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Some of What
Mathematicians Do
Martin H. Krieger

Whether it be at a party or at a tavern or while being
examined by a physician, on announcing that you
are a mathematician, you are likely to be greeted
with comments about your companion’s failure in
high school math, or a request for a brief account
of the proof of Fermat’s Last Theorem, or perhaps
an offer of a counterexample to the Four Color
Theorem. Your parents, your friends and relatives,
airplane seatmates, or your dean or provost are 
not likely to be mathematicians, and they too would
like to know what you do, preferably in bite-sized
pieces.

Might we provide an everyday description that
has sufficient technical detail so that a mathe-
matician would recognize the work as real research
mathematics? I suggest that if we think of mathe-
matical work as showing that what might seem ar-
bitrary is actually necessary, as analyzing everyday
notions, as calculation, and as analogizing—using
rich examples of mathematical work itself, we
might be able to say a bit more about some of what
mathematicians do. None of these descriptions are
easy, but I think they connect better with the work
of other people, so that they might see our work
and their own as having some shared features.

Conventions
Mathematicians make certain notions conventional.
What might seem arbitrary is shown to be in effect
necessary, at least within a wide enough range of
situations. For example, means and variances were

once taken merely as ways of “combining obser-
vations”, to use a term of art of two hundred years
ago. There were other ways, including medians
and average absolute deviations (Σ|xi − x|/N) . But
through the central limit theorem, for example,
the variance became entrenched as a good measure
of the width of a distribution for various different
kinds of more or less identically distributed inde-
pendent random variables. Moreover, it was easy
to depict such statistics in a Euclidean space of ob-
servations, the various formulas being Pythagorean
theorems with Euclidean distances. And if one used
a large electromechanical calculator, it was not
hard to set up the calculation so that one could cal-
culate a sum of the squares of xi and yi and a sum
of xiyi . In the law of the iterated logarithm,
Khinchin provided an estimate of fluctuations that
would not be readily accounted for by gaussian be-
havior, so even exceptional behavior fit under this
regimen.

Variances turned out to be good measures of the
kinds of noise and dissipation physicists encoun-
tered, and Einstein’s work on fluctuations (1905,
1917) entrenched variances as the measure of
choice. It also turned out that variances were good
measures of the risk involved in financial markets,
and the calculus of Lévy and Itô (where, in effect,
dx is replaced by 

√
dx) became the bread and but-

ter of finance professors.
As for exceptions to means and variances, Lévy

showed that the crucial fact was the asymptotic
norming constant, the 

√
N that appears in the cen-

tral limit theorem: that is, N1/α , here α = 2. For α
need not be 2 but could be other numbers for other
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distributions (“distributions without variance”, that
is, with infinite variance), which still scaled as-
ymptotically, such as the world of fractals. How-
ever, if the variance is finite, then the only game
in town is the gaussian. The deep idea turns out
to be asymptotic approximation and scaling, that
N1/α . And this is seen in modern results related
to random matrices and prime number distribu-
tions, where the norming constant can be N1/6, for
example.

What is made conventional here is the gaussian,
characterized by its mean and variance, and its
being the asymptotic limit of sums of nice random
variables. And that is made clear by the descrip-
tion of its exceptions. Although means and vari-
ances might well be arbitrary, they are demon-
strably the right statistics (“necessary”) for a wide
range of cases.

Nowadays, statisticians are realizing that for
actual data sets, often infected by wild and outly-
ing data, one needs statistical methods that are “ro-
bust” and “resistant”, not a strong point of means
and variances. For a wide range of new cases, means
and variances will no longer be conventions, and
presumably new statistics are proven to be “nec-
essary” and become the reigning conventions.

Mathematicians affirm that these conventions
are not arbitrary. They are well grounded in math-
ematical practice and theory.

