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Topological Fluid
Dynamics

Boris Khesin

T
opological fluid dynamics is a young
mathematical discipline that studies
topological features of flows with com-
plicated trajectories and their applica-
tions to fluid motions, and develops

group-theoretic and geometric points of view on
various problems of hydrodynamical origin. It is sit-
uated at a crossroads of several disciplines, in-
cluding Lie groups, knot theory, partial differential
equations, stability theory, integrable systems, geo-
metric inequalities, and symplectic geometry. Its
main ideas can be traced back to the seminal 1966
paper [1] by V. Arnold on the Euler equation for an
ideal fluid as the geodesic equation on the group
of volume-preserving diffeomorphisms.

One of the most intriguing observations of topo-
logical fluid dynamics is that one simple con-
struction in Lie groups enables a unified approach
to a great variety of different dynamical systems,
from the simple (Euler) equation of a rotating top
to the (also Euler) hydrodynamics equation, one of
the most challenging equations of our time.

A curious application of this theory is an ex-
planation of why long-term dynamical weather
forecasts are not reliable: Arnold’s explicit esti-
mates related to curvatures of diffeomorphism
groups show that the earth weather is essentially
unpredictable after two weeks as the error in the
initial condition grows by a factor of 105 for this
period, that is, one loses 5 digits of accuracy. (Iron-
ically, 15 day(!) weather forecasts for any country
in the world are now readily available online at
www.accuweather.com.) Another application is
related to the Sakharov–Zeldovich problem on
whether a neutron star can extinguish by “re-
shaping” and turning to radiation the excessive
magnetic energy.

In this introductory article we will touch on
these and several other purely mathematical
problems motivated by fluid mechanics, referring

the interested reader to the book [4] for further de-
tails and the extensive bibliography.

Energy Relaxation

The Minimization Problems
The first problem we are going to discuss is re-

lated to topological obstructions to energy relax-
ation of a magnetic field in a perfectly conducting
medium. A motivation for this problem is the fol-
lowing model of a magnetic field of a star. Imag-
ine that the star is filled with some perfectly con-
ducting medium (say, plasma), which carries a
“frozen in” magnetic field. Then the topology of the
field’s trajectories cannot change under the fluid
flow, but its magnetic energy can. The conducting
fluid keeps moving (due to Maxwell’s equations)
until the excess of magnetic energy over its possi-
ble minimum is fully dissipated (this process is
called “energy relaxation”). It turns out that mutual
linking of magnetic lines may prevent complete dis-
sipation of the magnetic energy. The problem is to
describe lower bounds for energy of the magnetic
field in terms of topological characteristics of its
trajectories.

More precisely, consider a divergence-free (“mag-
netic”1) vector field ξ in a (simply connected)
bounded domain M ⊂ R3 tangent to its boundary.
By the energy of the field ξ we will mean the square
of its L2-norm, i.e., the integral

E(ξ) =
∫
M

(ξ, ξ)d3x ,

where (., .) is the Euclidean inner product on M .
Given a divergence-free field ξ, the problem is to
find the minimum energy (or to give an appropri-
ate lower bound for) infh E(h∗ξ) of the push-forward
fields h∗ξ under the action of all volume-
preserving diffeomorphisms h of M .

A topological obstruction to the energy relax-
ation can be seen in the example of a magnetic field
confined to two linked solid tori. Assume that the

Boris Khesin is professor of mathematics at the University
of Toronto. His email address is khesin@math.
toronto.edu.

1Note that magnetic fields are always divergence-free
due to the absence of magnetic charges.
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field vanishes outside those tubes and that the
field trajectories are all closed and oriented along
the tube axes inside. To minimize the energy of a
vector field with closed orbits, one has to shorten
the length of most trajectories. This, however, leads
to a fattening of the solid tori (because the acting
diffeomorphisms are volume-preserving). For a
linked configuration, as in Figure 1, the solid tori
prevent each other from endless fattening and
therefore from further shrinking of the orbits.
Therefore, heuristically, in the volume-preserving
relaxation process the magnetic energy of the field
supported on a pair of linked tubes is bounded from
below and cannot attain arbitrarily small values.

The topological obstruction is even more evident
in the two-dimensional case of the energy mini-
mization problem. Let M be a bounded domain in
R2. The problem is to describe the infimum and the
minimizers of the Dirichlet integral

E(u) =
∫
M

(∇u,∇u) d2x

among all the smooth functions u (in the domain
M) that can be obtained from a given function u0

by the action of area-preserving diffeomorphisms
of M to itself.

To see that this is the two-dimensional coun-
terpart of the above 3D problem, one considers the
skew gradient J∇u , the pointwise rotation by π/2
of the true gradient ∇u, on which the functional E
has, of course, the same value. Then u can be re-
garded as a Hamiltonian (or stream) function of the
field J∇u and its definition is invariant: Any area-
preserving change of coordinates for the function
u implies the corresponding diffeomorphism ac-
tion on the field J∇u .

For instance, consider a function u vanishing
on the boundary of a 2D disk M = {x2 + y2 ≤ 1}
and having a single critical point inside. Then 
the minimum of the Dirichlet functional is attained
on the function u0 that depends only on the 
distance to the center of the disk and whose 
sets {(x, y) | u0(x, y) ≤ c} of smaller values have
the same areas as those of the initial function u, 
see [2]. This can be shown by applying the Cauchy–
Schwarz and isoperimetric inequalities. If the 
initial function has several critical points (say, two
maxima and a saddle point), the situation is more
subtle and far from being solved. P. Laurence and
E. Stredulinsky (2000) showed the existence of
weak minimizers with some topological constraints.
Numerical experiments suggest various types of
(nonsmooth) minimizers depending on the steep-
ness of the initial function u.

