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The classical (Turing) theory of computation
has been extraordinarily successful in pro-
viding the foundations and framework for

theoretical computer science. Yet its dependence
on 0s and 1s is fundamentally inadequate for pro-
viding such a foundation for modern scientific
computation, in which most algorithms—with ori-
gins in Newton, Euler, Gauss, et al.—are real num-
ber algorithms.

In 1989, Mike Shub, Steve Smale, and I introduced
a theory of computation and complexity over an
arbitrary ring or field R [BSS89]. If R is
Z2 = ({0,1},+, ·), the classical computer science
theory is recovered. If R is the field of real num-
bers R , Newton’s algorithm, the paradigm algo-
rithm of numerical analysis, fits naturally into our
model of computation.

Complexity classes P, NP and the fundamental
question “Does P = NP?” can be formulated natu-
rally over an arbitrary ring R. The answer to the fun-
damental question depends in general on the com-
plexity of deciding feasibility of polynomial systems
over R. When R is Z2, this becomes the classical sat-
isfiability problem of Cook–Levin [Cook71, Levin73].
When R is the field of complex numbers C, the an-
swer depends on the complexity of Hilbert’s Null-
stellensatz.

The notion of reduction between problems (e.g.,
between traveling salesman and satisfiability) has

been a powerful tool in classical complexity theory.
But now, in addition, the transfer of complexity re-
sults from one domain to another becomes a real
possibility. For example, we can ask: Suppose we
can show P = NP over C (using all the mathemat-
ics that is natural here). Then, can we conclude that
P = NP over another field, such as the algebraic
numbers, or even over Z2? (Answer: Yes and es-
sentially yes.)

In this article, I discuss these results and indi-
cate how basic notions from numerical analysis
such as condition, round-off, and approximation are
being introduced into complexity theory, bringing
together ideas germinating from the real calculus
of Newton and the discrete computation of com-
puter science. The canonical reference for this ma-
terial is the book Complexity and Real Computation
[BCSS98].

Two Traditions of Computation
The two major traditions of the theory of compu-
tation have, for the most part, run a parallel non-
intersecting course. On the one hand, we have nu-
merical analysis and scientific computation; on the
other hand, we have the tradition of computation
theory arising from logic and computer science.

Fundamental to both traditions is the notion of
algorithm. Newton’s method is the paradigm ex-
ample of an algorithm cited most often in
numerical analysis texts. The Turing machine is the
underlying model of computation given in most
computer science texts on algorithms. Yet Newton’s
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method is not discussed in these computer
science texts, nor are Turing machines men-
tioned in texts on numerical analysis.

More fundamental differences arise with
the distinct underlying spaces, the mathe-
matics employed, and the problems tackled
by each tradition. In numerical analysis and
scientific computation, algorithms are gen-
erally defined over the reals or complex num-
bers, and the relevant mathematics is that of
the continuum. On the other hand, 0s and 1s
are the basic bits of the theory of computa-
tion of computer science, and the mathe-
matics employed is generally discrete. The
problems of numerical analysts tend to come
from the classical tradition of equation solving
and the calculus. Those of the computer scientist
tend to have more recent combinatorial origins. The
highly developed theory of computation and com-
plexity theory of computer science in general is un-
natural for analyzing problems arising in numeri-
cal analysis, yet no comparable formal theory has
emanated from the latter.

One aim of our work is to reconcile the disso-
nance between these two traditions, perhaps to
unify, but most important, to see how perspec-
tives and tools of each can inform the other.

We begin with some background and motivation,
then we present our unifying model and main com-
plexity results, and, finally, we see Turing meet
Newton and fundamental links introduced.

Background
The motivation for logicians to develop a theory of
computation in the 1930s had little to do with
computers (think of it, aside from historical arti-
facts, there were no computers around then).
Rather, Gödel, Turing, et al. were groping with the
question: “What does it mean for a problem or set
S (⊂ universe X) to be decidable?” For example, how
can one make precise Hilbert’s Tenth Problem?

Example. Hilbert’s Tenth Problem .  Let
X = {f ∈ Z[x1, . . . , xn]n > 0} and S = {f ∈ X|∃ζ
∈ Zn, f (ζ1, . . . , ζn) = 0} . Is S decidable? That is, can
one decide by finite means, given a diophantine
polynomial, whether or not it has an integer solu-
tion? (Actually, Hilbert’s challenge was: Produce
such a decision procedure.)

The logicians’ subsequent formalization of the
notion of decidability has had profound conse-
quences.

Definition. A set S(⊂ X) is decidable if its char-
acteristic function χS (with values 1 on S , 0 on
X − S) is computable (in finite time) by a machine.

