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This attractive little volume consists of two
major components, together with a number of
shorter sections. The major components are
labeled “Introduction” and “Appendix” respec-
tively, both designations grossly understating
their content. The “Appendix” consists of Bolyai’s
revolutionary tract, with the subtitle “THE SCIENCE
ABSOLUTE OF SPACE Independent of the Truth or
Falsity of Euclid’s Axiom XI (which can never be
decided a priori)”. It appears here both as a
facsimile in the original Latin and also in Halstead’s
1896 English translation. It was indeed originally
published as an appendix to his father’s two-
volume treatise on mathematics, whence its name.
Jeremy Gray’s “Introduction”—or to give it its full
name, “Bolyai’s Appendix: An Introduction”—is in
fact a 122-page historical survey of Euclidean
and non-Euclidean geometry that focuses on
Bolyai and his appendix but goes far beyond that.
Among other things, it includes a number of
fascinating historical remarks on the debates
over the course of many centuries about how to
teach Euclidean geometry in school—a debate
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that is still very
much alive today
and whose contem-
porary shape might
profit from a deeper
historical perspec-
tive.

Gray starts by dis-
cussing the way
Rl philosophers and
of Space scientists, as well as
humankind in gen-
eral, pictured the
physical space we in-
JEREMY 1. GRAY habit—the shape of
the universe as a
whole—and the way
that such pictures
influenced and were influenced by the mathemat-
ical constructs that became known as “geometry”.
In particular, the use made by Newton of the for-
malism of Euclidean geometry, together with the
overwhelming success of his approach to physics
and astronomy based on the model of Euclidean
space, enshrined Euclidean geometry and cloaked
it in a certainty and inevitability that made ques-
tioning it appear to be a sign of mental instability.
And indeed, that was the reaction by the Russian
mathematical establishment, the only ones to read
Lobachevskii’s first articles on what was to be-
come non-Euclidean geometry, published starting
in 1829 in the obscure Russian journal the Kazan
Messenger. The news of this work apparently did
not reach the Bolyais until 1844, which is
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astonishing on many grounds, not the least of
which involves the shameful role played by Gauss
in the sad story of Janos Bolyai’s brilliant beginnings
and bitter end.

The story of Gauss and the Bolyais starts back
before Gray picks it up, with the close friendship
between Gauss and Janos’s father, Farkas (also
known by his German name of Wolfgang), dating
back to their student days together in Gottingen.
The family obsession with Euclid’s parallel postu-
late apparently dates to that time, and indeed,
father Bolyai published his first work on the sub-
ject, The Theory of Parallels, in 1804. He was only
one of many who tried to prove that the parallel
postulate follows from Euclid’s other axioms.
Gray describes in some detail the history of such
attempts throughout the eighteenth and nineteenth
centuries, even well after their futility had been fully
demonstrated. Among the prominent mathemati-
cians who fell into the trap were Legendre, who per-
sisted in publishing false proofs over many years,
and none other than Lagrange, who did not go so
far as publishing any but did have the embarrass-
ment of presenting one at the prestigious Institute
of France. As for Farkas Bolyai, it was his friend
Gauss who pointed out the error in his argument,
but he persisted for at least ten more years before
giving up in despair. No wonder then, when his son,
Janos, who had turned out to be something of a
mathematical prodigy, appeared as a teenager to
have already been bitten by the parallel-postulate
bug, Farkas wrote him the often-quoted feverish ad-
monishment to profit from his own example and
guard against this will-o-the-wisp: “T have traversed
this bottomless night, which extinguished all light
and joy in my life. I entreat you, leave the science
of parallels alone.”

