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T
he last proposition in Euclid’s Elements
states that there are only five convex
regular polyhedra, called the platonic
solids (after Platon, who listed them in his
Timaios around 350 B.C.): tetrahedron,

cube, octahedron, icosahedron, and dodecahedron.
This very short list of extremely beautiful and reg-
ular mathematical objects has mystified scientists
for many centuries. For instance, Kepler’s Mys-

terium Cosmographicum from
1597 (wrongly) models distances

between planets in the solar
system using the platonic
solids (Figure 1). More re-
cently, Grothendieck is sup-
posed to have said, “The
platonic solids are so beau-
tiful and exceptional that

one cannot assume such ex-
ceptional beauty will hold in

more general situations.” 
(Notices, vol. 51, no. 10, p. 1196). The

platonic solids fit into the larger picture of “ADE-
classification(s)” and the theory of finite reflection
groups, as is very well explained in John Baez’s
Week 62 Finds [2].

The solids belong to the “real” world: they are
part of geometry over the real numbers. But, fol-
lowing Hensel and Ostrowski, it has been known

for more than seventy years that the real numbers
form only one of the many possible completions
of the field of rational numbers, the other possi-
bilities being given by the p-adic numbers. So it
seems only natural to ask for the analogue of the
platonic solids in the p-adic world. The question
turns out to be relevant for the study of p-adic “orb-
ifolds” and number-theoretic properties of, for in-
stance, solutions to hypergeometric differential
equations. We will illustrate the construction using
our own favorite polyhedron, the icosahedron, the
only platonic solid (with its dual polyhedron, the
dodecahedron) with a simple group of symmetries.
After that we will show some examples from the
theory of p-adic uniformization.

The Real Icosahedron
We will first recall a construc-

tion of the usual icosahe-
dron. Let us agree that

when discussing a
figure in the text, we
relate part of the 
picture to part of 
the text by giving
both the same color
(red, green, or blue—
up to Figure 11). The
icosahedron in Fig-

ure 2 consists of 12 
vertices, 30 edges with 30

midpoints, and 20 faces (each of
which is an equilateral triangle)
with 20 barycenters.

Projecting the icosahedron from its center to a
circumscribed sphere maps each edge onto a part
of a geodesic line on the sphere. These geodesic
lines intersect at vertices, midpoints of edges, or
barycenters of faces. They provide a tessellation of
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Figure 2. The
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the sphere by 120
triangles with an-
gles (π/2, π/3,
π/5) (Figure 3).

Observe that
one would arrive
at the same tes-

sellation starting
from the dodeca-

hedron (which is the
dual polyhedron to
the icosahedron),
but with green ver-
tices: in Figure 3,
connecting five ad-

jacent green spots reveals a pentagon, the face of
a dodecahedron.

Let A5 denote the group of even permutations
on five letters, i.e., the simple group with 60 ele-
ments. An icosahedral group is a copy of A5 em-
bedded in PGL(2,C) , the automorphism group of
the Riemann sphere (= complex fractional linear
transformations). All icosahedral groups turn out
to be conjugate, and one of them is given explic-
itly by generators as follows:

I =
〈(

ζ 0
0 1

)
,
(
ζ + ζ−1 1

1 −(ζ + ζ−1)

)〉
,

where ζ is a primitive fifth root of unity (e.g.,
ζ = e2πi/5). The icosahedral group is the orienta-
tion-preserving symmetry group of the icosahe-
dron; it has 6 cyclic subgroups of order 5, 10 cyclic
subgroups of order 3, and 15 cyclic subgroups of
order 2. The respective fixed points of these sub-
groups on the Riemann sphere are the 12 vertices,
20 barycenters of faces, and 30 midpoints of edges
of the icosahedron.

The quotient of the Riemann sphere by the
group I is again a Riemann sphere. The quotient map
is branched above three points on the sphere, with
branching degrees 2, 3, and 5 respectively (Figure 4).
The ramification points over the branch points of 
degrees 5, 3, and 2 are exactly the vertices, barycen-
ters of faces, and midpoints of edges. Each pair 
consisting of a white and yellow triangle is a 
fundamental domain for the action of I, and each 
triangle is mapped onto one of the half-planes in 
the quotient.