Such a 0-1 valued machine is called a decision
procedure for S . On input x ∈ X it answers the
question “Is x ∈ S?” with output 1 if YES and 0 if
NO. Here X is Σ∗, the set of finite but unbounded
sequences over a finite set Σ . We will also allow X

to be a decidable subset of Σ∗ (e.g., as would be the
case for the set of all diophantine polynomials em-
bedded in {0,1}∗ via some natural coding). N.B. Σ∗
is countable.

To complete the definition, many seemingly dif-
ferent machines were proposed. What has been
striking is that all gave rise to the exact same class
of “computable” functions. This gives rise to the
belief, known as Church’s Thesis, that the com-
putable functions form a natural class and any in-
formal notion of procedure or algorithm can be re-
alized within any of the formal settings.

In 1970, Yuri Matijasevich answered Hilbert’s
Tenth Problem in the negative by showing the as-
sociated characteristic function χS is not Turing
computable and hence, by Church’s Thesis, no
procedure exists for deciding the solvability in in-
tegers of diophantine equations. (Following the
program mapped out earlier by Martin Davis, Hi-

1 0 1 0 1 0 0 0 0 0 0 0 0

A B
1, R

0, R
0 or 1

0 or 1

The Turing Machine (with simple operations,
finite number of states, finite program, and
infinite tape) provides a mathematical
foundation for the classical Theory of
Computation (originated by logicians in the
1930s and 40s) and Complexity Theory
(originated by computer scientists in the 1960s
and 70s). The program of this 2-state TM
instructs the machine “if in state A with a 0 or 1
in the current scanned cell, then print a 1, move
R(ight) and go into state B; if in state B, print 0,
move R and go into state A.” That the long-term
behavior of this machine is discernible is not
the norm. (TM picture, courtesy of Bryan Clair.)
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lary Putnam, and Julia Robinson, Matijasevich
needed only to show the existence of a diophan-
tine relation of exponential growth [DavisMatija-
sevicRobinson76].)

Since the initial startling results of the 1930s of
the undecidability of the true statements of arith-
metic and the halting problem for Turing machines,
logicians have focused attention on classifying
problems as to their decidability or undecidability.
Considerable attention was placed on studying the
hierarchy of the undecidable. Decidable problems,
particularly finite ones, held little interest. In the
1960s and 70s, computer scientists started to re-
alize that not all such decidable problems were
alike; indeed, some seemed to defy feasible solu-
tion by machine.

Example. The SATisfiability Problem (SAT). Here,

X = {f |f : Zn2 → Z2}
is the set of Boolean functions and

S = {f ∈ X|∃ζ ∈ Zn2 , f (ζ1, . . . , ζn) = 0} .

It is assumed X is embedded in {0,1}∗ via some
natural encoding. Systematically testing all possi-
ble 2n arguments for a given Boolean function f
clearly yields a decision procedure for S . This pro-
cedure takes an exponential number of basic op-
erations in the worst case. We do not know if SAT
is tractable, i.e., if there is a polynomial time deci-
sion procedure for S .

Definition. The decision problem (X,S) is in
class P if the characteristic function χS is polyno-
mial time computable, i.e., computable by a poly-
nomial time Turing machine. A polynomial time
Turing machine is one that halts in c(size x)k Tur-
ing operations for some fixed c, k ≥ 0 and all in-
puts x ∈ X . Here size x is the length of the se-
quence x, i.e., the bit length if Σ = {0,1}.

As was the case for computable functions, the
polynomial time functions, the class P, and sub-
sequently defined complexity classes, form natural
classes independent of machine.1 Thus again, com-
puter scientists have confidence they are working
with a very natural class of functions and feel jus-
tified employing their favorite model.

In the early 1970s Steve Cook and Leonid Levin
[Cook71, Levin73] independently formulated and
answered the question about the tractability of
SAT with another question: Does P = NP?2

A decision problem (X,S) ∈ classNP if for each
x ∈ S there is a polynomial time verification of
this fact. Later we will formalize the definition of
NP, but meantime we note that SAT ∈ NP : If a
Boolean function f ∈ S , then there is a witness

ζ ∈ Zn2 that provides, together with the computa-
tion of f on argument ζ = (ζ1, . . . , ζn) producing
value 0, a polynomial time verification. If f ∉ S, then
no such witness will do.

The significance of the P = NP? question be-
came clear when Dick Karp showed that the
tractability of each of twenty-one seemingly unre-
lated problems was equivalent to the tractability
of SAT [Karp72]. The number of such problems
known today is legion.

As did the earlier questions about decidability,
the P = NP? question has had profound conse-
quence. The apparent dichotomy between the
classes P and NP has been the underpinning of
some of the most important applications of com-
plexity theory, such as to cryptography and se-
cure communication. Particularly appealing here is
the idea of using hard problems to our advantage.

Thus the classical Turing tradition has yielded
a highly developed and rich (invariant) theory of
computation and complexity with essential appli-
cations to computation—and deep interesting ques-
tions. Why do we want a new model of computa-
tion?

Motivation for Model

Decidability over the Continuum: Is the
Mandelbrot Set Decidable?