What Is Helicity?
To describe the first obstruction to energy min-

imization in 3D we need the following notion.

Definition (H. K. Moffatt 1969, [10]). The helicity
of the field ξ in a domain M ⊂ R3 is the number

H (ξ) =
∫
M

(ξ, curl−1ξ) d3x,

where the vector field curl−1ξ is a divergence-free
vector potential of the field ξ, i.e., ∇× (curl−1ξ) =
ξ and div(curl−1ξ) = 0.

In the above example of a divergence-free field
ξ confined to two narrow linked flux tubes, the he-
licity can be found explicitly. Suppose that the tube
axes are closed curves C1 and C2, the fluxes of the
field in the tubes are Flux1 and Flux2, Figure 1. As-
sume also that there is no net twist within each tube
or, more precisely, that the field trajectories foli-
ate each of the tubes into pairwise unlinked circles.
One can show that the helicity invariant of such a
field is given by

H (ξ) = 2 lk(C1, C2) · |Flux1| · |Flux2|,

where lk(C1, C2) is the (Gauss) linking number of
C1 and C2, which explains the term “helicity” coined
in [10]. Recall that the number lk(C1, C2) for two 
oriented closed curves is the signed number of the
intersection points of one curve with an arbitrary
oriented surface spanning the other curve.

Although helicity was defined above by using the
Riemannian metric on M , it is actually a topologi-
cal characteristic of a divergence-free vector field,
depending only on the choice of a volume form on
the manifold. Indeed, consider a simply connected
manifold M (possibly with boundary) with a volume
form µ, and let ξ be a divergence-free vector field
on M (tangent to the boundary). The divergence-
free condition means that the Lie derivative of µ
along ξ vanishes: Lξµ = 0, or, which is the same,
the substitution iξµ =: ωξ of the field ξ into the
3-form µ is a closed 2-form: dωξ = 0. On a simply
connected manifold M this means that ωξ is exact:
ωξ = dα for some 1-form α, called a potential. (If
M is not simply connected, we have to require that
the field ξ is null-homologous, i.e., that the 2-form
ωξ is exact.)

Definition (V. Arnold 1973, [2]). The helicity H (ξ)
of a null-homologous field ξ on a three-dimensional
manifold M equipped with a volume element µ is
the integral of the wedge product of the form
ωξ := iξµ and its potential:

H (ξ) =
∫
M
dα∧α, where dα =ωξ.

An immediate consequence of this purely topo-
logical (metric-free) definition is the following

Theorem. The helicity H (ξ) is preserved under the
action on ξ of a volume-preserving diffeomorphism
of M .
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In this sense H (ξ) is a topological invariant: it
was defined without coordinates or a choice of
metric, and hence every volume-preserving dif-
feomorphism carries a field ξ into a field with the
same helicity. Thus for magnetic fields frozen into
(and hence, transported by) the medium, their he-
licity is preserved. Furthermore, the physical sig-
nificance of helicity is due to the fact that it appears
as a conservation law not only in magnetohydro-
dynamics (L. Woltjer 1958) but also in ideal fluid
mechanics (H. K. Moffatt 1969): Kelvin’s law implies
the invariance of helicity of the vorticity field for
an ideal fluid motion (cf. the discussion of con-
served quantities below).

V. Arnold proposed the following ergodic in-
terpretation of helicity in the general case of any
divergence-free field (when the trajectories are not
necessarily closed or confined to invariant tori) as
the asymptotic Hopf invariant, i.e., the average link-
ing number of the field’s trajectories. Let ξ be a
divergence-free field on M . We will associate to
each pair of points in M a number that character-
izes the “asymptotic linking” of the ξ-trajectories
passing through these points. Given any two points
x1, x2 in M and two large numbers T1 and T2, we
consider “long segments” of the trajectories of ξ
issuing from x1 and x2. For each of these two long
trajectory segments, connect their endpoints by the
shortest geodesics to obtain two closed curves, Γ1
and Γ2; see Figure 2. Assume that these curves do
not intersect (which is true for almost all pairs
x1, x2 and for almost all T1, T2). Then the linking
number lkξ(x1, x2;T1, T2) := lk(Γ1, Γ2) of the curves
Γ1 and Γ2 is well defined.

Definition. The asymptotic linking number of a
pair of trajectories of the field ξ issuing from the
points x1 and x2 is defined as the limit

λξ(x1, x2) = lim
T1,T2→∞

lkξ(x1, x2;T1, T2)
T1 · T2

,

where T1 and T2 are to vary so that Γ1 and Γ2 do
not intersect.

(T. Vogel (2003) showed that this limit exists as
an element of the space L1(M ×M) of the Lebesgue-
integrable functions and is independent of the 
system of geodesics, i.e., of the Riemannian 
metric, universally for any divergence-free field ξ.)

Theorem (V. Arnold 1973, [2]). For a divergence-free
vector field ξ on a simply connected manifold M with
a volume element µ, the average self-linking of tra-
jectories of this field, i.e., the asymptotic linking
number λξ(x1, x2) of trajectory pairs integrated
over M ×M, is equal to the field’s helicity:∫

M

∫
M

λξ(x1, x2) µ1µ2 =H (ξ).

This elegant result prompted numerous gener-
alizations (see the survey in [4]).
Energy Estimates

It turns out that a nonzero helicity (or average
self-linking of the trajectories) of a field ξ pro-
vides a lower bound for the energy.

Theorem. [2] For a divergence-free vector field ξ

E(ξ) ≥ C · |H (ξ)|,

where C is a positive constant depending on the
shape and size of the compact domain M .

The constant C can be taken as the reciprocal
of the norm of the compact operator curl−1, in the
definition of helicity, on an appropriate space of
vector fields. For instance, for any relaxation of the
field confined to a pair of tori, the energy has a pos-
itive bound via helicity, once the linking number
of tori is nonzero.