The multivalued function inverse to this 
covering map can be written as the ratio of two 
independent solutions to the Gaussian hypergeo-
metric equation E(a, b, c):

x(1− x)
d2u
dx2

+ [c − (a+ b + 1)x]
du
dx

− abu = 0,

where the constants a, b, and c are any rational
numbers such that

{|1− c|, |c − a− b|, |a− b|} =
{

1
2, 1

3, 1
5

}
(e.g., a = 11/60, b = −1/60, c = 1/2).

p-adic Numbers: A Brief Recap
One construction of the real numbers is by con-
sidering them as the completion of the rational
numbers Q w.r.t. the usual absolute value, i.e., by
adding to Q all (limits of) Cauchy sequences mod-
ulo null-sequences. A famous theorem of Ostrowski
states that, up to a certain natural equivalence, Q
carries exactly the following further absolute val-
ues: let p be a prime number; for q ∈ Q , define
|q|p = p−e if we can write q = pe · u with u a 
rational number without p in the numerator and
the  denominator. In this context a number is small
precisely when it is highly divisible by p. The 
completion of Q w.r.t. | · |p is called the set of 
p-adic numbers and carries a natural operation of
addition and multiplication that make it into a
complete field. As a typical example, the sum
1+ p + p2 + p3 + · · · (that diverges in R ) con-
verges in the p-adic numbers, since for its general
term, |pi|p = p−i → 0 as i → +∞. The sum actually
equals the rational number 1/(1− p), but of course
there are many more p-adic numbers than just 
rational ones. A general p-adic number q can be 
expanded as a “convergent Laurent series in p”:
q = aNpN + aN+1pN+1 + . . . for some integer N
(possibly negative) with ai ∈ {0,1, . . . , p− 1} . The
set Zp of p-adic integers consists of those p-adic
numbers q for which |q|p ≤ 1. These are exactly the
numbers for which only positive powers of p occur
in the above “Laurent series” (so N can be chosen
a positive integer).

The  p-adic Riemann Sphere
In order to find the p-adic analogue of the icosa-
hedron, we just have to look at the construction
above: one finds the fixed points of an action of
the cyclic subgroups of A5 on the Riemann sphere.
So first of all, we have to introduce the p-adic ana-
logue of the Riemann sphere, which is an analytic
structure on the projective line P1. The naive way
of “doing analysis with the p-adic metric on the 
coordinates” does not work (because of total 
disconnectedness). One of the most natural ways

Figure 3. Icosahedral
tessellation of the Riemann
sphere.

Figure 4. Quotient of the Riemann sphere by I.



722 NOTICES OF THE AMS VOLUME 52, NUMBER 7

of putting a genuine p-adic analytic structure on
P1 is by regarding it as a Berkovich space, but as
the phenomena we are interested in are already 
visible at the level of the “skeleton” of that space,
we will content ourselves with a description at the
level of trees [9]. The Bruhat-Tits tree T of
PGL(2,Qp) is a graph, technically defined as 
follows:

• Vertices are Q∗
p -homothety classes [M] of Zp-

lattices M in Q2
p .

• Two vertices [M] and [N] are joined by an edge
if and only if representatives M and N can be
chosen such that pM ⊂ N ⊂M.

The graph T is actually a tree, and edges emanat-
ing from any given vertex are in one-to-one corre-
spondence with Fp-rational points of P1.

The graph T is a regular (p + 1)-valent tree, as
in Figure 5 (where p = 2 for simplicity).

We will actually need a slight extension of 
this definition, because we will want the fixed
points of elements of order 2, 3, and 5 from A5 act-

ing on P1 to be defined
over the field we are work-
ing with, and Qp itself is
not always good enough
for that. So we let K be a
finite field extension of
Qp that contains a primi-
tive third, fourth, and fifth
root of unity (i.e., all roots 
of X60 − 1). The p-adic ab-
solute value extends
uniquely to K; denote this
extension by | · |. Let OK
be the set of integers in K:
OK := {x ∈ K : |x| ≤ 1},
which actually turns out
to be a ring. Let π denote
a uniformizer of K, i.e., a

generator of the ideal {|x| < 1} in OK. Let k denote
the residue field of K: k = OK/π; it is actually a fi-
nite field. All the above definitions make sense if
one replaces Qp by K, Zp by OK, and p by π . One
arrives at the Bruhat-Tits tree T of PGL(2, K).