Now we witnessed a certain extraordi-
narily complicated-looking set, namely
the Mandelbrot set. Although the rules
which provide its definition are sur-
prisingly simple,3 the set itself exhibits
an endless variety of highly elaborate
structure. Could this be an example of
a non-recursive [i.e. undecidable] set,
truly exhibited before our mortal eyes?4

—Roger Penrose, The Emperor’s New Mind
[Penrose89].

Classically, decidability is defined only for count-
able sets. The Mandelbrot set is uncountable. So the
Mandelbrot set is not decidable classically. But
clearly this is not a satisfactory argument. So how
do we reasonably address Penrose’s question?

From time to time, logicians and computer sci-
entists do look at problems over the reals or com-
plex numbers. One approach has been through “re-
cursive analysis,” which has its origins in Turing’s
seminal 1936 paper [Turing36–37].5 In the first para-
graph, Turing defines “a number [to be] computable

1A main proviso is that integers are not coded in unary.
2I am rephrasing their result. The usual statement is: SAT
is NP-complete.

3The Mandelbrot set M is the set of all parameters c ∈ C,
such that the orbit of 0 under the quadratic map
pc (z) = z2 + c remains bounded.
4Emphasis mine.
5Here Turing first defines automatic machines and shows
the undecidability of the halting problem.
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if its decimal can be written down by a machine.”
Turing later defines computable functions of com-
putable real numbers.6 One can then imagine an or-
acle Turing machine that, when fed a real number
by oracle, decimal by decimal, outputs a real num-
ber decimal by decimal. A refinement of this no-
tion forms the basis of recursive analysis.

Another tack taken by computer scientists is
what might be called the “rational number model”
approach. The approach is not formalized, but its
reasoning goes as follows:

A. Machines are finite.
B. Finite approximations of reals are rationals.
C. ∴ We are really looking at problems over the

rationals.
If we are totally naïve here, we quickly run into

trouble. The rational skeleton of the curve
x3 + y3 = 1 on the positive quadrant is hardly in-
formative.7

We have even more serious concerns when this
approach is used in complexity theory. Computer
scientists measure complexity as a function of
input word size (in bits). But small perturbations
(of input) can cause large differences in word size.
For example, a small perturbation of an input 1 to
1+ 1/2n causes the word size to grow from 1 to
n+ 1. Thus an algorithm that is polynomial time
according to the discrete model definition would
be allowed to take considerably more time on a per-
turbed input than on a given input. If the problem
instance were well conditioned, this clearly would
not be acceptable. An issue here is that the Eu-
clidean metric is very different from the bit met-
ric. Another is condition.

Not paying attention to these issues has caused
both incompleteness in the analysis and confu-
sion in the comparison of different algorithms
over the reals. The comparison of competing al-
gorithms for the Linear Programming Problem pro-
vides a case in point. We shall return to this example
again.

Penrose explores similar scenarios for posing his
question but in the end “. . . is left with the strong

feeling that the correct viewpoint has not yet been
arrived at.”

The Mandelbrot example is perhaps too exotic
to draw generalizations. We turn now to a decision
problem ubiquitous in mathematics.
The Hilbert Nullstellensatz/R
Given a system of polynomial equations over a
ring R, f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0 . Is
there ζ ∈ Rn, such that f1(ζ) = . . . = fm(ζ) = 0?

We call the corresponding decision problem
over R, HNR. If R is Z2,Z, or the rational numbers
Q , HNR fits naturally into the Turing formalism (via
bit coding of integers and rationals). The corre-
sponding decision problem over Z2 is essentially
SAT (decidable but not known to be in P ), over Z
it is Hilbert’s Tenth Problem (undecidable) and
over Q it is not known to be decidable or unde-
cidable. If R is the real field R or complex numbers
C, then HNR does not fit naturally into the Turing
formalism.

An even simpler example is the high school al-
gorithm for deciding whether or not a real poly-
nomial ax2 + bx+ c has a real root. We just check
if the discriminant b2 − 4ac ≥ 0. We do not stipu-
late that a, b, and c be rational or be fed to us bit
by bit—or question if we can tell whether or not a
real number equals 0. We just work with the basic
arithmetic operations and comparisons of an or-
dered ring or field.

More generally, we have perfectly good algo-
rithms for deciding HNR over R and C. Recall:
Hilbert’s Nullstellensatz, HN [Hilbert1893]
Given f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) ∈ C[x1, . . . ,
xn] . Then, f1 = . . . = fm = 0 is notsolvable overC�

1 = Σgifi,
(*) for some polynomials

gi ∈ C[x1, . . . , xn].

This theorem provides a semidecision procedure
for the complement of HNC :  Given
f1, . . . , fm ∈ C[x1, . . . , xn] , systematically search for
gi’s to solve (∗). If found, then f1 = . . . = fm = 0 is
not solvable over C and so output 0. (The search
can be done by considering, for each successive D,
general polynomials gi of degree D with indeter-
minate coefficients. Checking if there exist coeffi-
cients satisfying (∗) reduces to solving ∼ Dn linear
equations over C.)