Analyzing Everyday Notions
Mathematicians formally analyze everyday notions.
Topology developed as a way of understanding
nearbyness, connectivity, and networks. It turned
out that the key idea was continuity of mappings
and how that continuity was affected by other
transformations. For continuity preserved near-
byness, connectivity, and networks. Of course, this
demanded a number of conceptual and mathe-
matical discoveries. One great discovery was the
subtleties of continuity, uniform vs. pointwise, for
example. A second discovery was the fact that one
might represent continuity and neighborhoods in
terms of mappings: if the neighborhood of a point
was mapped into an open set, that neighborhood
itself was open, if the mapping was continuous. A
third discovery was that networks could be char-
acterized in terms of how they decomposed into
simpler networks and that characterization would
be preserved under continuous mappings. More-
over, a space might well be approximated by a
skeletal framework, and a study of that framework
would tell us about the space. A fourth discovery
was that that decomposition sequence had a nat-
ural algebraic analog in commutative algebra. And
a fifth discovery was that the algebraic decompo-
sition had a natural analog with derivatives and sec-
ond derivatives (Stokes’s and Green’s theorems

and Gibbs’s vector calculus), again the world of con-
tinuity.

As a consequence of this analysis, it was real-
ized that there are many different kinds of near-
byness and many different topologies for a space,
yet they might share important features. Functions
came to be understood as mappings, in terms of
what they did. And the transcendental realm turned
out to be deeply involved with the algebraic realm.
That analysis of everyday notions led to powerful
technologies for analyzing connectivity and net-
works, techniques vital to current society. Those
technologies are grounded in the formal mathe-
matical analysis.

Calculation
Perhaps “proofs should be driven not by calcula-
tion but solely by ideas”, as Hilbert averred in what
he called Riemann’s Principle. But some of the
time, if not often, mathematicians have to calcu-
late—doggedly and lengthily—in order to get in-
teresting results. In some future time, knowing the
solution, other mathematicians may well be able to
provide a one-line proof driven solely by ideas,
plus a great deal of mathematical superstructure
built up in the intervening period of time. Or, in fact,
lengthy proof and calculation are unavoidable, and
delicate arguments involving hairy technology are
the only way to go. The mathematician’s achieve-
ment is, first of all, to actually follow through on
that long and complex calculation and come to a
useful conclusion, and, second, to present that cal-
culation so that it is mildly illuminating. As we
shall see, such a presentation involves matters of
structure, organizing the whole; strategy, being
able to tell a story about how it all holds together;
and tactics, being able to do what needs to be done
to get on with the next main step of the proof.

The first proof, by Dyson and Lenard (1967–
1968), of the stability of matter—that bulk matter,
held together by electrical forces of electrons and
nuclei, won’t collapse (then to explode)—is con-
sidered one of these long and elaborate calculations.
What one has to prove is that the binding energy
of bulk matter per nucleus is bounded from below
by a negative constant, −E∗. The proof begins with
an idea: an insight by Onsager (1939) about how
to incorporate the screening of positively charged
nuclei by negatively charged electrons. But the ac-
tual calculation would seem to involve a number
of preliminary theorems and a goodly number of
lemmas, all of which might seem a bit distant from
the main problem. Actually, many of the prelimi-
nary theorems motivate the proof and indicate
what is needed if a proof is to go through. And the
lemmas might be seen as lemmas hanging from a
tree of theorems or troops lined up to do particu-
lar work. As in many such calculations, the result
almost miraculously appears at the end. And in this
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case the proportionality constant is about 1014

larger in absolute value than it need be.
A few years later, Lieb and Thirring (1975) were

able to figure out how to efficiently use the crucial
physics of the problem (Onsager’s screening, and
also that the electrons are fermions and are rep-
resented by antisymmetric wave functions). As a
consequence, the proof was now about ideas, in-
volved comparatively little calculation, and could
be readily seen in outline, and the proportionality
constant was about 10 rather than 1014. Their cru-
cial move was to employ the Thomas-Fermi model
of an atom: the many electrons in an atom exist in
a field due to their own charges (as well as that of
the nucleus), and hence one seeks a self-consistent
field.

Dyson and Lenard had all these ideas except for
Thomas-Fermi. But in their pioneering proof, 
getting to the endpoint was avowedly more 
important than efficiency or controlling the size of
the proportionality constant, −E∗. Theirs was a
first proof of a fundamental fact of our world. By
the way, in retrospect, the Dyson-Lenard proof is
rather less long than it once appeared, its various
manipulations along the way rather more rich with
meaning.

Over the next decades a variety of rigorous
proofs were provided of various fundamental facts
about our world, many of which proofs are lengthy
and complex and involve much calculation.