As it turned out, Bolyai Sr. was right, but not for
the reasons he thought. Janos soon concluded that
proving the parallel postulate was hopeless, and he
gradually became convinced that one could con-
struct a perfectly consistent geometry in which it
was not true. By 1825, at the age of twenty-three,
Janos was able to show his achievement to his
father but not to convince him that there were no
hidden flaws. It was not until 1832 that Farkas
agreed to publish his son’s work in the form of an
appendix to his own book. When Gauss received a
copy of the appendix, he wrote back a letter that
effectively ended Janos’s brilliant career, as well
as, Gray tells us, the relationship between father
and son, who did not speak to each other for years
afterward. In the letter Gauss gives an infuriat-
ingly mixed message, saying that he had himself
carried out much the same program but had
written very little of it down, and how pleased he
was that it should turn out to be the son of his
old friend who had written it down, thereby spar-
ing him the trouble of doing it himself. Had Gauss
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given his endorsement of the work publicly and
brought it to wider attention, it would have changed
the course of Janos’s life and career. But he kept
his silence,! and Janos not only got no public
support but was convinced that his father had
betrayed him and revealed what he had been doing
to Gauss, who was now claiming it as his own.
When Gauss later became aware of Lobachevskii’s
work, he made no attempt to inform his old friend,
Farkas.

Recognition of Bolyai’s achievement did not
come until too late. Gauss died in 1855, Farkas and
Lobachevskii the following year, and Janos in 1860.
As Gauss’s correspondence became public, his
views on non-Euclidean geometry finally became
known. Bolyai’s appendix was translated into Ital-
ian in 1868, the year and the place that were to be
decisive for the future of the new geometry that he
had invented.

Between 1832, when it was originally published,
and 1868, when it became more widely known, the
critical events for the fate of Bolyai’s appendix
were, as already mentioned, the publication
between 1860 and 1865 of the correspondence
between Gauss and Schumaker, including a letter
Gauss wrote in 1846 praising Lobachevskii’s work
on non-Euclidean geometry and saying that he had
shared the same views for fifty-four years (since
1792, when Gauss was fifteen), and the presenta-
tion of Riemann’s Habilitationsvortrag, entitled
“On the hypotheses that lie at the foundation
of geometry” in 1854. Not that Riemann refers
directly to Bolyai or even to non-Euclidean geom-
etry as it is usually understood. Rather, Riemann
proposes a radical rethinking of the entire subject
of geometry, not based on axioms in the fashion
of Euclid, Bolyai, and Lobachevskii, but on the
perhaps shakier but far more flexible foundations
of measurement, the calculus, and the whole field
of differential geometry as developed by Euler,
Gauss, and the French school.

Gray’s “Introduction” devotes about twenty-five
pages to Bolyai’s “Appendix” itself and provides an
excellent overview of Bolyai’s approach, with its
emphasis on an “absolute” geometry of space,
with parallel (if one may use the word) results in

L This was not the first time that Gauss’s silence on the sub-
Jject of non-Euclidean geometry had a devastating effect.
Another of Gauss’s correspondents, named Taurinus, pub-
lished a brochure in 1826 in which he derived a number
of the same trigonometric formulae as Bolyai. In the pref-
ace to the brochure he asked Gauss to state his views on
the subject, after which Gauss terminated the correspon-
dence. In the book by B. A. Rosenfeld, A History of Non-
Euclidean Geometry: Evolution of the Concept of a
Geometric Space, English translation Springer-Verlag,
1988, p. 219), the author tells us, “Gauss’s reaction reduced
Taurinus to despair, and he burned all copies of the
brochure in his possession.”
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both Euclidean and non-Euclidean geometry, but
also special results, such as the possibility of
“squaring the circle” in the non-Euclidean case, a
construction taking up the last ten sections of
Bolyai’s appendix and described in detail by Gray.

It is in the description of the contributions by
Riemann and his successors Beltrami and Poin-
caré that I find Gray’s version of the history of the
subject to be somewhat lacking. After noting that
Riemann chose not to limit his differential geom-
etry to two-dimensional surfaces, as all previous
geometers had done, Gray says (p. 85): “He intro-
duced the idea of n-dimensional spaces—rather
vaguely, to be sure—as spaces where n coordi-
nates were needed to specify the position of a
point, and where it was possible to measure lengths
along curves. He indicated how the Gaussian idea
of intrinsic curvature could be generalized to this
new setting. And he mentioned, almost in passing,
that there were three two-dimensional geometries
where the curvature was constant: the cylinder
(curvature zero), the sphere (curvature positive), and
surfaces of constant negative curvature (which he
only alluded to).”