However, if f1 = . . . = fm = 0 is solvable, then
no such gi’s will ever be found. Fortunately, we have
stopping rules. In 1926, Grete Hermann, a student
of Emmy Noether, gave an effective upper bound
D (= d ↑ (2n) where d =max(3,deg fi)) on the de-
grees of the gi ’s that one need consider [Her-
mann26].8 If no solution is found for generic gi’s

6Although Turing states in this paper that “a develop-
ment of the theory of functions of a real variable ex-
pressed in terms of computable numbers” would be forth-
coming, I am not aware of any further such development
by him in this direction.
7By Fermat, the only rational points on the curve are (0,1)
and (1,0).

9 8 6 9 6 0 4 3 1 4 1 5 9 2

Oracle Turing Machines

T.M.

8By Brownawell and Kollar, we only need check the case
D = dn, which by Masser and Philippon is optimal. (See
[Yger01] for discussion and [KPS01] for refinements.)
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of degree D, then none exists, and so we can out-
put 1.

This decision procedure, using arithmetic oper-
ations and comparisons on complex numbers, in-
spires us to take a different tack. Rather than forc-
ing artificial coding of problems into bits, we
propose a model of computation that computes
over a ring (or field), using basic algebraic opera-
tions and comparisons on elements of the ring (or
field). Thus we have our first motivation for propos-
ing a new model.

Algorithms of Numerical Analysis
Our next motivation comes directly from the tra-
dition of numerical analysis. We start with the
paper, “Rounding-off errors in matrix processes”
in the Quarterly Journal of Mechanics and Applied
Mathematics, vol. I, 1948, pp. 287–308 [Turing48].
Written by Alan Turing while he was preoccupied
with solving large systems of equations, this paper
is quite well known to numerical analysts but al-
most unknown by logicians and computer scien-
tists. Its implicit model of computation is more
closely related to the former than the latter.

In the first section of his paper, Turing consid-
ers the “measures of work in a process”:

It is convenient to have a measure of the
amount of work involved in a comput-
ing process, even though it be a very
crude one. . .. We might, for instance,
count the number of additions, subtrac-
tions, multiplications, divisions, record-
ings of numbers. . .9

From this point of view, it is again natural to start
with a model of computation in which real num-
bers are viewed as entities, and algebraic operations
and comparisons, as well as simple accessing, are
each counted as a unit of work. We will return
again to this paper to motivate refinements of
these initial “measures of work.”

We also want a model of computation that is
more natural for describing algorithms of numer-
ical analysis, such as Newton’s method for finding
zeros of polynomials. Here, given a polynomial
f (z) over R or C, the basic operation is the New-
ton map, Nf (z) = z − f (z)/f ′(z), which is iterated
until the current value satisfies some proscribed
stopping rule. Translating to bit operations would
wipe out the natural structure of this algorithm.

Does P = NP?

In order to gain new perspective and access addi-
tional tools, mathematicians often find it prof-
itable to view problems in a broader framework

than originally posed. We are thus motivated to fol-
low this path for the P = NP? problem.

The Model: Machines over a Ring or Field R
[BSS89]
We suppose R is a commutative ring or field (pos-
sibly ordered) with unit. A machine M over R has
the following properties:

Associated with M is an input space and an out-
put space, both R∞ (the disjoint union of Rn, n ≥ 0).
At the top level, our machine M is similar to a Tur-
ing machine. M has a 2-way infinite tape divided
into cells and a read-write head that can view a fixed
number kM of contiguous cells at a time.

Internal to M is its program, a finite directed
graph with 5 types of nodes, each with associated
operations and next node maps:

• The operation gι associated with the input node
ι takes elements x = (x1, . . . , xk) from the input
space R∞ and puts each xi (i = 1, . . . , k) in suc-
cessive tape cells, starting with the leftmost one
in M ’s view. There is a unique next node ι′ �= ι .

• Each computation node η has a built-in polyno-
mial or rational map gη : Rn → Rmwith
n,m ≤ kM .10 Given elements x1, . . . , xn in the
first n cells of M ’s view, the associated opera-
tion, also called gη, puts gjη(x1, . . . , xn) in the jth
cell in M ’s view (j = 1, . . . ,m). There is a unique
next node η′.

• For each branch node η , the associated opera-
tion is the identity. There are two possible next
nodes η′L and η′R depending on the leftmost el-
ement x1 in M ’s view. If x1 = 0 (≥ 0, if R is or-
dered), then η′ = η′R . If x1 �= 0 (x1 < 0), then
η′ = η′L.

• For each shift node σ, the associated map is the
identity and there is a unique next node σ ′ .
Right shift nodes σR shift M ’s view one cell to
the right, left shift nodes σL shift one cell to the
left.