(1) Thermodynamics. One would like to be able
to estimate the binding energy of bulk matter, the
energy required to break it up into isolated atoms,
as being proportional to the number of atoms.
Such an estimate justifies thermodynamics, with
its separation of intensive variables (such as tem-
perature) and extensive variables (such as volume
or number of particles). In a remarkable and lengthy
proof, Lebowitz and Lieb (1972) provided a calcu-
lation of the asymptotic form of the binding energy
of bulk matter, E ≈ −AN, where N is the number
of atoms—just the required form. Along the way,
they employed the Dyson-Lenard result.

In all of these calculations, one technical prob-
lem is to figure out how to break up space into balls
or boxes, fitting the atoms into those containers
(“balls into boxes”). For example, Lebowitz and
Lieb develop a Swiss-cheese decomposition: smaller
balls fit into the interstices between larger balls.

(2) A gas of atoms. One would like to prove that
at a suitable temperature and pressure, atoms
form, and one has a gas of such atoms. Charles Fef-
ferman (1983–1986) provides the proof with all of
its “gruesome details”, as he refers to the latter en-
deavor. First, he employs a technology he developed
for solving partial differential equations—what he
called “the uncertainty principle”, the idea that the
phase space of x and d/dx might be divided into
suitably shaped boxes on which the differential

equation is trivial—and then fill balls of phase
space with these boxes, fitting “boxes into balls”.
Along the way, he redoes the Lieb-Thirring proof.

What is notable is his technical definition of an
atom and, later, of a gas of atoms, a mathematically
precise way of describing a physical state, one that
would allow him to make mathematical progress
on the problem. What is remarkable, and this is true
for much of Fefferman’s work, is his capacity to
push through a lengthy calculation.

In order to complete the proof of “the atomic
nature of matter” (that a gas of atoms forms), 
Fefferman then needs an even better estimate for
the proportionality constant for the stability of
matter than was provided by Lieb and Thirring, and
with de la Llave and Trotter he provides a lengthy
proof and an exact numerical calculation for E∗.
(Lieb and his followers have provided another route
to such better constants.) So far, it should be noted,
the calculated E∗ is still about two times too big
for Fefferman’s purposes and given what we expect.

(3) An isolated atom. Finally, one would like to
estimate the ground state energy of a large isolated
atom. The hydrogen atom’s proverbial 13.6 elec-
tron-volts is the only calculation one might make
in closed form (one of the first calculations in a
quantum mechanics course). For larger atoms one
must use approximations in which the errors are
not in general rigorously known. In a series of cal-
culations, some rigorous, some merely physical, by
Lieb and Simon, Scott, Dirac, and Schwinger, a good
idea of the asymptotic formula for the ground
state energy in terms of Z , the atomic charge, is
given in terms of a series in Z1/3:Z7/3, Z6/3, Z5/3 .
What Fefferman and Seco (1990–1996) provide in
something like 800 pages of proof is a rigorous de-
rivation of this formula with a rigorous estimate
of its error, O(Z5/3−1/a) . Whole new technologies
for partial differential equations are developed
along the way, and even the paper that brings these
all together is almost two hundred pages in length.
Their achievement is again the ability to divide up
the problem into tractable parts, to orchestrate
the parts so that they work together, and to be able
to tell a story of the proof (in this case, in fourteen
pages). There have been subsequent simplifica-
tions for parts of the Fefferman-Seco derivation, but
much of the calculation remains lengthy and com-
plicated. And Córdoba, Fefferman, and Seco have
found the next term in the asymptotic expansion.

Lengthy calculation demands enormous tech-
nical skill, courage, and insight and usually de-
mands herculean inventions along the way. But
sometimes it is the only way to make progress on
a problem. I have chosen examples in which the
lengthy calculations also lead to analyses of every-
day notions, such as a gas of atoms.
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Mellin transform (a Fourier-like transform) is the
theta function, originally found by Fourier in 
solving the heat equation. Theta has wonderful 
algebraic properties, such as automorphy (trans-
formations of the function, that is, of its argu-
ment, can be expressed in terms of the function 
itself) and a functional equation that defines it. And
(1), analytically, the spectrum of the zeta function
(its zeros) is rich with information about the prime
numbers. A simple example of the threefold anal-
ogy is found in the sine function: its series expan-
sion packages the factorials of the odd numbers;
sin Mx is expressible in terms of the trigonomet-
ric functions themselves (say, sin x and cos x);
and the periodicity of the sine function (its spec-
trum) more or less defines it. Weil points out that
the analogy continues to be productive, his later
having proved the Riemann hypothesis in the 
algebraic column being a case in point.

