approaches 1, the curvature ra-
dius goes to infinity, and the chances of detecting
the nontrivial topology go to zero.

More promising from a purely topological point
of view is the possibility of a spherical universe
S3/Γ. The curvature radius Rcurv, which here is sim-
ply the radius in meters of the 3-sphere S3 from
which the universe S3/Γ is constructed, comes out
to 98 billion light-years when Ω takes the observed
value of 1.02. Thus the astrophysicist’s horizon 
radius Rhor = 46 billion light-years translates to
the geometer’s horizon radius Rhor/Rcurv = 0.47 
radians. In other words, at the nominal value 
of Ω = 1.02, our horizon sphere’s radius on the 
3-sphere is 0.47 radians, meaning that we are see-
ing a modest yet nontrivial portion of the 3-sphere
(Figure 3). Luckily, a horizon radius of 0.47 suffices
to see the topology S3/Γ for many of the simplest
and most natural groups Γ, to be discussed below.
Moreover, for more complicated groups Γ, the quo-
tient S3/Γ gets smaller, making the topology even
easier to detect. This potential detectability, along
with WMAP’s observation of Ω ≈ 1.02, has fuelled
considerable interest in the possibility of a spher-
ical universe S3/Γ.

Whether we consider hyperbolic, flat, or spher-
ical manifolds, the question remains: which spaces
best account for the Mystery of the Missing 

2Readers may wonder why the horizon has a 46 billion
light-year radius when the universe is only 13.7 billion years
old. The expanding universe provides the answer. The
photons now reaching us from our horizon began their
journey when the universe was 1100 times smaller than
it is today. Thus the first light-year of space that a given
photon traversed has since expanded to roughly 1100
light-years of space in the modern universe. In other
words, the present day horizon radius is 46 billion light-
years, but that same volume of space was much smaller,
and more easily traversable, in the distant past.
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Fluctuations? Surprisingly, not all small-volume
universes suppress the large-scale fluctuations. As
we will see below, some small-volume universes
even elevate them!

Modes
A sustained musical tone may be expressed as the
sum of a fundamental, a second harmonic, a third
harmonic, and so on—in effect, its Fourier de-
composition. This Fourier approach provides great
insight into musical tones; for example, weak sec-
ond and fourth harmonics characterize the sound
of a clarinet. Similarly, any continuously defined
field in the physical universe—for example, the
density distribution of the primordial plasma—

may be expressed as a sum of harmonics of 
3-dimensional space. Technically these harmonics
are the eigenmodes of the Laplace operator; intu-
itively they are the vibrational modes of the 
space, analogous to the vibrational modes of a 
2-dimensional drumhead, so henceforth we will
simply call them the modes of the space.

Just as the relative strengths of a clarinet’s har-
monics, its spectrum, characterize its sound, the
relative strengths of the universe’s modes charac-
terize its physics. That is, just as the pressure and
density fluctuations within the clarinet must con-
form to the clarinet’s size and shape, the pressure
and density fluctuations in the primordial plasma
must conform to the size and shape of the universe.
When we look out into space at our horizon, we see
these density fluctuations. Of course we do not see
the full 3-dimensional modes, but only their in-
tersection with the 2-dimensional horizon sphere.
Nevertheless, it is straightforward to calculate how
a 3-manifold’s modes restrict to 2-dimensional
modes of the horizon sphere, ultimately allowing
direct comparison to observations. Various sources
of noise and other physical effects complicate the
process but seem not to obscure the underlying
topological and geometrical signatures. The
strengths of the modes we observe on our 
2-dimensional horizon sphere are called the CMB
power spectrum (Figure 4). The CMB power spec-
trum’s weak low-order terms conveniently quantify
the Mystery of the Missing Large-Scale Fluctua-
tions, just as the lack of low tones in a piccolo’s
spectrum reflect its small size.