However, heuristically, there should be a lower
bound for the energy of a field that has at least one
linked pair of solid tori, as in the example above,
even if the total helicity vanishes. One of the best
results in this direction is

Figure 2. The long segments of the trajectories
are closed by the “short paths”.

C2

C1

Flux1 Flux2

Figure 1. C1, C2 are axes of the tubes; Flux1, Flux2

are the corresponding fluxes.
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precisely “frozen in”, but rather “diffuse their topol-
ogy”, yet this problem exhibits a number of curi-
ous topological features; see [4].
Extremals and Steady Fluid Flows

One can explicitly describe the extremals in the
above minimization problem. It turns out that
these extremals appear in various parts of ideal
fluid dynamics and magnetohydrodynamics.

Theorem. [2, 3] The extremals of the above energy
minimization problem are those divergence-free
vector fields ξ on M which commute with their 
vorticities curl ξ . Moreover, these extremals are 
solutions of the stationary Euler equation in the 
domain M :

(ξ · ∇)ξ = −∇p.

In 3D one can reformulate the above condition
this way: the cross-product of the fields ξ and
curl ξ is a potential vector field, i.e., ξ × curl ξ =
−∇f. The extremal fields ξ have a very special
topology [2, 3]. For instance, for a closed manifold
M, every noncritical set of the function f is a torus,
while the commuting fields ξ and curl ξ are 
tangent to these tori and define the R2 action on
them. This way a steady 3D flow looks like a com-
pletely integrable Hamiltonian system with two
degrees of freedom. In the case of M with bound-
ary, the noncritical levels of f must be either tori
or annuli, while the flow lines of ξ on the annuli
are all closed.

Of special interest is the case where ξ is an
eigen field for the curl operator: curl ξ = λξ. (This
corresponds to a constant function f, or to collinear
fields ξ and curl ξ .) For instance, the so-called ABC
flows on a 3D torus are eigen fields for the curl 
operator. They exhibit chaotic behavior and draw
special attention in fast dynamo constructions. 
Restrictions on the geometry and topology of 
the curl eigen fields on manifolds with boundary
were considered by J. Cantarella, D. DeTurck, and
H. Gluck (2000).

In the 2D fluid, the extremal fields, or station-
ary solutions of the Euler equation, obey the 
following condition: The gradients of the functions
u and ∆u are collinear at every point of the 
Riemannian manifold M . In other words, the ex-
tremal functions u have the “same” level curves 
as their Laplacians: Locally there is a function
F : R → R such that ∆u = F (u). This can be thought
of as a two-dimensional reformulation of the
collinearity of the field and its vorticity.

Euler Equations and Geodesics

Example: Fluid Motion
Imagine an incompressible fluid occupying a

domain M in Rn. The fluid motion is described by
a velocity field v(t, x) and a pressure field p(t, x)
which satisfy the classical Euler equation:

Theorem (M. Freedman and Z. X. He 1991). Suppose
a divergence-free vector field ξ in R3 has an in-
variant torus K forming an nontrivial knot K. Then

E(ξ) ≥
(

16
π · Vol(K)

)1/3
· |Flux ξ|2 · (2 · genus(K)− 1),

where Flux ξ is the flux of ξ through a cross-
section of K, Vol(K) is the volume of the solid
torus, and genus(K) is the genus of the knot K.

Recall that for any knot its genus is the minimal
number of handles of a spanning (oriented) surface
for this knot. For an unknot the genus is 0, since
one can take a disk as a spanning surface. For a non-
trivial knot one has genus(K) ≥ 1 and, therefore,
the above energy is bounded away from zero:
E(ξ) > 0.

Note that this result has a wide range of applic-
ability, as there is no restriction on the behavior of
the field inside the invariant torus. In particular, it
is sufficient for the field to have at least one closed
knotted trajectory of elliptic type, i.e., a trajectory
whose Poincaré map has two eigenvalues of 
modulus 1. Then the KAM theory implies that a
generic elliptic orbit is confined to a set of nested
invariant tori, and hence the energy of the corre-
sponding field has a nonzero lower bound. The
following question still remains one of the main
challenges in this area:

Question. Does the presence of any nontrivially
knotted closed trajectory (of any type: hyperbolic,
nongeneric, etc.) or the presence of chaotic behav-
ior of trajectories for a field provide a positive lower
bound for the energy (even if the averaged linking
of all trajectories totals zero) and therefore prevent
a relaxation of the field to arbitrarily small energies?

Remark. The rotation field in the three-dimensional
ball is an example of an opposite type: all its tra-
jectories are pairwise unlinked. It was suggested by
A. Sakharov and Ya. Zeldovich (in the 1970s) and
proved by M. Freedman (1991), that this field can
be transformed by a volume-preserving diffeo-
morphism to a field whose energy is less than any
given ε. Physically this means that a neutron star
with the rotation magnetic field can radiate all of
its magnetic energy!

Somewhat opposite to the above minimization
problem is the fast dynamo theory, which studies
the growth of magnetic field in a given plasma
flow. A bit more precisely, this theory regards the
plasma velocity as given (stationary, periodic, etc.),
neglecting the reciprocal (Lorentz) action of the
magnetic field on the plasma velocity. It studies the
rate of growth of the magnetic energy in time for
sufficiently small magnetic diffusivity. The nonzero
diffusivity means that magnetic field lines are not
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(1) ∂tv + (v · ∇)v = −∇p,
where div v = 0 and the field v is tangent to the
boundary of M. The function p is defined uniquely
modulo an additive constant by the condition that
v has zero divergence. (Note that stationary Euler
flows are defined by the equation (v · ∇)v = −∇p,
discussed in the preceding section.)