• The operation gN associated with the output
node N outputs (by projection) the contents of
the tape into R∞. N has no next node.

9Emphasis mine.

f ′(z)

Input:

Compute:

Branch:

Output:

Stopping Rule

(f, z, ε)

z ← z − f (z)

z

|f (z)|2 < ε |f (z)|2 ≥ ε

A “machine” for executing Newton’s method.

10Machines over R can thus have a finite number of built-
in constants from R.
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The computable functions over R are the input-
output maps φM of machines M over R. Thus, for
x ∈ R∞, φM (x) is defined if the output node N is
reachable by following M ’s program on input x. If
so, φM (x) is the output y ∈ R∞.

Although the machine’s view at any time is fi-
nite, the shift nodes enable the machine to read and
operate on inputs from Rn for all n, and thus we
can model algorithms that are defined uniformly
for inputs of any dimension. Noting this, we can
also construct universal (programmable) machines
over R. (We do not use Gödel coding. The machine
program itself is (essentially) its own code.)

If R is Z2, we recover the classical theory of
computation (and complexity, as we shall see). We
also note that Newton’s method is naturally im-
plemented by a machine over R .

Let’s return now to questions of decidability
over R and C, which were so problematic before.

Definition. A problem over R is a pair, (X,Xyes) ,
where Xyes ⊆ X ⊆ R∞ . X consists of the problem in-
stances, Xyes, the yes-instances.

For HNR,

X = {f = (f1, . . . , fm)|fi ∈ R[x1, . . . , xn]},m,n > 0 and

Xyes = {f ∈ X|∃ζ ∈ Rn, fi (ζ1, . . . , ζn) = 0, i = 1, . . . ,m}.
Finite polynomial systems over R can be coded

as elements of R∞ (by systematically listing coef-
ficients); thus X can be viewed as a subspace of R∞.

Definition. A problem over R, (X,Xyes) , is de-
cidable if the characteristic function of Xyes in X is
computable over R.

Thus, in this framework, we can state problems
over R and C (or any ring or field) and ask questions
of decidability. The algorithm presented earlier,
based on Hilbert’s Nullstellensatz with effective

bounds, is easily converted to a decision machine
over C, and so HNC is decidable over C. Similarly,
HNR is decidable over R (by Seidenberg’s elimina-
tion theory [Seid54]).

We can also now formally state, and answer,
Penrose’s question about the Mandelbrot set M .
Here X is R2 and Xyes is M . (In order to allow al-
gorithms that compare magnitudes, we are view-
ing C as R2.)

Theorem [BlumSmale93]. The Mandelbrot set M
is undecidable over R .

The proof uses the fact that the boundary of a
closed semidecidable set in R2 has Hausdorff di-
mension at most 1, whereas the Hausdorff di-
mension of the boundary of the Mandelbrot set is
2 [Shishikura91].

It turns out that the complement of the Man-
delbrot set M is semidecidable over R . To see this,
a little arithmetic shows that M = {c ∈ C such that
the sequence c, c2 + c, (c2 + c)2 + c, . . . stays within
the circle of radius 2} . Hence, if at some point the
orbit of 0 under the map z2 + c escapes the circle
of radius 2, we can be certain that c is in the com-
plement of M . One can use this fact to “draw” the
Mandelbrot set.

Complexity Classes and Theory over a
Ring R
Following the classical tradition, we measure time
(or cost) as a function of input word size. Suppose
x ∈ R∞. We define size(x) to be the vector length
of x, thus size(x) = n if x ∈ Rn . For machine M
over R and input x, we define TM (x) to be the num-
ber of nodes traversed from input to output when
M is input x. TM is our measure of time or cost. So,
if R = Z2 size(x) is the bit size of x, and TM (x) is
the bit cost of the computation.

Output Space R∞ =  ∆  Rn

Output

n ≥ 0

n ≥ 0

= R∗

= R∗

State Space R∞

Input Space R∞=  ∆  Rn { }finite (unbounded)
sequences over R

. . . . . . . . 0 0x0 x1 x2
xkM

xkM+1

xi  
ε  R

∪

 ∪
↓

Input↓

Output Space R∞ 

State Space R∞

Input Space R∞

Branch
Node

Output
Node N

Computation
Node

x←g
n
(x)

Input
Node

Shift (R,L)
Nodes
x←σ(x)

I

0. . . 0. . . . . .x0 x1

x
1 

≠ 0 x
1 

= 0

x2 xkM
xkM+1

The 
program
for M
is a finite
directed 
graph.

↓

↓

O↓

(≥ 0)(< 0)

A machine over a ring or field R , top-level and internal views.
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Definition. (X,Xyes) ∈ PR (class P over R) if there
exists a decision machine M and a polynomial
p ∈ Z[x] such that for each x ∈ X ,  TM (x)
< p(size(x)). M is called a polynomial time (decision)
machine.