The modes of a multiply connected space X/Γ ,
with X = S3 , E3, or H3 as before, lift in the obvious
way to Γ-periodic modes of the simply connected
space X. Conversely, each Γ-periodic mode of X

WMAP data
Smoothed WMAP data
Euclidean best fit
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Figure 3. At the nominal observed density
Ω = 1.02 the universe is positively curved
with radius 98 billion light-years. Our
horizon sphere has radius 46 billion light-
years, which works out to 46/98 = 0.47
radians on the 3-sphere. Thus we see a
modest but nontrivial portion of the
3-sphere.

Figure 4. Just as a musical tone splits into a sum of ordinary harmonics, the temperature
fluctuations on our horizon sphere split into a sum of spherical harmonics. The resulting CMB
power spectrum, shown here, tells much about the birth, evolution, geometry, and topology of the
universe. The peaks in the spectrum fall more or less where expected, confirming physicists’
theoretical understanding of the primordial plasma. The surprise lay in the weak lowest-order
terms, which hint at a finite space.
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Figure 5. If the speed of light were infinite,
inhabitants of the binary tetrahedral space

S3/T∗ would see 24 images of every
cosmological object (upper left); like atoms in
a crystal the images repeat along a tiling of S3

by 24 copies a fundamental octahedral cell. In
the binary octahedral space S3/O∗ the images

repeat along a tiling by 48 truncated cubes
(upper right), and in the binary icosahedral
space S3/I∗, better known as the Poincaré

dodecahedral space, the images repeat along
a tiling by 120 octahedra (lower right).

Because these still images provide only a
weak understanding of the tiling, the reader is
encouraged to fly around in them in real time

using the free simulator available at
http://www.geometrygames.org/

CurvedSpaces.

Figure 6. If our horizon radius exceeds our injectivity radius, the horizon sphere wraps all the way
around the universe and intersects itself. Viewed in the universal cover, repeating images of the hori-

zon sphere intersect. Observationally, we see the same circle of intersection on opposite
sides of the sky.

http://www.geometrygames.org/CurvedSpaces
http://www.geometrygames.org/CurvedSpaces
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projects down to a mode of the quotient X/Γ . Thus,
even though we think of the modes conceptually
as modes of X/Γ , in practice we invariably repre-
sent them as Γ-periodic modes of X.

In contrast to the irregular, hard-to-understand
modes of hyperbolic space H3, the modes of 
spherical space S3 are regular and predictable. 
As a simple point of departure, consider the modes,
or harmonics, of a circle S1. Traditionally one writes
them as {{cosθ, sinθ}, {cos 2θ, sin 2θ}, . . . } . Yet
if we embed the circle as the set x2 + y2 = 1 in the
xy-plane, we see that the transcendental functions
cosθ and sinθ are completely equivalent to the 
linear functions x and y . Similarly, cos 2θ and
sin 2θ become the quadratic polynomials x2 − y2

and 2xy , and so on. In general, cosmθ and sinmθ
become mth -degree harmonic polynomials in x
and y. By definition a polynomial p(x1, . . . , xn) is
harmonic if and only if it satisfies Laplace’s 
equation ∇2p ≡ ∂2p

∂x2
1
+ · · · + ∂2p

∂x2
n
= 0.

In perfect analogy to the modes of the circle S1,
the modes of the 2-sphere S2 are precisely the 
homogeneous harmonic polynomials in x, y, and
z , and the modes of the 3-sphere S3 are precisely
the homogeneous harmonic polynomials in x, y, z ,
and w . The only difference lies in the number of
modes. On the circle the space of mth -degree 
harmonic polynomials always has dimension 2, 
independent of m. On the 2-sphere the space of 
"th-degree harmonic polynomials has dimension
2"+ 1, and on the 3-sphere the space of kth-degree
harmonic polynomials has dimension (k+ 1)2.

