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One of the most challenging subjects in topology
is the study of smooth 4-manifolds. For a simple
approach to this, we list some examples. After the
4-sphere, the best known compact 4-manifolds are
Cartesian products of surfaces. For more variety,
we can “twist” the product structure to obtain a
fiber bundle. Consider the Möbius band, with its
projection π : M → S1 to the circle. Each fiber (point

preimage) is an interval I, and any sufficiently
small neighborhood U in S1 has preimage given by
U × I , with π corresponding to projection to the
first factor. Thus, M is locally indistinguishable
from the product S1 × I with its projection to S1.

Of course, M is not globally a product, since its
boundary is connected, unlike the fiber I. There are
also two bundles over S1 with S1-fibers: the torus
T = S1 × S1 and the Klein bottle π : K → S1 . (Try
to visualize each of these surfaces filled by a fam-
ily of disjoint circles.) For each pair of compact sur-

faces Σ and F , we can now consider bundles
π : X → Σ with fiber F . Most choices of Σ and F will
yield infinitely many 4-manifolds X in this manner.
When Σ = F = T, for example, we can obtain each
of the 4-manifolds T × T, T ×K, and K ×K as a
product of two S1-bundles over S1 (with the prod-
uct of the two projection maps). Alternatively, we
can obtain infinitely many examples by thinking of
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The Möbius band fibered by intervals.

Just as the Möbius band is obtained from a
rectangle by identifying opposite ends, the

Klein bottle is obtained by an identification of
opposite ends of a tube.  
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Σ = T as being obtained from the cylinder S1 × I by
gluing the two boundary components together.
Then every self-diffeomorphism of F gives a way
to glue the boundary components of (S1 × I)× F to
obtain a bundle over T. (Compare with the Klein bot-
tle K → S1 = I/∂I as pictured above.) For every
bundle π : X → Σ , the preimage of each circle
C ⊂ Σ is itself a bundle over C, determined by a self-
diffeomorphism of F called the monodromy around
C . (What is the monodromy around each factor of
S1 × S1 in each of the above examples?)

Unfortunately, fiber bundles do not form a very
representative class of 4-manifolds, especially in
the simply connected case, where the two S2 -
bundles over S2 are the only examples. To obtain
more generality, we relax the requirement that π
be locally a product by allowing critical points of
the simplest type, locally modeled by the complex
quadratic map q : C2 → C , q(u, v) = u2 + v2 . The
resulting maps π : X → Σ (for X,Σ oriented) are
called Lefschetz fibrations (e.g., [3], Chapter 8).
These have only finitely many critical points, 
and each singular fiber (preimage of a critical 
value) looks like a surface with a transverse self-
intersection. (In the local model, q−1(0) is the 
union of the two planes v = ±iu.) The complement
in X of the singular fibers is then a fiber bundle,
and the monodromy around a curve in Σ encircling
a single critical value is given by a right-handed
Dehn twist ϕ . That is, a certain subset of a non-
singular fiber F is identified with the oriented 
cylinder S1 × [0,2π ] , and ϕ is given there by

ϕ(θ, t) = (θ + t, t) , adjusted near S1 × {0,2π} to fit
smoothly together with the identity map elsewhere
on F .

For any word w (i.e., finite sequence) in right-
handed Dehn twists on F , we can construct a
Lefschetz fibration X → D2 over the disk, whose
monodromies around consecutive critical values 
realize w , by suitably gluing copies of the model 
critical point onto the trivial fibration D2 × F. 
If the composite of all Dehn twists in w is the 
identity on F (up to homotopy through diffeo-
morphisms), then the boundary of X is S1 × F , so
we can glue on another copy of D2 × F to obtain a
Lefschetz fibration over S2 . In fact, Lefschetz 
fibrations over S2 are essentially classified by 
such words with trivial composite, up to a suitable
equivalence relation corresponding to rearranging
the critical values in S2. The resulting classification
problem for words in the self-diffeomorphism
group of F is still unsolved when F has genus ≥ 2
and is the subject of ongoing research. Lefschetz
fibrations over surfaces Σ of higher genus can be
studied similarly, but the resulting 4-manifolds
will never be simply connected. Fortunately, the case
Σ = S2 already includes an extensive collection of
simply connected 4-manifolds.