The ends of T are equivalence classes of infinite
half lines in T (two of which are identified if they
only differ in finitely many edges), and these ends
are in one-to-one correspondence with K-rational
points of P1. Since PGL(2, K) acts on homothety
classes of lattices in K2, from its definition the
tree T acquires a natural action of the group
PGL(2, K), and via this correspondence its action
on the ends of T is the same as its natural action
on P1(K).

We then have a way to connect points of the
(topologically totally disconnected) space P1(K)
(seen as ends of T ) via infinite paths inside T , and
these paths play the rôle of the geodesics in the

original “real” pic-
ture. To visualize
this and the corre-
spondence be-
tween ends of T
and points of P1(K)
in a clearer way, we

will now draw P1(K)
as an actual compact

“sphere” and put the
tree T inside it; see Fig-
ure 6.

For any compact (e.g.,
finite) subset Σ of P1(K),
we define a subtree TΣ
of T that is minimal

amongst all subtrees of T having Σ as its set of
ends. For example, if Σ consists
of three points, the sub-
tree TΣ is a “tripod”, as
in Figure 7.

The p-adic
Icosahedron
The matrix repre-
sentation of the
group I from the
first section makes
sense in PGL(2, K) ,
since K contains a primi-
tive fifth root of unity ζ . Let
Σ denote the set of points of
P1(K) fixed by a nontrivial element of I. There are
12 points fixed by at least one of the elements of
order 5 in I, 20 points fixed by at least one element
of order 3 in I, and 30 points fixed by at least one
element of order 2 in I; and these points together
form all of Σ . We call the subtree associated to this
Σ the p-adic icosahedron: it is the structure that
arises fromconnecting the fixed points of elements
of I via geodesics in the p-adic Riemann sphere, so
its construction really parallels that of the real
icosahedron. The p-adic icosahedron is a tree with
12 + 20 + 30 = 62 ends. Since the actual “position”
of points on P1(K) does not make sense, it is the
combinatorial structure of TΣ , together with a la-
beling of vertices and edges by their stabilizers,
that is of interest. We will do this labeling as fol-
lows: if a group is cyclic, we just label by its order;
otherwise, we indicate the full group. Ends are in-
dicated by edges carrying arrows, and the stabilizer
of the end is written as a label on the arrow. Finally,
if two vertices are stable by the same group, it is
understood that the same holds for the connect-
ing edge.

If p > 5, the p-adic icosahedron is rather boring:
it is the union of half-lines corresponding to the
points of Σ emanating from a single vertex, the

Figure 5. Part of the Bruhat-Tits tree
of PGL(2,Q2).

Figure 6. The Bruhat-
Tits tree of PGL(2,Q2)

inside P1(Q2).

Figure 7. A tripod.
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unique vertex fixed by the whole of I, which we call
the center of TΣ ; see Figure 8.

In the next three pictures we consider what hap-
pens if p ≤ 5. The icosahedron is the right part of
each figure, and the left part is a zoom-in on the
“horizontal” part of the right picture.

If p = 5, the six lines fixed by the six cyclic sub-
groups of order 5 (so-called mirrors of order 5) are
separated from the center by fixed points of a copy
of D5 in I; see Figure 9.

If p = 3, 10 mirrors of order 3 are separated
from the center, as in Figure 10.

Finally, if p = 2, the 15 mirrors of order 2 are
separated from the center and from the mirrors of
order 3; see Figure 11. Kazuya Kato from Kyoto Uni-
versity proclaimed that these objects should be
seen as “the flowers in his p-adic garden”. The

special status of the primes p ≤ 5 will appear over
and over again in the sequel.

Application: p-adic Orbifolds
One can perform the previous construction start-
ing from the other finite subgroups of PGL(2, K)
(such as A4, S4 , etc.) to arrive at the full list of 
p-adic polyhedra. This is because the full list of 
finite subgroups of PGL(2) over any field is known
up to conjugation: over a field of characteristic
zero such as K, the list is identical to that over the
complex numbers; over a field of positive charac-
teristic (which we will briefly touch upon later),
there is Dickson’s famous classification. In the end,
all p-adic (or nonarchimedean) polyhedra can thus
be explicitly drawn by the techniques from the
previous section. They play a rôle in the construc-
tion of p-adic orbifolds and in classification re-
sults related to those.