Cosmologists model the physics of a multicon-
nected spherical universe S3/Γ using the Γ-periodic
modes of S3. For each degree k, the Γ-periodic modes
form a subspace of the full (k+ 1)2-dimensional
mode space of S3. Finding an orthonormal basis for
that subspace requires, in principle, nothing more
than a simple exercise in sophomore-level linear 
algebra. In practice the linear algebra works great
for single-digit values of k but quickly bogs down
as the size of the (k+ 1)2 -dimensional function 
space grows. Even simple cubic-time numerical 
matrix operations require O(k6) time on (k+ 1)2-by-
(k+ 1)2 matrices, and efforts to work directly with
the polynomials slow down even more dramatically.
Adding insult to injury, accumulating round-off 
errors in floating point computations often render
unusable the results of those computations that can
be carried out within a reasonable time.

Thus for the past two years the main bottleneck
for understanding and simulating the physics of
multiconnected spaces X/Γ has been the efficient
and accurate computation of the modes, the 
underlying local physics being already well 
understood. News Flash: Jesper Gundermann of 
the Danish Environmental Protection Agency has
overcome the bottleneck and extended the CMB

power spectra for various spherical spaces S3/Γ
from "max = 4 out to "max = 15. As this article goes
to press, he is completing a rigorous statistical
analysis, with results expected soon. His tentative
results show an excellent fit.

Spherical Spaces
To recognize a spherical universe S3/Γ by its im-
print on the CMB power spectrum, we must first
know which such spaces are possible. Fortunately
3-dimensional spherical spaces were classified by
1932 [3]. The possible groups Γ turn out to bear a
close relationship to the symmetry groups of an 
ordinary 2-sphere! The easiest way to see the tight
relationship between the symmetries of a 2-sphere
and the symmetries of a 3-sphere is via the quater-
nions. Recall that the quaternions provide a non-
commutative algebraic structure on R4 analogous
to the commutative algebraic structure that the
complex numbers provide on R2. Specifically the
quaternions are spanned by {1, i, j,k} subject to the
rules i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i
and ki = −ik = j . The length of a generic quater-
nion a1+ bi + cj+ dk is just its obvious Euclidean 
length 

√
a2 + b2 + c2 + d2 . Just as the complex 

numbers restrict to a multiplicative group on the
unit circle S1, the quaternions restrict to a multi-
plicative group on the unit 3-sphere S3.

Visualize the 3-sphere S3 as the multiplicative
group of unit length quaternions. A given quater-
nion q ∈ S3 can act on S3 in two ways: by multi-
plication and by conjugation. When q acts by 
multiplication, taking each point x ∈ S3 to qx , 
the result is a fixed-point free rotation of S3. Any
finite group Γ of such fixed-point free rotations 
defines a spherical space S3/Γ.

When q acts by conjugation, taking each point
x ∈ S3 to qxq−1, the result is a rotation with fixed
points. Indeed, the point 1 ∈ S3 is fixed by all such
rotations, because q1q−1 = 1 for all q, so in effect
conjugation by q defines a rotation of the equato-
rial 2-sphere, which is the intersection of S3 with
the 3-dimensional subspace of purely imaginary
quaternions bi + cj+ dk .

We now have a way to transfer symmetries from
the 2-sphere to the 3-sphere. Start with a finite group
of symmetries of S2, for example, the tetrahedral
group T consisting of the twelve orientation-
preserving symmetries of a regular tetrahedron. 
Represent T as a set G of quaternions acting by 
conjugation. Now let the same set G act on S3 by mul-
tiplication. Voilá! There is our group Γ of fixed-point
free symmetries of the 3-sphere. The only catch is
that each of the original symmetries of S2 is realized
by two different quaternions, q and −q, so the group
G has twice as many elements as the original group.
In the present example, with the original group 
being the tetrahedral group T, the final group Γ is 
the binary tetrahedral groupT∗, of order 24.
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The finite symmetry groups of S2 are well known:
• The cyclic groups Zn of order n, generated by a

rotation through an angle 2π/n about some
axis.