The flow (t, x) → g(t, x) describing the motion of
fluid particles is defined by its velocity field v(t, x) :

∂tg(t, x) = v(t, g(t, x)), g(0, x) = x.

The chain rule immediately gives ∂2
t g(t, x) =

(∂tv + (v · ∇)v)(t, g(t, x)) ,  and hence the Euler 
equation is equivalent to

∂2
t g(t, x) = −(∇p)(t, g(t, x)),

while the incompressibility condition is
det(∂xg(t, x)) = 1. The latter form of the Euler equa-
tion (for a smooth flow g(t, x)) says that the accel-
eration of the flow is given by a gradient and hence
it is L2-orthogonal to the set of volume-preserving
diffeomorphisms (or, rather, to its tangent space
of divergence-free fields). In other words, the fluid
motion g(t, x) is a geodesic line on the set of such
diffeomorphisms of the domain M with respect to
the induced L2-metric. The same equation describes
the motion of an ideal incompressible fluid filling
an arbitrary Riemannian manifold M equipped with
a volume form µ [1, 6]. In the latter case v is a
divergence-free vector field on M , while (v · ∇)v
stands for the Riemannian covariant derivative of
v in the direction of itself.

Remark. Note that the dynamics of an ideal fluid
is, in a sense, dual to the Monge-Kantorovich mass
transport problem, which asks for the most eco-
nomical way to move, say, a pile of sand to a pre-
scribed location. Mass (or density) is transported
most effectively by gradient vector fields. The lat-
ter are L2 -orthogonal to divergence-free ones,
which, in turn, preserve volume (or mass). The cor-
responding transportation (or Wasserstein) metric
on the space of densities and the L2-metric on
volume-preserving diffeomorphisms can be viewed
as a natural extensions of each other (F. Otto 2001,
[5]).

Geodesics on Lie Groups and Equations of
Mathematical Physics

V. Arnold (1966) [1] proposed the following gen-
eral framework for the Euler equation on an
arbitrary group, which describes the geodesic flow
with respect to a suitable one-sided invariant Rie-
mannian metric on this group.

Consider a (possibly infinite-dimensional) Lie
group G , which can be thought of as the configu-
ration space of some physical system. (Examples
from [1]: SO(3) for a rigid body or the group

SDiff(M) of volume-preserving diffeomorphisms
for an ideal fluid filling a domain M .) The tangent
space at the identity of the Lie group G is the cor-
responding Lie algebra g. Fix some (positive defi-
nite) quadratic form, the energy, on g and extend
it through right translations to the tangent space
at each point of the group (the “translational sym-
metry” of the energy). This way the energy defines
a right-invariant Riemannian metric on the group
G . The geodesic flow on G with respect to this met-
ric represents the extremals of the least action
principle, i.e., the actual motions of the physical sys-
tem. (For a rigid body one has to consider left
translations, but in our exposition we stick to the
right-invariant case in view of its applications to
the groups of diffeomorphisms.)

Given a geodesic on the Lie group with an ini-
tial velocity v(0), we can right-translate its veloc-
ity vector at any moment t to the identity of the
group. This way we obtain the evolution law for v(t)
given by a (nonlinear) dynamical system
dv/dt = F (v) on the Lie algebra g.

Definition. The system on the Lie algebra g, de-
scribing the evolution of the velocity vector along a
geodesic in a right-invariant metric on the Lie group

g

v(0)

g(t)
e

G

Figure 3. The vector v(0) in the Lie algebra g is the velocity at
the identity e of a geodesic g(t) on the Lie group G .

Figure 4. Energy levels on a coadjoint orbit of
the Lie algebra so(3) of a rigid body.



G , is called the Euler equation corresponding to
this metric on G .

Many conservative dynamical systems in math-
ematical physics describe geodesic flows on ap-
propriate Lie groups. In the table above we list sev-
eral examples of such systems to emphasize the
range of applications of this approach. The choice
of a group G (column 1) and an energy metric E
(column 2) defines the corresponding Euler equa-
tion (column 3). This list is by no means complete.
There are many other interesting conservative sys-
tems, e.g., the super-KdV equations or equations
of gas dynamics. We refer to [4] for more details.

Remark. It is curious to note that the similarity
pointed out by V. Arnold between the Euler top on
the group SO(3) and Euler ideal fluid equations on
SDiff(M) has a “magnetic analog”: a similarity be-
tween the Kirchhoff and magnetohydrodynamics
equations, which are related to the semidirect prod-
uct groups. The Kirchhoff equation for a rigid body
dynamics in a fluid is associated with the group
E(3) = SO(3)* R3 of Euclidean motions of R3. The
latter are described by pairs (a, b) consisting of a
rotation a ∈ SO(3) and a translation by a vector
b ∈ R3. Similarly, magnetohydrodynamics is gov-
erned by the group SDiff(M)* SVect(M), where 
elements (g, B) consist of a fluid configuration g
and a magnetic field B (S. Vishik and F. Dolzhan-
skii 1978, [8]).