Let us first briefly recall Mumford’s theory of
nonarchimedean uniformization of curves (cf. [5]),
which is a mixture of the usual uniformization the-
ory of Riemann surfaces by embedding the fun-
damental group in PSL(2,R) and the theory of
Schottky uniformization. The general setup is a 
bit technical. Let K be a general nonarchimedean
valued field, complete w.r.t. an absolute value that
satisfies the strong triangle inequality |a+ b|
≤max{|a|, |b|} for all a, b ∈ K ;  for example,
(K, | · |) = (Qp, | · |p). If Γ is a torsion-free finitely
generated discrete subgroup of PGL(2, K), let LΓ de-
note the set of limit points for the action of Γ on
P1(K), let ΩΓ = P1,an

K −LΓ , and let TΓ = TLΓ; here the
superscript “an” refers to a K-analytic structure on
P1. Then XΓ = ΩΓ/Γ can be given the structure of a
smooth projective curve over K. Technically speak-
ing, this curve admits a semistable model over the
integers of K whose special fiber is a union of k-
rational curves intersecting in k-rational points. The
intersection dual graph of this special fiber is iso-
morphic to TΓ. Conversely, every curve over K with
split multiplicative reduction is isomorphic to a
curve obtained via such a construction; such a

Figure 8. The p > 5-icosahedron.

Figure 9. The pentadic icosahedron.

Figure 10. The triadic icosahedron.

Figure 11. The dyadic icosahedron.
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curve is called a Mumford curve. Let us clarify
these concepts on an example; see Figure 12.

Assume K does not have characteristic two, and
fix π with 0 < |π| < 1. Define a subgroup Γ of
PGL(2, K) generated by two elements

α =
(
π (2+π ) −2π (1+π )

4 π2 − 2π − 4

)
,

β =
(
−π (2+π ) 2(2+π2)
−2π −π2 − 2π + 4

)
.

Part of the associated tree TΓ with the action of
some elements from Γ is shown in Figure 12, to-
gether with the quotient TΓ/Γ and the reduction of
the corresponding curve XΓ (which is intersection
dual to the quotient graph in the following sense:
lines in the reduction are replaced by vertices in
the graph, and vertices are connected if and only
if the corresponding lines intersect). This group Γ
is free of rank two, the corresponding curve has
genus two, and its reduction is a “dollar” sign
(which has two holes, just like TΓ/Γ). The fact that
the number two occurs three times in the previous
sentence is no coincidence! The algebraic curve XΓ
has some equation

y2 = (x− a1) . . . (x− a6),

and a suitable change of coordinates (x, y) leads to
a good model, of which the special fiber is gotten
by reducing everything modulo π .

More generally, if N is any (not necessarily free)
finitely generated discrete subgroup of PGL(2, K)
with set of limit points LN, let FN denote the set
of all fixed points of elements of finite order in N.
Let T ∗

N = TLN∪FN .
• If N is torsion-free, then T ∗

N = TN.
• If N is finite, then LN = ∅, so TN = ∅, but T ∗

N
is a p-adic polyhedron.

If we let ΩN = P1,an
K −LN ,  then the quotient

XN := ΩN/N carries a structure of smooth projec-
tive curve. Actually, there exists a finite index nor-
mal free subgroup Γ ⊂ N, and XN is the quotient
of the Mumford curve XΓ by the finite group N/Γ.

In our example, XΓ is a curve of genus two that
admits an automorphism of order two (on the
above equation, it is just y � −y ), and this can be
seen within the above framework of “orbifold uni-
formization” as follows: we let N be generated by
three elements:

a =
(
π 0
2 −π

)
, b =

(
2+π −2(1+π )

2 −2−π

)
,

c =
(
π 2
0 π

)
.

With α = ab and β = bc, N is isomorphic to the
free product of three copies of a cyclic group of two
elements having Γ as normal subgroup of index two.
We have displayed the corresponding pictures in
Figure 13. Now XΓ is a double cover of XN � P1

branched above six points (the ends of T ∗
N /N).