Definition. (X,Xyes) ∈ NPR (class NP over R) if
there exists (Y,Yyes) ∈ PR and a polynomial p ∈ Z[x]
such that, for each x ∈ X , x ∈ Xyes � ∃ witness
w ∈ Rp(size(x)) such that (x,w ) ∈ Yyes.

In the above, we generally require that
(R∞, X) ∈ PR . Then, if R = Z2, we recover the clas-
sical complexity classes, that is, class P over Z2 is
the classical class P, and class NP over Z2 is the
classical classNP. Whenever we omit subscripts in
the following, we are referring to the case when
R = Z2, the classical case.

Example. HNR ∈ NPR . To see this let
Y = {(f , ζ)|f = (f1, . . . , fm), fi ∈

R[x1, . . . , xn], ζ ∈ Rn,m,n > 0}
and Yyes = {(f , ζ) ∈ Y |fi(ζ1, . . . , ζn) = 0,

i = 1, . . . ,m}.
Then, since polynomial evaluation is a polyno-

mial time computation over R ,11 we have

(Y,Yyes) ∈ PR over R .  Also, given f ∈ X ,
f = (f1, . . . , fm), fi ∈ R[x1, . . . , xn], f ∈ Xyes �
∃ζ ∈ Rn such that fi(ζ1, . . . , ζn) = 0, i = 1, . . . ,m ,
that is, (f , ζ) ∈ Yyes.

We note that there is an exponential time deci-
sion machine for HN over Z2, but as mentioned ear-
lier, we do not know if HN ∈ P . On the other hand,
since HNZ is not decidable (over Z), it certainly is
not in PZ , thus PZ �= NPZ .

Main Complexity Results
We recall that
Theorem [Cook71, Levin73].

P = NP �SAT ∈ P and
Theorem [Karp72].

P = NP � TSP12∈ P⇔ X ∈ P,

where X = Hamilton Circuit or any of nineteen
other problems.

We prove
Theorem [BSS89].

PR = NPR � HNR ∈ PR for R = Z2,R,C,

or for any field R, unordered or ordered.
To prove this theorem, we show that given any

problem (X,Xyes) ∈ NPR and instance x ∈ X , we
can code x (in polynomial time) as a polynomial sys-
tem fx over R such that x ∈ Xyes ⇐⇒ fx has a zero
over R. In other words, we give a polynomial time
reduction from any problem in class NPR into HNR .
This is done by writing down the equations for the
computing endomorphism of an NPR machine.

So, HNR is a universal NP-complete problem.
We know that HNR ∈ EXPR for R = R and C. That
is, there are exponential time algorithms for de-
ciding the solvability of polynomial systems over
R and C [Renegar92, BPR96]. But, again, no poly-
nomial time algorithms are known.

So, in addition to the classical P = NP? question,
we pose two new ones: Is PR = NPR? Is PC = NPC?

Understanding the complexity of the Hilbert
Nullstellensatz thus plays a central role in com-
plexity theory over R.13

Transfer Principles
In the preface to Complexity and Real Computation
[BCSS98], Dick Karp speculates about the trans-
ferability of complexity results from one domain
to another:

11It should be clear what formal definitions we are sup-
posing here. The proof requires a construction.

12The Traveling Salesman Problem (TSP) is generally stated
as a search problem: Find the shortest (cheapest) path tra-
versing all nodes. To view TSP as a decision problem, we
introduce bounds: Given kis there a path of length (cost)
at most k traversing all nodes?
13Toward this goal, a sequence of five papers by Mike
Shub and Steve Smale on the related Bezout’s Theorem pre-
sents a comprehensive analysis of the complexity of solv-
ing polynomial systems approximately and probabilistically.
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It is interesting to speculate as to
whether the questions of whether
PR = NPR and whether PC = NPC are re-
lated to each other and to the classical
P versus NP question. . . .I am inclined
to think that the three questions are
very different and need to be attacked
independently.. . .14

One reason for the skepticism is that over R or C
one can quickly build numbers of large magnitude,
for example by successive squaring. And over R or
C, arithmetic operations on numbers of any mag-
nitude can be done in one step. Hence, polynomial
time machines over R or Cmight be able to decide
inherently hard discrete problems by “cheating”,
e.g., by quickly coding up an exponential amount
of information within large numbers and subse-
quently getting an exponential amount of essential
bit operations accomplished quickly.

In our book we present a number of transfer re-
sults for complexity theory, one of which transfers
the PR = NPR? question across algebraically closed
fields of characteristic 0.

Theorem [BCSS96/98]. PC = NPC � PK = NPK ,
where K is any algebraically closed field of char-
acteristic 0, for example the field of algebraic num-
bers.