• The dihedral groupsDm of order 2m , generated
by a rotation through an angle 2π/m about
some axis as well as a half turn about some 
perpendicular axis.

• The tetrahedral group T of order 12 consisting
of all orientation-preserving symmetries of a 
regular tetrahedron.

• The octahedral group O of order 24 consisting
of all orientation-preserving symmetries of a 
regular octahedron.

• The icosahedral group I of order 60 consisting
of all orientation-preserving symmetries of a 
regular icosahedron.

Transferring those groups from S2 to S3, as ex-
plained above, yields the single action symmetry
groups of S3:
• The cyclic groups Zn of order n.
• The binary dihedral groups D∗

m of order 4m ,
m ≥ 2.

• The binary tetrahedral group T∗ of order 24.
• The binary octahedral group O∗ of order 48.
• The binary icosahedral group I∗ of order 120.

The corresponding quotients S3/Γ are the single 
action spaces (Figure 5). To fully understand these
spaces, the reader is encouraged to fly around in
them using the free simulator available at
www.geometrygames.org/CurvedSpaces.

The full classification of finite fixed-point free
symmetry groups of S3 is more complicated, but
only slightly. Geometrically, the mapping x→ qx
acts as a right-handed corkscrew motion. If we
switch to right multiplication x→ xq , we get left-
handed corkscrew motions instead of right-handed
ones, and the quotient space S3/Γ becomes the
mirror image of what it had been. (To understand
why changing qx to xq reverses the chirality of the
corkscrew motion, multiply out the two products

(cosθ1+ sinθi)(a1+ bi + cj+ dk)

and

(a1+ bi + cj+ dk)(cosθ1+ sinθi)

and observe the results.) Two groups, Γ and Γ ′,
may act on S3 simultaneously, one by left multi-
plication and the other by right multiplication. The
resulting quotient space is called a double action
space (for details see [4]). So far cosmologists have
largely neglected double action spaces and the 
related linked action spaces. One reason for the
neglect is that they are more complicated and often
require unrealistically large groups Γ. A more 
fundamental difficulty, however, is that a double
action space is globally inhomogeneous, meaning
its geometry and therefore the expected CMB power
spectrum look different to observers sitting at 

different locations within the same space, while a
single action space is globally homogeneous, mean-
ing its geometry and the expected CMB fluctuations
look the same to all observers. Obviously the 
single action spaces are far easier to simulate, 
because a single simulation suffices for all 
observers.

Encouraging News

Resolving the Mystery of the Missing Fluctuations
turned out to be harder than expected. The prin-
ciple that a small universe cannot support broad
fluctuations was clear enough; the challenge lay in
accounting for the particular CMB power spectrum
that WMAP observed. In reality the " = 2 term,
corresponding to a quadratic polynomial and gen-
erally called the quadrupole, was anomalously low
(at the 1-in-100 level), while the " = 3 term, corre-
sponding to a cubic polynomial and generally called 
the octopole, was somewhat low as well (at the 1-
in-5 level). These 1-in-500 odds of weak low-" fluc-
tuations beg for an explanation, even though sim-
ple random chance cannot be excluded.

The reader may wonder what became of the lower-
" terms. The " = 0 constant term is simply the aver-
age CMB temperature. The " = 1 linear term, the di-
pole, is swamped by the far stronger dipole induced
by the solar system’s 300 km/sec motion relative to
the CMB and is therefore unavailable.

Returning to the mysteriously low quadrupole
and octopole, the simplest possible explanation, a
flat 3-torus universe made by identifying opposite
faces of a cubical block of space, failed to account
for the observed power spectrum. A sufficiently
small cubic 3-torus can of course suppress the
quadrupole (" = 2) as strongly as desired, but not
without suppressing other low-order modes
(" = 3,4,5) along with it, contrary to observations.
Making the 3-torus from a more general paral-
lelepiped offers greater flexibility. The full 
6-parameter space of parallelepipeds has yet to 
be fully explored, but initial investigations show 
that while noncubic rectangular 3-tori suppress
the low-" portion of the spectrum, they suppress
the high-" portion even more, leaving the 
low-" portion relatively elevated [5], contrary to 
observation.