Remark. The differential-geometric description of
the Euler equation as a geodesic flow on a Lie group
has a Hamiltonian reformulation. Namely, identify
the Lie algebra g and its dual with the help of the
energy quadratic form E(v) = 1

2〈v, Iv〉. This iden-
tification I : g → g∗ (called the inertia operator) 
allows one to rewrite the Euler equation on the
dual space g∗. It turns out that the Euler equation
on g∗ is Hamiltonian with respect to the natural
Lie-Poisson structure on the dual space. This means,
in particular, that the trajectories of this 
dynamical system on the dual space are always 
tangent to the orbits of coadjoint action of the

Group Metric Equation

SO(3) < ω, Iω > Euler top
SO(3)* R3 quadratic forms Kirchhoff equations for a body in a fluid

SO(n) Manakov′s metrics n−dimensional top
Diff(S1) L2 Hopf (or, inviscid Burgers) equation

Virasoro L2 KdV equation
Virasoro H1 Camassa−Holm equation
Virasoro Ḣ1 Hunter− Saxton (or Dym) equation
SDiff(M) L2 Euler ideal fluid
SDiff(M) H1 Averaged Euler flow

SDiff(M)* SVect(M) L2 + L2 Magnetohydrodynamics
Maps(S1, SO(3)) H−1 Heisenberg magnetic chain
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2Although one can extract more subtle ergodic invariants
from the asymptotic linking of trajectories of curl v.

group, while invariants of the group action (called
Casimir functions) provide a source of first inte-
grals for the Euler equation.

Applications of the Geometric Approach

Conservation Laws in Ideal Hydrodynamics
As the first application of the group-geodesic

point of view, developed in [1], consider the con-
struction of first integrals for fluid motion on man-
ifolds of various dimensions. The Euler equation
for an ideal fluid (1) filling a three-dimensional
simply connected manifold has the helicity (or
Hopf) invariant discussed in the first section of this
article. This invariant describes the mutual linking
of the trajectories of the vorticity field curl v , and
in the Euclidean space R3 it has the form

J(v) :=H (curl v) =
∫

R3
(curl v, v) d3x .

Besides the energy integral, the helicity is essen-
tially the only differential invariant for 3D flows
(D. Serre 1979).2

On the other hand, for an ideal 2D fluid one has
an infinite number of conserved quantities. For
example, for the standard metric in R2 there are
the enstrophy invariants

Jk(v) :=
∫

R2
(curl v)k d2x

=
∫

R2
(∆ψ)k d2x for k = 1,2, . . . ,

where curl v := ∂v1
∂x2
− ∂v2

∂x1
is the vorticity function,

the Laplacian of the stream function ψ of the flow.
It turns out that helicity-type integrals do exist

for all odd-dimensional ideal fluid flows, as do 
enstrophy-type integrals for all even-dimensional
flows. (In a sense, the situation here is similar to the
dichotomy of contact and symplectic geometry in
odd- and even-dimensional spaces.) To describe
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Stability of Fluid Motion
The following stability experiment was appar-

ently tried by everyone: watch the rotation of a 
tennis racket (or a book) thrown into the air. One
immediately observes that the racket rotates sta-
bly about the axis through the handle, as well as
the axis orthogonal to the racket surface. How-
ever, a tennis racket thrown up into the air rotat-
ing about the third axis (parallel to the surface, but
orthogonal to the handle) makes unpredictable
wild moves.

To describe the free motion of a rigid body, look
at its inertia ellipsoid. In general, it is not an ellip-
soid of revolution, and it “approximates” the shape
of the body. The stable stationary rotations about
the two axes correspond to the longest and short-
est axes of the inertia ellipsoid, while the rotation
about the middle axis is always unstable. It turns out
that our geodesic point of view is helpful in 
detecting stability of the corresponding stationary
solutions, and, in the particular case of fluid motions,
it yields sufficient conditions for stability 
in 2D ideal hydrodynamics (V. Arnold 1969, see [3]).

Suppose a (finite-dimensional) dynamical system
has both an invariant foliation and a first integral
E. Consider a point x0 which is critical for the re-
striction of E to one of the leaves and suppose 
that the foliation is regular at that point. One can
show that x0 is a (Lyapunov) stable stationary point
for the dynamical system, provided that the sec-
ond differential of E restricted to the leaf con-
taining x0 is positively or negatively defined. (Note
that the converse is not true: a sign-indefinite sec-
ond variation does not, in general, imply instabil-
ity, as an example of a Hamiltonian system with
E =ω1(p2

1 + q2
1)−ω2(p2

2 + q2
2) shows.)

A similar consideration for any Lie algebra sug-
gests the following sufficient condition for stabil-
ity. As we discussed above, the Euler equation on
a dual Lie algebra is always Hamiltonian, and the
corresponding dynamical system keeps the coad-
joint orbits invariant. These orbits will play the
role of the foliation, while the Hamiltonian func-
tion (the energy) is the first integral E. In the case
of the rigid body, the coadjoint orbits of the alge-
bra g = so(3) are spheres centered at the origin,
while the energy levels form a family of ellipsoids.
The energy restricted to each orbit has 6 critical
points (being points of tangency of the sphere with
the ellipsoids): 2 maxima, 2 minima, and 2 saddles
(Figure 4). The maxima and minima correspond to
stable rotations of the rigid body about the short-
est and the longest axes of the inertia ellipsoid. The
saddles correspond to unstable rotations about its
middle axis.

This stability consideration can be developed in
the infinite-dimensional situation of fluids, where
one can justify the final conclusion about stability
of flows without having to justify all of the

the first integrals, consider the motion of an ideal
fluid in a Riemannian manifold M equipped with
a volume form µ .  Define the 1-form u on 
M by lifting the indexes of the velocity field v
using the Riemannian metric: u(ξ) = (v, ξ) for all
ξ ∈ TxM.
Theorem (D. Serre and L. Tartar [1984] for Rn; 
V. Ovsienko, B. Khesin, and Yu. Chekanov [1988] for
any M ). The Euler equation of an ideal incom-
pressible fluid on an n-dimensional Riemannian
manifold M (possibly with boundary) with a volume
form µ has

(i) the first integral

J(v) =
∫
M
u∧ (du)m

in the case of an arbitrary odd-dimensional mani-
fold M (n = 2m+ 1); and

(ii) an infinite number of functionally independent
first integrals

Jk(v) =
∫
M

(
(du)m

µ

)k
µ for k = 1,2, . . .

in the case of an arbitrary even-dimensional manifold
M (n = 2m), where the 1-form u and the vector field
v are related by means of the metric on M.