In the twentieth century, mathematicians dis-
covered that attaching group representations (or
systems of matrices) to objects would often lead
to progress in understanding those objects. Lang-
lands’s very great contribution (1960s ff) was to 
suggest, following Emil Artin, that attaching a
group representation to the algebraic or automor-
phy column would turn out to be very productive
for understanding the arithmetic column. The idea
is to extend the analogy of theta functions to zeta
functions into a much more complicated realm.
Moreover, what might be impossibly difficult to
prove from the point of view of one column is
readily built in in another, much as theta’s auto-
morphy and functional equation leads to zeta’s
functional equation.

While the mathematicians worked at their anal-
ogy, physicists were solving a simple classical
model of a ferromagnet using statistical mechan-
ics: the Ising model in two dimensions, up-down
spins arranged on a, say, rectangular lattice. The
spins’ interaction is local and simplified. The first
exact solution was provided by Onsager in 1944,
using a combination of Clifford or quaternion 
algebra and elliptic functions. Over the subsequent
sixty years, physicists have provided many differ-
ent solutions of the Ising model. (One solution
refers to itself as the “399th solution”.) Of course,
they all get the same result for the partition func-
tion (in effect, the zeta function for this problem).
When we examine the solutions, we discover that
we might group the solutions into those that are
arithmetic and combinatorial, those that are alge-
braic and automorphic, and those that are ana-
lytic or transcendental concerned with the zeros
of the partition function. Moreover, from the ini-
tial solutions of the Ising model by Kramers and
Wannier and by Montroll (1941), matrices played
a crucial role in many of the solutions. They were
in fact group representations, although they were

Analogy
Some time ago, Pólya showed that analogy plays a
vital role in mathematical work. Sometimes those
analogies are provably true, such as the analogy be-
tween ideals and varieties: polynomials and their
properties, considered as algebraic objects, and
the graphs of those polynomials and their prop-
erties, considered as geometric objects. At other
times, the analogies are not provable but provide
for ongoing research programs for hundreds of
years. Here I want to describe a syzygy, an analogy
of analogies, between mathematical work and work
in mathematical physics. What the physicists find,
the mathematicians would expect, although the
mathematicians could never have predicted such
an analogy in the physical realm without the physi-
cists’ work.

For the mathematicians, I am thinking of the
Riemann-Dedekind/Weber-Weil-Langlands analogy
of analysis, algebra, and arithmetic. I will call it the
Dedekind-Weil analogy, for short. Dedekind and
Weber tried to derive Riemann’s results concerning
the transcendental realm (that is, referring to the
realm of the continuous)—think here of Riemann
surfaces and the Riemann-Roch theorem—using
rigorous algebraic methods with no intuitions about
continuity. Again, could there be a useful analogy
between curves or surfaces and algebra? They were
guided by what was known algebraically about
numbers (number theory); in fact, they were able
to translate those concepts and results to the 
realm of polynomials, and so were able to alge-
braicize Riemann’s transcendental point of view.
Subsequently, Hilbert and Weil and others extended
the analogy.

André Weil describes the analogy in a particu-
larly poignant way in a long letter he wrote from
prison to his sister, Simone, in 1940. It is a re-
markable document, combining a rich mixture of
mathematics, a notional history of the analogy, re-
flections on how Weil himself does mathematics,
and analogies of the interchange among the mo-
ments of the analogy to incest and war. I urge the
reader to get hold of it (either in the original French
in the first volume of Weil’s Collected Papers, or in
English translation in my Doing Mathematics).