Among the spherical topologies, the lens spaces
were considered first. A lens space L(p, q) is the
quotient S3/Zp of S3 under the action of the cyclic
group generated by
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


cos 2π
p − sin 2π

p 0 0

sin 2π
p cos 2π

p 0 0

0 0 cos 2πq
p − sin 2πq

p

0 0 sin 2πq
p cos 2πq

p




.

Because the group acts in only one direction, the
quotient behaves roughly like a rectangular 3-torus
that is narrow in one direction but wide in two 
others. Like a noncubic 3-torus, a lens space L(p, q)
suppresses the high-" portion of the spectrum
more heavily than the low-" portion, in effect 
elevating the quadrupole and contradicting 
observations for all but the smallest choices of p.

The failures of both the rectangular 3-tori and the
lens spaces to account for the low quadrupole com-
bined to teach a useful lesson: a low quadrupole
requires a well-proportioned space, with all 
dimensions of similar magnitude. Only in a well-
proportioned space is the quadrupole suppressed
more heavily than the rest of the power spectrum.
This insight, combined with WMAP’s hints of slight
positive curvature, led researchers to consider the
binary polyhedral spaces S3/T∗, S3/O∗, and S3/I∗,
all of which have both positive curvature and well-
proportioned fundamental domains, namely a 
regular octahedron, a truncated cube, and a regu-
lar dodecahedron, respectively, as shown in 
Figure 5.

Of the binary polyhedral spaces, S3/I∗ seemed
the most promising candidate, for the simple geo-
metrical reason that its fundamental domain’s 
inradius of π/10 ≈ 0.31 fits easily within the 
horizon radius Rhor/Rcurv = 0.47 corresponding
to Ω = 1.02. Topologists know S3/I∗ as the 
Poincaré dodecahedral space. Curiously, Poincaré
himself never knew his namesake manifold could
be constructed from a dodecahedron. Rather, he
discovered the manifold in a purely topological
context  as the first example of a multiply connected
homology sphere. A quarter century later Weber
and Seifert glued opposite faces of a dodecahedron
and proved that the resulting manifold was home-
omorphic to Poincaré’s homology sphere.

Lacking explicit formulas for the modes of the bi-
nary polyhedral spaces, the author and his 
colleagues computed the modes numerically. 
Unfortunately, in the case of the Poincaré dodeca-
hedral space S3/I∗, accumulating numerical errors
limited the computation to the modes k ≤ 24 of the
3-dimensional space, in turn limiting the reliable
portion of the predicted CMB power spectrum 
to " = 2,3,4 . Nevertheless, the results were 
delightful: the predicted quadrupole (" = 2) and 
octopole (" = 3) matched observations [6]! (The " = 4
term was used to set the overall normalization.)

Moreover, the best fit occurred in the range
1.01 < Ω < 1.02, comfortably within WMAP’s 
observation of Ω = 1.02± 0.02.

Several factors made this result especially ele-
gant. First and foremost was the near total lack of
free parameters. Unlike the 3-torus, which can be
made from an arbitrary parallelepiped (six degrees
of freedom), the dodecahedral space can be made
only from a perfectly regular dodecahedron (zero
degrees of freedom). Second, the dodecahedral
space is globally homogeneous. Unlike in a typical
3-manifold where the observer’s position affects the
expected CMB power spectrum (three degrees of
freedom), the dodecahedral space looks the same
to all observers (zero degrees of freedom). The
only free parameter in our simple initial study 
was the density parameter Ω. Amazingly, with 
only one parameter to vary, the model correctly 
accounted for three independent observations: 
the quadrupole (" = 2 ), the octopole (" = 3 ), 
and the observed density itself. While far from 
a proof, such results were most encouraging.