One can see that for domains in R2 and R3 the
integrals above become the helicity and enstrophy
invariants. Furthermore, the geometric viewpoint
implies that in the odd-dimensional case
n = 2m+ 1 the vorticity field ξ defined by
iξµ = (du)m is “frozen into the fluid”, i.e., trans-
ported by the flow. In the even-dimensional case
n = 2m the function (du)m/µ is transported point-
wise.

Remark. The above first integrals arise naturally
in the Hamiltonian framework of the Euler equa-
tion for incompressible flows. Namely, for an ideal
fluid the Lie algebra g = SVect(M) consists of
divergence-free vector field in M. The 1-forms u (de-
fined modulo function differentials) can be thought
of as elements of the corresponding dual space g∗,
while the lifting of indexes is the inertia operator
I : g → g∗ . The invariance of the integrals in the the-
orem above essentially follows from their coordi-
nate-free definition on this dual space. The Euler
equation on g∗ can be rewritten as an equation on
1-forms u:

∂tu+ Lvu = −dp,

where one can recognize all the terms of the Euler
equation (1) for an ideal fluid.
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intermediate constructions. The analogy between
the equations of a rigid body and of an incom-
pressible fluid enables one to study stability of
steady flows by considering critical points of the
energy function on the sets of isovorticed vector
fields, which form the coadjoint orbits of the dif-
feomorphism group.

First, recall that in the 2D case stationary flows
have the property that locally the stream function
ψ is a function of vorticity, that is, of the Lapla-
cian of the stream function ∆ψ. In other words, the
gradient vectors of the stream function and of its
Laplacian are collinear and, in particular, the ratio
∇ψ/∇∆ψ makes sense.

Theorem. [3] Suppose that the stream function of
a stationary flow, ψ = ψ(x, y), in a region M is a
function of the vorticity function ∆ψ not only locally,
but globally. Then the stationary flow is stable pro-
vided that its stream function satisfies the follow-
ing inequality:

0 < c ≤ ∇ψ
∇∆ψ ≤ C <∞

for some constants c and C. Moreover, there is an
explicit estimate of the (time-dependent) deviation
from the stationary flow in terms of the perturba-
tion of the initial condition.

The above condition implies that the second vari-
ation δ2E of energy restricted to isovorticed fields
is positive definite. A similar statement exists also
for the negative-definite second variation, although
to ensure the latter one has to impose not only
some condition on the ratio ∇ψ/∇∆ψ, but also on
the geometry of the domain; see [3]. The underly-
ing heuristic idea of the proof is that the first inte-
gral, which has a nondegenerate minimum or max-
imum at the stationary point ψ , after a normalization
can be regarded as a “norm” that allows one to con-
trol the flow trajectories on the set of isovorticed
fields. Note that invariants of such fields (i.e., Casimir
functions of the group of area-preserving diffeo-
morphisms) play the role of Lagrange multipliers in
the above study of the conditional extremum. We
refer to the surveys [4, 8] and references therein for
further applications and a study of stability by com-
bining the energy function with Casimir functions
for a number of physically interesting infinite-
dimensional dynamical systems.

Example. [1, 3] Consider a steady
planar shear flow in a horizontal
strip in the (x, y)-plane with a ve-
locity field (v(y),0) , Figure 5. The
form δ2E is positively or nega-
tively defined if the velocity pro-
file v(y) has no zeroes and no
points of inflection (i.e., v ≠ 0

and vyy ≠ 0). The conclusion, that the planar par-
allel flows are stable, provided that there are no in-
flection points in the velocity profile, is a nonlin-
ear analogue of the so-called Rayleigh theorem.
Profiles with the ratio v/vyy > 0 and v/vyy < 0 are
sketched in Figures 5a and 5b, respectively.

It turns out that the stability test for steady
flows based on the second variation δ2E is incon-
clusive in dimensions greater than two: The second
variation of the kinetic energy is never sign-
definite in that case (P. Rouchon 1991, L. Sadun 
and M. Vishik 1993, cf. [4]).

Remark. One should emphasize that the question
under discussion is not stability “in a linear ap-
proximation”, but the actual Lyapunov stability
(i.e., with respect to finite perturbations in the non-
linear problem). The difference between these two
forms of stability is substantial in this case, since
the Euler equation is Hamiltonian. For Hamilton-
ian systems asymptotic stability is impossible, so
stability in a linear approximation is always neu-
tral and inconclusive about the stability of an equi-
librium position of the nonlinear problem.

Bihamiltonian and Euler Properties of the KdV,
CH, and HS Equations

As we discussed above, the Eulerian nature of an
equation implies that it is necessarily Hamiltonian,
although, of course, not necessarily integrable 
(e.g., the equations of ideal fluids or magnetohy-
drodynamics). However, on certain lucky occasions,
the Euler equations for some metrics and groups
turn out to be bihamiltonian (and so completely 
integrable), while the geodesic description 
provides an insight into the corresponding struc-
tures.

This is the case, for example, with the family of
equations

α(ut + 3uux)−(2)

β(utxx + 2uxuxx + uuxxx)− cuxxx = 0

on a function u = u(t, x), x ∈ S1, which for differ-
ent values of parameters α,β , and c combines sev-
eral extensively studied nonlinear equations of
mathematical physics, related to various hydro-
dynamical approximations. For nonzero c these
are the Korteweg-de Vries equation (α = 1, β = 0),
the shallow water Camassa-Holm equation
(α = β = 1), and the Hunter-Saxton equation

= v(y) ∂/∂x
velocity

(a

y y

) (b

xx

)

Figure 5. Lyapunov stable fluid flows in a strip. Profiles with the ratio (a)
v/vyy > 0 and (b) v/vyy < 0 .
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(α = 0, β = 1); see the previous table. (Note that as
a very degenerate case c = β = 0 this family also
includes the Hopf, or inviscid Burgers, equation.)
All these equations are known to possess infinitely
many conserved quantities, as well as remarkable
soliton or soliton-like solutions. It turns out that
they all have a common symmetry group, the 
Virasoro group.