I am puzzled, in particular, by Gray’s rather
dismissive reference to Riemann’s fairly extended
and quite explicit discussion of surfaces of constant
curvature. For curvature zero, Riemann cites specif-
ically cylindrical and conical surfaces, and for
positive curvature he discusses at length both
surfaces of revolution that do not lie on spheres
and general surfaces of constant positive curvature,
noting that (after making suitable cuts, if necessary)
these may all be “developed” onto a sphere—that
is to say, in modern terminology, mapped onto a
sphere of the same curvature by a map that is a local
isometry.

It is true that Riemann is vague on many points
in his paper, and he himself says as much. That
is not surprising when one considers that the
new concepts introduced include such elusive
ones as that of an n-dimensional differentiable
manifold, whose precise definition did not come
until the twentieth century. But there is a wide-
spread misconception that he was equally vague
about the concept of curvature in higher dimen-
sions, and nothing could be further from the
truth. His assumption is that one has a measure
of arc length given by a differential expression of
a certain form, now known as a Riemannian
metric, and he provides two different ways to com-
pute the curvature of the manifold at any point
in any two-dimensional direction, one of them
algebraic/analytic, the other geometric. The former,
though explicit, is hard to follow, since it gives a
procedure rather than an actual formula. The geo-
metric definition, however, is both explicit and
clear. Riemann tells us to construct the surface
formed by all geodesics issuing from a given
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point that start out along a given two-dimensional
section. That surface will have a curvature whose
value is given explicitly by a formula due to Gauss.
The Gauss curvature of the surface at the given
point is by definition the Riemannian (sectional) cur-
vature of the manifold at the point in the given
two-dimensional direction. As an illustration, he
gives explicit formulae for Riemannian metrics of
constant positive, negative, and zero curvature in
any number of dimensions. The zero-curvature
case is of course the standard Euclidean metric in
n-dimensions, but the other two cases were to play
critical roles in future developments.

Riemann’s metric of constant positive curva-
ture leads to what the physicist Max Born later
described as “one of the greatest ideas about the
nature of the world which ever has been conceived.”
That is the suggestion that the universe could be
finite but without a boundary. As Riemann points
out, the value of the curvature could be arbitrarily
close to zero, so that there would be no way for
us to distinguish it from Euclidean space on the
scales at which we could make measurements,
but the age-old problem of how to choose between
the equally unpalatable alternatives of a universe
that extends infinitely far in all directions or
one that ends somewhere (and what lies beyond?)
would be resolved in one stroke. Einstein later
seized on this model of the universe as a 3-sphere
and used it in his first attempt at a cosmological
model based on his general theory of relativity.

Riemann’s metric of constant negative curvature
proved equally important and even more seminal
for future developments. In the two-dimensional
case alone it has provided the model we now know
as the “hyperbolic plane”, while the metric itself
tends to be called the “hyperbolic metric” or the
“Poincaré” metric. The subject of hyperbolic geom-
etry arose from two completely independent
sources: one was the differential geometry of
surfaces (or, more generally, Riemannian metrics)
of constant negative curvature, the other the
axiomatic approach of Bolyai and Lobachevskii
with the parallel postulate replaced by an alterna-
tive. It was the Italian geometer Eugenio Beltrami
who in 1868 finally clarified once and for all the
relationship between these two quite distinct-
appearing subjects and who may be said to
have originated the field of hyperbolic geometry.
Poincaré probed in great detail two different
models of two-dimensional hyperbolic geometry:
the “Poincaré disk” and the “Poincaré upper half
plane”. The former is simply the unit disk with
Riemann’s metric of constant curvature —1, while
the metric for the latter had been written down
even earlier by Liouville in the course of his study
of surfaces of constant negative curvature. How-
ever, neither of those authors indicated any link
to non-Euclidean geometry.
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It is unfortunate that Gray misses the opportu-
nity here to right a great historical wrong.? Every-
body quotes the first of two papers published by
Beltrami in 1868, entitled “Saggio di Interpre-
tazioine della Geometria Non-euclidea”, in which
he writes down an explicit Riemannian metric (dif-
ferent from the one given by Riemann) on a disk
in the plane and relates it on the one hand to sur-
faces of constant negative curvature and on the
other hand to the formulas and properties given
by Lobachevskii for his non-Euclidean geometry. He
shows that in this model the straight lines of
Lobachevskii’s geometry correspond to chords in
the circle. Thus, at one stroke, Beltrami provides a
model for global non-Euclidean geometry in which
one can extend any line infinitely far in each di-
rection and a link between the local properties of
Bolyai and Lobachevskii’s non-Euclidean geome-
try and the geometry of surfaces of constant neg-
ative curvature such as the pseudosphere.