Weil refers to three columns, in analogy with the
Rosetta Stone’s three languages and their arrange-
ment, and the task is to “learn to read Riemann-
ian”. Given an ability to read one column, can you
find its translation in the other columns? In the first
column are Riemann’s transcendental results and,
more generally, work in analysis and geometry. In
the second column is algebra, say polynomials with
coefficients in the complex numbers or in a finite
field. And in the third column is arithmetic or num-
ber theory and combinatorial properties. So, for ex-
ample: (Column 3) Arithmetically, the zeta function
packages the prime numbers. (2) Algebraically, its



1230 NOTICES OF THE AMS VOLUME 51, NUMBER 10

What Do Mathematicians Do?
Words such as convention, analyzing everyday no-
tions, calculation, and analogy might be used to de-
scribe activities other than mathematics. And it is
just in this sense that we might give outsiders a
sense of what mathematicians do. At the same
time, those notions have very specific meanings for
mathematical work. And it is just in this latter
sense that we might describe mathematics to our-
selves. The shared set of terms allows us to con-
nect our highly technical and often esoteric work
with the work of others. Mathematicians show why
some ways of thinking of the world are the right
ways, they explore our everyday intuitions and
make them rather more precise, they do long and
tortuous calculations in order to reveal the conse-
quences of their theories, and they explore analo-
gies of one theory with others in order to find out
the truths of the mathematical world.

I would also claim that, in a very specific sense,
mathematical work is a form of philosophical analy-
sis. The mathematicians and mathematical physi-
cists find out through their rigorous proofs just
which features of the world are necessary if we are
to have the kind of world we do have. For exam-
ple, if there is to be stability of matter, electrons
must be fermions. The mathematicians show just
what we mean by everyday notions such as an 
average or nearbyness. And mathematics connects
diverse phenomena through encompassing theo-
ries and speculative analogies.

So when you are asked, What do mathemati-
cians do?, you can say: I like to think we are just
like lawyers or philosophers who explore the mean-
ings of our everyday concepts, we are like inven-
tors who employ analogies to solve problems, and
we are like marketers who try to convince others
they ought to think “Kodak” when they hear “pho-
tography” (or the competition, who try to convince
them that they ought to think “Fuji”). Moreover,
some of the time, our work is not unlike solving a
two-thousand-piece jigsaw puzzle, all in one color.
That surely involves lots of scut work, but also 
ingenuity along the way in dividing up the work,
sorting the pieces, and knowing that it often makes
sense to build the border first.
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not taken as such. They were taken to be matrices
that conveniently did the combinatorics, and it
was the algebraic properties of those matrices that
allowed for the Onsager solution. No one worried
much about what those matrices were a group rep-
resentation of, although Onsager surely had many
insights. The trace of those transfer matrices was
the partition function of interest. Moreover, once
again, there were functional equations that allowed
for the solution for the partition function, and
there were the scaling symmetries and automor-
phies characteristic of theta or elliptic functions.
The latter were eventually canonized in the renor-
malization group techniques of Wilson (1960s,
1970s).

Parenthetically, I should note that Onsager’s
original paper might well be another candidate for
a lengthy calculation. Subsequent calculations of
asymptotic properties of the Ising model by Wu and
McCoy (1966 ff) and collaborators are impressive
for their length and complexity and for the courage
needed to carry them through. What is striking is
that at the end of one such calculation, the Painlevé
transcendents appear, and that appearance has
since become significant for much of contemporary
mathematics and mathematical physics.

It would seem that there are two analogies here.
The Dedekind-Weil analogy has been worked on as
an analogy for 150+ years, most recently in its
connection with representation theory in the Lang-
lands Program. The physicists have been exactly
solving the Ising model in two dimensions for more
than sixty years and have produced a wide variety
of solutions, employing what are in effect group
representations from the beginning. Those various
solutions would seem to be naturally described
and classified using the categories provided by the
mathematicians. The analogy the mathematicians
seek to develop generically is developed and proven
in its particular realm as a matter of course by the
everyday work of the physicists. What the mathe-
maticians seek, the physicists by the way provide
an example of. The multiplicity of the physicists’
solutions is given meaning and order by the math-
ematicians’ hard-won concepts. I am unsure
whether the physicists’ analogy is provably the
same as the mathematicians’. But surely the
Dedekind-Weil analogy provides a way of thinking
of diverse phenomena as being naturally connected,
rather than their being merely many ways of solv-
ing a problem.

These analogies and the analogy between them
(the syzygy) organize an enormous amount of in-
formation, suggest facts in one realm that might
be true in another, and illuminate concepts among
the columns and the analogies.
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