Definition. The Virasoro algebra is a one-dimen-
sional extension of the Lie algebra of vector fields
on the circle, where the elements are the pairs (a
vector field v(x)∂x , a real number a) and the com-
mutator between such pairs is given by

[(v∂x, a), (w∂x, b)] =(
(−vwx + vxw )∂x,

∫
S1
vwxxx dx

)
.

Note that the commutator does not depend on
a and b, which means that the Virasoro algebra is
a central extension of vector fields. The Virasoro
group Vir is the corresponding extension of the dif-
feomorphism group of the circle. Given any α and
β , equip this group with the right-invariant met-
ric, generated by the following quadratic form,
“H1

α,β -energy”, on the Virasoro algebra:

〈(v∂x, a), (w∂x, b)〉H1
α,β
=∫

S1
(αvw + βvxwx)dx+ ab .

For different values of α and β this family includes
the L2, H1, and homogeneous Ḣ1-metrics. It turns
out that the above equations can be regarded as
equations of the geodesic flow related to different
right-invariant metrics on the Virasoro group.

Theorem (B. Khesin and G. Misiol�ek 2003, [9]). For
any α and β , the equation (2) is the Euler equation
of the geodesic flow on the Virasoro group for the
right-invariant H1

α,β -energy. This equation is bi-
hamiltonian, possessing two Poisson structures: the
linear Lie–Poisson structure (universal for all Euler
equations) and a constant Poisson structure, de-
pending on α and β . Moreover, the KdV, CH, and
HS equations exactly correspond to (the choice of this
constant structure at) three generic types of the 
Virasoro coadjoint orbits.

In particular, the KdV equation corresponds to
the L2 -metric (α = 1, β = 0 , V. Ovsienko and
B. Khesin 1987), while the Camassa-Holm equation
corresponds to H1 (α = β = 1, G. Misiol�ek 1998).
The Hunter-Saxton equation is related to the Ḣ1-
norm (α = 0, β = 1) defining a nondegenerate met-
ric on the homogeneous space Vir/Rot(S1).

The main feature of bihamiltonian systems is
that they admit an infinite sequence of conserved
quantities (obtained by the expansion of Casimir

functions in the parameter interpolating between
the Poisson structures) together with the whole hi-
erarchy of commuting flows associated to them.
The same family of equations also appears as a
continuous limit of generic discrete Euler equa-
tions on the Virasoro group (A. Veselov and A.
Penskoi 2003).

Geometry of the Diffeomorphism Groups
In the preceding two sections we were mostly con-
cerned with similarities between the finite and 
infinite-dimensional groups and Hamiltonian 
systems and their hydrodynamical implications.
However, the dynamics of an ideal fluid has many 
distinct and very peculiar properties (such as the 
existence of weak solutions not preserving the 
energy), while the corresponding configuration 
space, the group of volume-preserving diffeomor-
phisms, exhibits a very subtle differential geome-
try that partially explains why the analysis of hy-
drodynamics equations is so difficult. In this section
we survey several related results.
The Diffeomorphism Group as a Metric Space

Consider a volume-preserving diffeomorphism
of a bounded domain and think of it as a final fluid
configuration for a fluid flow starting at the iden-
tity diffeomorphism. In order to reach the 
position prescribed by this diffeomorphism, every
fluid particle has to move along some path in the
domain. The distance of this diffeomorphism from
the identity in the diffeomorphism group is the 
averaged characteristic of the path lengths of the
particles.

It turns out that the geometry of diffeomor-
phism groups of two-dimensional manifolds differs
drastically from that of higher-dimensional ones.
This difference is due to the fact that in three (and
more) dimensions there is enough space for par-
ticles to move to their final positions without hit-
ting each other. On the other hand, the motion of
the particles in the plane might necessitate their ro-
tations about one another. The latter phenome-
non of “braiding” makes the system of paths of par-
ticles in 2D necessarily long, in spite of the
boundedness of the domain. The distinction be-
tween different dimensions can be formulated in
terms of properties of SDiff (M) as a metric space.

Recall that on a Riemannian manifold Mn the
group SDiff(Mn) of volume-preserving diffeomor-
phisms is equipped with the right-invariant L2-
metric, which is defined at the identity by the 
energy of vector fields. In other words, to any 
path g(t, .), 0 ≤ t ≤ 1, on SDiff (M) we associate its
length:

:{g(t, .)} =
∫ 1

0

(∫
Mn
|∂tg(t, x)|2dnx

)1/2

dt.

Then the distance between two fluid configura-
tions f , h ∈ SDiff (M) is the infimum of the lengths
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of all paths in SDiff (M) connecting them:
distSDiff(f , h) = inf :{g(t, .)} . It is natural to call the
diameter of the group SDiff (M) the supremum of
distances between any two of its elements:

diam(SDiff(M) ) = sup
f ,h∈SDiff(M)

distSDiff(f , h).

Theorem. (i) (A. Shnirelman 1985, 1994, [11]) For
a unit n-dimensional cube Mn where n ≥ 3, the di-
ameter of the group of smooth volume-preserving
diffeomorphisms SDiff(M) is finite in the right-
invariant metric distSDiff :

diam(SDiff(Mn) ) ≤ 2
√
n
3
.