Application: Classification Results
In the correspondence between N and T ∗

N (of which
an example was given above), the ends of T ∗

N /N
correspond to the points of XN over which the map
XΓ → XN is branched, and the stabilizer of such 
an end is exactly the ramification group of the 
corresponding point in the cover. This is a general
phenomenon that can be used in the opposite 
direction: suppose one does not start from a group
N , but one instead is interested in classifying 
coverings of the projective line P1 over K that are
branched above a fixed number of points with
given ramification groups and such that the cover
is a Mumford curve. Example: coverings of P1 that
are branched over four points with ramification 
indices (2,2,2,3). The strategy to classify them is
then as follows (see Figure 14):

• One constructs the list of p-adic polyhedra
(=“atoms”) T ∗

N and draws the graphs T ∗
N /N.

• One tries to bond together these graphs T ∗
N /N

along common ends by folding them together
(=“chemical compound”). In this procedure, one
assures that in the bond only four ends remain
(with the correct stabilizers). On the level of

Figure 13. Action of N on T ∗
N , TN/Γ , and T ∗

N /N.

Figure 12. Example of TΓ, TΓ/Γ, and the reduction of XΓ.
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abstract groups, this process is known as “amal-
gamation” of finite groups (cf. [9]).

• One makes sure that the corresponding group
exists as a discrete subgroup of PGL(2, K)
(=“existence problem of the compound”; cf. [8]).

In the example of (2,2,2,3)-branched coverings of
P1 for p > 5, one gets a list of possible abstract
structures of the group N, as in Figure 15. Each of
these can be realized by a Mumford curve. As a mat-
ter of fact, (A), (C), and (D) are realized by
p-adically open loci in a pencil of genus six curves
on a Del Pezzo quintic surface studied by Edge in
the early 1980s [7].

It follows from the Riemann-Hurwitz-Zeuthen
formula that curves Xwith many symmetries (large
automorphism group) arise as coverings of P1

branched above at most three points. If X is a
Mumford curve of genus g, then our classification
can be used to bound the number of such sym-
metries, since for X = XΓ , Aut(X) = N/Γ with N the
normalizer of Γ in PGL(2, K). We can recover the
following result of Herrlich: If X is a Mumford
curve of genus g ≥ 2 over a p-adic field, then the
following sharp bound holds: Aut(X) ≤ c · (g − 1)
with c = 12 if p > 5, c = 30 if p = 5, c = 24 if
p = 3, and c = 48 if p = 2 (again, p ≤ 5 is excep-
tional).

There is no reason to restrict to p-adic fields K;
one might as well develop the theory if K is a non-
archimedean valued field of positive characteris-
tic [4], such as K = Fq((t)) . Then PGL(2, K) has 
more finite subgroups, but all polyhedra can be 
classified. There is, for example, such an exotic
specimen as the N = PGL(2,7) -polyhedron in 
characteristic 7, whose T ∗

N /N-graph has two ends:
one fixed by the subgroup of upper triangular 

matrices, and one fixed by a cyclic subgroup of
order 8.

Again, this list of polyhedra can be used to clas-
sify coverings of P1 by Mumford curves branched
above two or three points in positive characteris-
tic and leads to a sharp upper bound for the num-
ber of automorphisms of such Mumford curves X:
if X is a Mumford curve of genus g over a field of
positive characteristic, then

Aut(X) ≤max{12(g − 1),2
√
g(
√
g + 1)2}.

Returning to the case where K is p-adic, if N pro-
duces a covering of P1 branched above exactly
three points, one calls N a p-adic triangle group (of
Mumford type). The first ones were found by Yves
André [1]. By the inorganic chemistry method above,
the second named author has shown that they
exist only if p = 2,3, or 5 (again, p ≤ 5) and that
there are infinitely many such. In Figure 16 we dis-
play the tessellation of the unit disk correspond-
ing to a classical (2,4,6)-triangle group together
with its triadic companion. The parallel is as fol-
lows: the classical group has limit points on the
boundary of the Poincaré unit disk that correspond
to the brown ends in the triadic case. The fixed
points of elements of finite order (2, 4, or 6) in the
disk are the blue, green, and red vertices of the 
triangles occurring in the tessellation (we have 
colored them in only one triangle), whereas in the 
triadic case the fixed points of elements of finite
order (2, 4, or 6) are the blue, green, and red ends.