The transfer of the PR = NPR? problem from
the algebraic numbers to the complexes had been
proved earlier by Christian Michaux, using model
theoretic techniques [Michaux94]. The other direc-
tion uses number theory. Here we show how a ma-
chine over C with built in algebraically independent
constants can be simulated by a machine that has
no such constants and that takes the same amount
of time (up to a polynomial factor) to compute. We
call this result the elimination of constants. The con-
stants in a machine come into play at branch nodes
where a decision is to be made as to whether or not
the current x1, which is a polynomial in the machine
constants, is equal to 0. This polynomial is not
presented to us in the standard form, but rather
by a composition of the polynomials along the
computation path, so we cannot in general tell
quickly enough if the coefficients are all zero. In-
stead, we use the Witness Theorem to quickly gen-
erate algebraic witnesses with the property that, if
the original constants are replaced by these wit-
nesses, and the resulting evaluation is 0, then the
original polynomial is 0. (The theory of heights
comes into play here.)

Shortly after our book went to press, Steve Smale
realized (after talking to Manuel Blum) that stan-
dard computer science arguments could yield a
transfer result from C to the classical setting
[Smale2000].

Let BPP be the class of problems over Z2 that
can be solved in bounded error (< 1/2) proba-
bilistic polynomial time. Class BPP is a practical
modification of class P. Repeating a BPP algorithm
k times produces a polynomial time algorithm with
probability of error < 1/2k. For example, BPP al-
gorithms for Primality (testing) were known and
used well before it was known that Primality was
in class P.

Theorem. PC = NPC ⇒ BPP ⊇ NP.
The idea of the proof goes as follows. First we

note that by adding polynomials of the form
x(x− 1) to an instance f ∈ HN we get an equivalent
instance f∗ ∈ HNC. Then, any polynomial decision
machine M over C for HNC will decide the solv-
ability of f∗ and hence the solvability of f over Z2.
The trouble is, M might have a finite number of
built-in complex constants. As before, they come
into play at branch nodes where a decision is to be
made as to whether or not a polynomial in these
constants, presented by composition, is equal to
0. Rather than generate witnesses as before to
eliminate constants, the decision is now made by
probabilistically replacing these constants by a
small number (by Schwartz’s Lemma) of small num-
bers (by the Prime Number Theorem). Thus, given
a polynomial time machine M over C for HNC , we
could construct a probabilistic polynomial time
machine for HN.

Transfer results provide important connections
between the two approaches to computing.15 Un-
derlying connections derive from the uniform dis-
tribution of rational data of bounded input length

14Emphasis mine.

15Transfer results are also known for questions regard-
ing other complexity classes such as PSPACE [Koiran02].

From the Quarterly Journal of Mechanics and Applied
Mathematics, vol. I, 1948, p. 287.
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with respect to the probability distribution of con-
dition numbers of numerical analysis [CMPS02].

Introducing Condition, Accuracy, and
Round-off into Complexity Theory: Where
Turing Meets Newton
We now return to the Turing paper on rounding-
off errors referred to earlier [Turing48].

It is here that the notion of condition (of a
linear system) was originally introduced. An
illustrative example is presented on page 297:

1.4x+ 0.9y = 2.7(8.1)

0.8x+ 1.7y = −1.2

−0.786x+ 1.709y = −1.173(8.2)

−0.8x+ 1.7y = −1.2

The set of equations (8.2) is fully equiv-
alent to (8.1)16, but clearly if we attempt
to solve (8.2) by numerical methods in-
volving rounding-off errors we are al-
most certain to get much less accuracy
than if we worked with equations (8.1). . .

We should describe the equations (8.2)
as an ill-conditioned set, or, at any rate,
as ill-conditioned compared with (8.1).17

It is characteristic of ill-conditioned sets
of equations that small percentage er-
rors in the coefficients given may lead
to large percentage errors in the solu-
tion.

Turing’s notion of condition, clearly inspired
by Newton’s derivative, links both traditions, par-
ticularly when considering questions of complex-
ity.
Condition Numbers and Complexity
The condition of a problem (instance) measures
how small perturbations of the input will alter the
output. Introducing the notion of condition pro-
vides an important link between the two traditions
of computing.

Definition (Turing). Suppose A is an n× n real
matrix and b ∈ Rn. The condition number of the lin-
ear system, Ax = b ,  is given by κ(A) =
‖A‖ ‖A1‖ .  Here ‖A‖ =max{|Ay|/|y||y �= 0} is
the operator norm with respect to the Euclidean
norm | |.

We note that κ(A) is the worst-case relative con-
dition for solving the system Ax = b for x. Thus
log+ κ(A) provides a worst-case lower bound for the
loss of precision in solving the system.18 For

computational purposes, ill-conditioned problem
instances will generally require more input preci-
sion than well-conditioned instances.

During the 1980s a number of people gave es-
timates on the average loss of precision for (solv-
ing) linear systems over R .

Theorem [Edelman88]. Average log+ κ(A)
∼ logn .