(ii ) (Ya. Eliashberg and T. Ratiu 1991, [7]) For 
an arbitrary manifold M of dimension n = 2, the 
diameter of the group SDiff(M) is infinite.

Finiteness of the diameter holds for an arbi-
trary simply connected manifold M of dimension
three or higher. However, the diameter can become
infinite if the fundamental group of M is nontriv-
ial (Ya. Eliashberg and T. Ratiu 1991). The two-
dimensional case is completely different: the 
infiniteness of the diameter is of “local” nature. The
main difference between the geometries of the
groups of diffeomorphisms in two and three di-
mensions is based on the observation that for a long
path on SDiff(M3) , which twists the particles in
space, there always exists a “shortcut” untwisting
them by making use of the third coordinate. (Com-
pare this with the corresponding linear problems:
π1(SL(2)) = Z , while π1(SL(n)) = Z/2Z for n ≥ 3.)

Remark. More precisely, for an n-dimensional cube
(n ≥ 3 ) the distance between two volume-
preserving diffeomorphisms f , h ∈ SDiff(M) is
bounded above by some power of the L2-norm of
the “difference” between them:

distSDiff(f , h) ≤ C · ||f − h||αL2(M),

where the exponent α in this inequality is at least
2/(n+ 4), and, presumably, this estimate is sharp
(A. Shnirelman 1994, [11]). This property means that
the embedding of the group SDiff(Mn) into the
vector space L2(M,Rn) for n ≥ 3 is “Hölder-regular”
and, apparently, far from being smooth. Certainly,
this Hölder property implies the finiteness of the
diameter of the diffeomorphism group. A similar
estimate exists for a simply connected higher-
dimensional M .

However, no such estimate holds for n = 2: one
can find a pair of volume-preserving diffeomor-
phisms arbitrarily far from each other on the group
SDiff(M2) , but close in the L2-metric on the square
or a disk. For instance, an explicit example of a long
path on this group is given by the following flow
for sufficiently long time t : in polar coordinates it
is defined by

(r ,φ) � (r ,φ+ t · v(r )),

where the angular velocity v(r ) is nonconstant, see
Figure 6. One can show that the distance of this dif-
feomorphism from the identity in the group grows
linearly in time. As a matter of fact, the lengths of
paths on the area-preserving diffeomorphism group
in 2D is bounded below by the Calabi invariant in
symplectic geometry (Ya. Eliashberg and T. Ratiu
1991, [7]).
Shortest Paths and Geodesics

The above properties imply the following curi-
ous feature of nonexistence of the shortest path
in the diffeomorphism groups:

Theorem (Shnirelman 1985, [11]). For a unit cube
Mn of dimension n ≥ 3, there exist a pair of volume-
preserving diffeomorphisms that cannot be con-
nected within the group SDiff(M) by a shortest path,
i.e., for every path connecting the diffeomorphisms
there always exists a shorter path.

While the long-time existence and uniqueness for
the Cauchy problem of the 3D Euler hydrodynam-
ics equation is still an open problem (see the sur-
vey by P. Constantin 1995), the above theorem
proves the nonexistence for the corresponding
two-point boundary problem. Thus, the attractive
variational approach to constructing solutions of
the Euler equations is not directly available in the
hydrodynamical situation. Y. Brenier (1989) found
a natural class of “generalized incompressible
flows” for which the variational problem is always
solvable (a shortest path always exists) and devel-
oped their theory. Generalized flows are a far-
reaching generalization of the classical flows, where
fluid particles are not only allowed to move inde-
pendently from each other, but also their trajec-
tories may meet each other: the particles may split
and collide. In a sense, the particles are replaced
by “clouds of particles” with the only restrictions

Figure 6. Profile of the Hamiltonian function (left) whose flow
(right) for sufficiently long time provides “a long path” on the

area-preserving diffeomorphism group in 2D.
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that the density of particles remains constant all
the time and that the mean kinetic energy is finite
[5].

On the other hand, in 2D the corresponding
shortest path problem always has a solution in
terms of continual braids, yet another “intrusion”
of topology to fluid dynamics (A. Shnirelman 2001).
These shortest braids have a well-defined L2 -
velocity, which gives a weak solution of the 2D
Euler equation. (One can compare this with the
long-time existence result in the 2D ideal hydro-
dynamics (V. Yudovich 1963).) Furthermore, short-
est braids provide minimizers of magnetic energy
in a cylinder or in a narrow 3D ring, i.e., give 
partial answers in the energy relaxation problem
discussed at the beginning of this article!

Remark. The Riemannian geometry of the group
SDiff(M) not only defines the geodesics, solutions
to the Euler hydrodynamics equation, but also
sheds the light on their properties. D. Ebin and 
J. Marsden (1970) established the smoothness of
the geodesic spray on this group, which yielded
local existence and uniqueness results in Sobolev
spaces. They also showed that in any dimension any
two sufficiently close diffeomorphisms can always
be connected by a shortest path, [6]. The existence
of conjugate points along the geodesics, where
they cease to be length minimizing, was addressed
by G. Misiol�ek (1996).

The study of sectional curvatures for the right-
invariant L2-metric showed that the diffeomor-
phism group looks rather like a negatively curved
manifold and allowed one to give explicit estimates
on the divergence of geodesics on the group 
(V. Arnold 1966, A. Lukatsky 1979, S. Preston 2002).
Regarding the Earth’s atmosphere, with the 
equator length of 40,000km and the characteristic
depth of 14km, as an ideal 2D fluid on a sphere,
one obtains, in particular, the low predictability of
motion of atmospheric flows for two weeks, as
discussed in the introduction. Curiously, at a 
recent lecture a former head of the UK Meteoro-
logical Office said that he would not trust any
weather forecast beyond three days!
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