Discouraging News
The dodecahedral model makes three testable 
predictions:
1. the weak large-scale CMB fluctuations,
2. matching circles in the sky (to be discussed 

momentarily), and
3. a slight curvature of space.

The WMAP satellite had already observed the
weak large-scale CMB fluctuations, so there is no
problem with the first prediction.

As for the third prediction, current measure-
ments (Ω = 1.02± 0.02) fail to distinguish flat
space (Ω = 1) from the slight curvature that the 
dodecahedral model requires (Ω ≈ 1.02). Fortu-
nately, upcoming data may suffice, either within a
year or two by combining the WMAP results with
other data sets to narrow the error bars on Ω, or
by the end of the decade if we wait for more pre-
cise CMB measurements from the European Space
Agency’s Planck satellite.

This leaves the second prediction, currently the
most controversial one. The basic insight is as fol-
lows. If the fundamental dodecahedron is smaller
than our horizon sphere, then the horizon sphere
will “wrap around the universe” and intersect itself.
This is most conveniently visualized in the universal
covering space (Figure 6) where repeating images
of the horizon sphere intersect their neighbors.
From our vantage point on Earth, at the center of
our horizon sphere we can see the same circle of
intersection sitting on opposite sides of the sky. 
If the observed CMB temperature fluctuations 
depended only on plasma density fluctuations,
then the two images, one in front of us and one 
behind us, would display identical temperature
patterns. Locating such pairs of matching circles
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would conclusively prove the universe is finite and
reveal its topology.

When the news appeared last October that 
the dodecahedral model accounts for the Mystery
of the Missing Fluctuations, another group of 
researchers was simultaneously searching for
matching circles. Their massive computer search
was expected to take months on a cluster of PCs,
but by October their program, while not yet finished
with the whole search, had finished checking for
the diametrically opposite circle pairs predicted by
the dodecahedral model and had found none [7].

The failure to find matching circles disappointed
everyone, but might not have dealt a fatal blow to
the idea of a finite universe. The observed CMB
temperature fluctuations depend not only on
plasma density fluctuations but also on other 
factors such as the Doppler effect of the plasma’s
motion and the gravitational influences the CMB
photons experience over the course of their 13.7 
billion-year journey from the plasma to us. For the
most part the circle searchers carefully accounted
for these various sources of contamination.
However, they neglected residual contamination
from foreground sources within our own Milky
Way Galaxy. Total foreground contamination is 
intense, and the WMAP team devoted considerable
effort to subtracting as much of it as possible 
before releasing their cleaned CMB sky maps.
Nevertheless, the remaining contamination is 
easily visible to the naked eye along the galactic
equator and is likely strong enough to disrupt 
circle matching along a wider swath. Future work
should reveal the extent to which the residual 
foreground contamination may or may not obscure
matching circles after resolving questions about 
how to model it correctly.

If the technical details get resolved and the
matching circles really are not there, would we
conclude that the universe is infinite? Not at all!
First there is the possibility that the universe is 
finite but much larger than our horizon, in which
case we could not detect its topology. More prac-
tically, there is the possibility that the universe
is comparable to, or slightly larger than, the
horizon. Such a universe would not generate de-
tectable circles but might still account for the
Mystery of the Missing Fluctuations. All partic-
ipants in recent discussions—circle searchers as
well as dodecahedral space modelers—agree this
is the obvious Plan B. But how can one hope to
detect topology lying beyond our horizon? It
may not be as hard as it seems. Just as one may
deduce the full length of a guitar string merely
by observing vibrations on its middle 80 per-
cent (with the endpoints hidden from view!), one
may in principle deduce the topology of the uni-
verse by observing density fluctuations within a
limited volume.