The log of condition provides an intrinsic para-
meter to replace arbitrarily chosen bit input word
sizes for problem instances where the underlying
mathematical spaces are R or C. And so a focus
for complexity theory is to formulate and under-
stand measures of condition.

My favorite example for illustrating the issues
raised and the resolutions proposed is the Linear
Programming Problem over R (LPPR) alluded to
earlier, where R is Q or R . An instance of the LPPR
is to maximize a linear function c · x subject to the
constraints Ax ≤ b , x ≥ 0, or to conclude no such
maximum exists. The data here is (A,b, c), where
A is an m× n matrix over R, b ∈ Rm and c ∈ Rn.

Competing algorithms for solving the LPPR are
often posed and analyzed using distinct models of
computation. (Also, there are various equivalent

16The third equation is the second plus .01 times the first.
17Emphasis mine.
18log+ x = logx for x ≥ 1, otherwise log+ x = 0 .

With appropriate norm, the ratio
‖ϕ(x+∆x)−ϕ(x)‖/‖∆x‖ , or relative ratio

(‖ϕ(x+∆x)−ϕ(x)‖/‖ϕ(x)‖)/(‖∆x‖/‖x‖)
indicates the condition of an instance. If the

quotient is large, the instance is ill-conditioned
and so requires more accuracy, and hence more

resources, to compute with small error.

input x output ϕ(x)

ϕ(x+∆x)

x+∆x

The simplex method for the LPP optimizes by
traversing vertices. The newer interior point

methods follow a trajectory of centers.

c

ν0

α0
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mathematical formulations of the LPPR, not neces-
sarily equivalent with respect to complexity theory.)

The simplex algorithm [Dantzig47/90], a long-
time method of choice, is an algebraic algorithm
that in the worst case takes exponential (in n and
m) number of steps [KleeMinty72] given exact
arithmetic. For rational inputs, simplex also is ex-
ponential in the input word size (given in bits) in
the bit model.

On the other hand, for rational inputs, the el-
lipsoid algorithm [Khachiyan79] is polynomial time
in the input word size in the bit model. But, as an
algorithm over R , i.e., allowing exact arithmetic, it
is not finite in general. The same is true of the newer
interior point algorithms.19

It would seem more natural, and appropriate, to
analyze the complexity of algorithms for the LPPR
with respect to an intrinsic input word size. Hence
we are motivated to define a measure of the con-
dition of a linear program [Blum90]. Jim Renegar
[Renegar95] was the first to propose such a con-
dition number in this context. His definition is in-
spired by the 1936 theorem of Eckart and Young.

Theorem [EckartYoung36]. For a real matrix A ,
κ(A) ∼ 1/dF (A,Σ) where Σ is space of ill-posed prob-
lem instances, i.e., Σ is the space of noninvertible
matrices. (Here the relative distance dF is with re-
spect to the Frobenius norm ‖A‖F =

√
Σa2

ij .)

We now consider the linear programming prob-
lem over R in the form: Given Ax = b , x ≥ 0, find
a feasible solution or declare there is none.

Definition [Renegar95]. The condition number
of a linear program over R with data (A,b) is given
by C(A,b) = ‖(A,b)‖/d((A,b),Σm,n) . (Here, Σm,n is
the boundary of the feasible pairs (A,b), and both
the operator norm ‖ ‖ and the distance d are with
respect to the respective Euclidean norms.)

Renegar proposes an interior point algorithm
and analyzes it with respect to parameters: n,m,
the loss of precision, and the desired accuracy of so-
lution.

Theorem [Renegar Interior Point Algorithm].20

If the linear program is feasible, the number of it-
erations to produce an ε-approximation to a fea-
sible point is polynomial in n,m, log+ C(A,b) and
| log ε| .

Felipe Cucker and Javier Peña propose an algo-
rithm and add round-off error as a parameter for
the complexity analysis [CuckerPena02].

Theorem [Cucker-Peña Algorithm with Round-
Off]. If the linear program is feasible, the bit cost
to produce an ε-approximation to a feasible
point is O((m + n)3.5(log(m + n) + log+ C(A,b)+
| log ε|)3). The finest precision required is a round-
off unit of 1/c(m+ n)12C(A,b)2 .

While condition, approximation and round-off
help bridge the combinatorial and continuous ap-
proaches to the design and analyses of linear pro-
gramming algorithms, basic connections and com-
plexity questions remain open.

In particular: Is LPPR ∈ PR? Even more, is LPP
strongly polynomial? That is, is there a polynomial
time algorithm over R for LPPR that is also poly-
nomial time with respect to bit cost on rational
input data?21 

In conclusion, I have endeavored to give an idea
of how machines over the reals—tempered with
condition, approximation, round-off, and proba-
bility22—enable us to combine tools and traditions
of theoretical computer science with tools and tra-
ditions of numerical analysis to help better un-
derstand the nature and complexity of computa-
tion.
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