To construct a typical example, we begin with a
generic pair p0, p1 of homogeneous degree-d
polynomials on C3 . That is, each pj satisfies
pj (λz) = λdpj (z) , so its zero-locus is a well-defined
subset of CP2 = C3 \ {0} modulo complex scalar
multiplication. For each (t0, t1) ∈ C2 \ {0} , the 
homogeneous polynomial t0p0 + t1p1 also has a
well-defined zero locus Ct in CP2, and this depends
only on t = t0

t1 ∈ CP1 = C∪ {∞} = S2. We would like
to identify each Ct as π−1(t) , for some map 
π to S2 . However, the subset B given by
{z ∈ CP2 | p0(z) = p1(z) = 0} consists of d2 points,
and it is easy to see that for distinct t, t′ ∈ CP1

we have Ct ∩ Ct′ = B .  The resulting map π :
CP2 \ B → CP1 is an example of a Lefschetz pencil
[3]. At each point of B it is locally modeled by
p : C2 \ {0} → CP1, p(u, v) = u

v , and the critical
points are quadratic as before. A Lefschetz pencil
π : X \ B → CP1 can always be extended to a Lef-
schetz fibration π ′ : X′ → CP1 = S2 by blowing up

The bundle over a circle around a critical value
of a Lefschetz fibration is obtained from the
product [0,1]× F by identifying the boundary
surfaces through a Dehn twist, shown here on
the subset of F outside which it is fixed.

A Lefschetz pencil and the corresponding
Lefschetz fibration.
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B, or one-point compactifying each fiber separately
at each b ∈ B. This changes X by connected sum-
ming with a copy of CP2, with orientation opposite 
the complex orientation, at each b ∈ B. Thus, our 
example results in a Lefschetz fibration on each
CP2 # d2CP2 , d ∈ Z+, each obtained from a Lef-
schetz pencil on CP2.

Which 4-manifolds admit Lefschetz pencils? In
the early twentieth century, Lefschetz constructed
such a structure on every algebraic surface, i.e.,
4-manifold arising as the zero-locus in CPn of a 
collection of homogeneous polynomials. This 
allowed him to intensively study the topology of
algebraic surfaces, a large class of 4-manifolds 
including many simply connected examples. A
decade ago Donaldson showed that the much larger
class of symplectic 4-manifolds admits Lefschetz
pencils. These admit symplectic forms, closed 
differential 2-forms that are nondegenerate as 
bilinear forms [2]. Symplectic manifolds have them-
selves been extensively studied for several decades.
Unlike algebraic surfaces, symplectic 4-manifolds
realize all finitely presented groups as their fun-
damental groups. A typical simply connected 
4-manifold is homeomorphic to infinitely many
diffeomorphism types of symplectic manifolds,
only finitely many of which are algebraic, and to
infinitely many other manifolds that do not admit
symplectic structures [3]. It can be shown [2], [3]
that a Lefschetz pencil on a 4-manifold determines
a symplectic form on it. Thus, the class of 4-
manifolds admitting Lefschetz pencils is identical
to the class admitting symplectic structures. This
class is large and well studied but still somewhat
mysterious. It is hoped that the interplay between
the two structures will shed new light on both of
them.

There are various ways to generalize our dis-
cussion of Lefschetz fibrations and pencils. First,
we can consider 4-manifolds with boundary. If
Σ = D2, and F also has boundary, then the bound-
ary of X will be a 3-manifold with an open book
decomposition [1] whose monodromy is a com-
posite of right-handed Dehn twists. It is not 
fully understood which 3-manifolds admit such
right-handed open books, but such structures cor-
respond to holomorphically fillable contact struc-
tures. In fact, the corresponding 4-manifolds are
precisely those admitting Stein structures (with 
finite topology), a classical notion from complex
analysis. (A Stein manifold is a complex manifold
that properly and biholomorphically embeds in
some Cn.) Alternatively, we can move to higher 
dimensions [2]. Donaldson’s work still produces 
Lefschetz pencils X \ B → CP1, where the critical
points are locally q(u1, . . . , un) =

∑
u2
j and B has

codimension 4 with local model u1/u2 as before.
The corresponding classification theory via dif-

feomorphisms of the fiber is analogous to the 
4-dimensional case but harder. One would like to
extend Donaldson’s theory to linear k -systems
X \ B → CPk for all k , as Auroux has done when
k = 2. If this can be done for 2k = dimX − 2 (so the
fibers are surfaces), then the corresponding linear
systems (hyperpencils) exist precisely on manifolds
admitting symplectic structures, characterizing
the latter as Lefschetz pencils do on 4-manifolds.
While these generalizations are receiving well-
deserved study, much remains to be done in the
basic setting of closed, simply connected
4-manifolds.
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