Conclusion
Where will the conflicting pieces of evidence lead?
To a “small” dodecahedral universe lying wholly
within our horizon? To a somewhat larger universe
lying just beyond our view but within our experi-
mental grasp? Or to a presumed but unconfirmed
infinite flat space? Over the course of the decade im-
proved measurements of curvature should provide
the decisive clue. If Ω is sufficiently close to 1, then
the dodecahedral model is dead. However, if Ω is
found to be near 1.02—and bounded away from
1—then the dodecahedral model or some variation
of it will almost surely prove correct, whether or not
matching circles are found. For now, the Missing
Fluctuations remain a Mystery.

Added in Proof
Studies of the first-year WMAP data find that cer-
tain features of the low-order CMB harmonics align
with the ecliptic plane at roughly the 99.9% confi-
dence level. Such alignments call into question the
presumed cosmic origins of the low-order har-
monics, suggesting instead either some hitherto un-
known solar system contribution to the CMB, or per-
haps some error in the collection and processing
of the data. The second-year WMAP data, origi-
nally expected by February 2004 but delayed due
to unexpected surprises in the results, may soon
shed additional light on these anomalies. If the
true cosmological low-order harmonics, after sub-
tracting off any solar system effects and/or pro-
cessing errors, turn out to be even weaker than pre-
viously believed, then the Mystery of the Missing
Fluctuations will deepen. However, the case for
the dodecahedral topology would vanish, forcing
researchers to reconsider other topologies—and
perhaps other explanations—in light of the revised
data.
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About the Cover
Mapping the Universe with HEALPixels

In Jeff Weeks’s article, the data that go into his analysis of the cosmic microwave background radiation
have been collected by the WMAP satellite, which scans different directions in the sky and records tem-
peratures. Data are sampled and amalgamated according to a scheme called HEALPix (Hierarchical Equal
Area iso-Latitude Pixelization), which has become the standard tool for such measurements—for the
WMAP satellite as well as for its successor, Planck, scheduled to be launched in 2007. According to HEALPix
the sphere is first divided into twelve large zones (outlined in gray on the cover), and each of these in
turn is parceled into N2 smaller “pixels” where N = 2n. For WMAP N = 512, which means 3,145,728
pixels altogether, and Planck will have many more, so there is a lot of calculation to be done in dealing
with these data.

There is no canonical way to partition a sphere into uniform small regions, since there are only five
regular solids. Any scheme used must therefore choose among various tradeoffs. The principal char-
acteristic feature of HEALPix is that its pixels are all of equal area, more or less in the shape of rhombi,
as the cover shows. Different formulas are used to generate the shapes in the polar and equatorial re-
gions, but both depend on Archimedes’ Theorem that cylindrical projection is area preserving.

Several considerations in addition to efficiency go into devising such a scheme: regions of equal area
minimize the effect of noise, among other things. The distribution of regions along parallels of latitude
allows using the fast Fourier transform in decomposing the data into spherical harmonics. HEALPix is
probably close to being as fast as possible in facilitating spherical harmonic analysis of astrophysical
data. Faster known mathematical techniques are not practical in this context, requiring as they do a
partition of the sphere that does not deal well with noise.

The HEALPix suite of programs, written in FORTRAN,
is publicly available from http://www.eso.org/
science/healpix/. This package includes a number of
useful peripheral tools as well as core routines. The doc-
umentation explaining how to use it is good, although to
a mathematician interested in understanding internals it
will likely seem that the algorithms it incorporates are
not well explained nor the programs themselves easy to
follow.

The data for the cover are obtained by degradation
from those in the file of internal linear combination data
available at http://lambda.gsfc.nasa.gov/product/
map/m_products.cfm.

I wish to thank William O’Mullane for making avail-
able to me his Java versions of portions of the HEALPix
code, and Krzysztof Górski, the originator of HEALPix,
for his spirited explanation of its role.
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