The classical Riemann-Hilbert correspondence
between representations of the orbifold funda-
mental group and differential equations has a 
p-adic analogue via the theory of tempered cover-
ings due to Yves André (cf. [1]). Our particular 
triangle group ∆(2,4,6) corresponds in this way to
the Gaussian hypergeometric differential equation
E( 1

24 ,
7
24 ,

5
6 ):

x(1− x)
d2u
dx2

+
(

5
6
− 4

3
x
) du
dx

− 7
576

u = 0.

The fact that this differential equation arises as
above implies that the ratio of two nonpropor-
tional 3-adic solutions to the equation can be glob-
ally continued on a finite cover of P1: this is a very

Figure 14. “Inorganic chemistry method”.

Figure 15. Four possible (2,2,2,3)-coverings.
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rare phenomenon in the p-adic situation, where
there is no good analogue of analytic continuation.

The “Conformal-Hyperbolic” Dictionary
Various invariants of the covering XΓ → XN of al-
gebraic (“conformal”) curves can be computed
group theoretically (“hyperbolically”) on T ∗

N . For ex-
ample, the genus g of the curve XN is the same as
the cyclomatic number c of the quotient graph
T ∗
N /N (the smallest number of edges which must

be removed such that no circuit remains):

g(XN ) = c(T ∗
N /N).

As a second example, we have the following
combinatorial group theory formula of Karass,
Pietrowski, and Solitar [6]:

g(XN )− 1
|N/Γ | =

∑
e∈E

1
|Ne|

−
∑
v∈V

1
|Nv|

,

where E is the set of edges and V is the set of ver-
tices of TN/N (and N∗ is the stabilizer of ∗ for the
action of N on some lift of ∗ to TN). The left-hand
side of this formula is “algebro-geometric”, since
N/Γ is the (finite) covering group of XΓ → XN.

Another instance occurs when one computes in
two ways the equivariant deformation space of a
finite group acting on a Mumford curve. As an ex-
ample, an embedding of a group of abstract type
N = (A) as in Figure 15 is given by conjugating the
A5 to its standard form “I”; any dihedral group of
order ten that shares the cyclic group of order 5

generated by 
(
ζ 0
0 1

)
with this I is then embedded in

PGL(2, K) by

D5 =
〈(

ζ 0
0 1

)
,
(

0 t
1 0

)〉
,

where t is a free “deformation parameter” restricted
only by the condition that D5 should be embedded

discretely; for varying t this produces a nonisotrivial
family of Mumford curves of genus six with A5 as
automorphism group. Now on the algebraic side,
we know that such a curve is a cover of P1 branched
over four points with ramification indices 2,2,2,3.
Fixing three of these points by an automorphism
of P1, we are left with one degree of freedom: the
location of the fourth point. Again, we see that 
the deformation space is one-dimensional. In [3] 
one finds two calculations of the dimension of this 
deformation space (even in positive characteristic):
one in the “conformal” world of algebraic curves
and one in the “hyperbolic” world of the graphs 
TN. In characteristic zero (where the formula has
also been found by Herrlich), the formula says 
that the number of points b of XN above which there
is ramification equals

b(XN ) =
∑
v∈V

d(Nv )−
∑
e∈E
d(Ne),

where d(G) = 2 if G is cyclic and d(G) = 3 other-
wise. The fact that these two numbers agree in
general appears as a statement in combinatorial
group theory of which we do not know a direct
proof (in the example, we get 4 = 3+ 3− 2). It is
interesting to note that the computation of the
equivariant deformation space uses the “decom-
position” of T ∗

N /N into nonarchimedean polyhe-
dra to reduce the calculations to those for the 
action of a finite group on the nonarchimedean
Riemann sphere.
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Dyadic icosahedra

The cover for this month exhibits fanciful
renderings of the dyadic icosahedra dis-
cussed in the article by Gunther Cornelissen
and Fumiharu Kato.

—Bill Casselman
Graphics Editor

(notices-covers@ams.org)

Where Do Notices Covers Come From?
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enough that it could stand on its own, then the
accompanying article could explain the picture,
rather than the picture illustrating the article.
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