Butitis a second paper of Beltrami’s, published
in the same year, entitled “Teoria fondamentale
degli spazii di curvature costante”, that really puts
all the pieces in place. What Beltrami does, as
his title implies, is make a thorough study of
spaces of constant curvature in all dimensions. He
analyzes in detail various models of n-dimensional
hyperbolic space, two of which reduce in the two-
dimensional case to the so-called “Poincaré disk
metric” and “Poincaré upper half-plane metric”.
As John Stillwell has pointed out,? they should
really be called the “Riemann-Beltrami metric” and
“Liouville-Beltrami metric” respectively. Beltrami
starts with the latter metric in the upper half-space
z > 0 in n+1 dimensions, where the element of
arclengthis dos = do/z, with d equal to the stan-
dard Euclidean element of arclength. He shows (by
a rather roundabout argument) that this Rie-
mannian metric has constant negative curvature,
that its geodesics are semicircles orthogonal to
the plane z =0, that the induced metric on the
hemispheres orthogonal to the plane z = 0 gives a
model of n-dimensional hyperbolic space, and that
the vertical projection of those hemispheres onto
the plane z = 0 provides exactly the model of hy-
perbolic space that he has investigated in detail in
his previous paper. Finally, he notes that stereo-
graphic projection of the hemisphere leads
precisely to hyperbolic space with the metric of
constant negative curvature originally written down
by Riemann. He further verifies that this metric,
which Riemann stated without proof, had constant

2 The reviewer is guilty of the same omission in his book
on geometry and cosmology, having only learned of it
afterwards.

3Sources of Hyperbolic Geometry, History of Mathemat-
ics, vol. 10, AMS/LMS, 1996, p. 35. This is an excellent ref-
erence for the current discussion.
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curvature—indeed does—and he also verifies an-
alytically an important observation made by both
Bolyai and Lobachevskii: that for three-dimensional
hyperbolic geometry, the two-dimensional sub-
spaces called “horospheres” by Lobachevskii and
simply denoted by “F” by Bolyai have the induced
metric of the Euclidean plane.

In a section labeled “Taking Stock” (p. 102), Gray
points out that the philosophical consequences of
having two equally viable geometries at one’s dis-
posal were profound. He says, “There cannot, after
all, be two incompatible accounts of physical space
that are both true. It follows that one of the geome-
tries must be false (and perhaps both, but this
radical view was never espoused).” But in fact it was
precisely this radical view that Riemann espoused,
and doubly so. First of all, Riemann specifically pro-
posed, as noted above, that space might have con-
stant positive curvature and therefore be neither
Euclidean nor “non-Euclidean”. But even more rad-
ically and more fundamentally, he proposed that
it be “Riemannian”. Which brings us to two points
of terminology that have led to much confusion.
The first is that one might think that “non-Euclid-
ean” refers to a geometry that is not Euclidean and
that it would therefore include “Riemannian” in the
sense it is now generally understood, which is:
given by a “Riemannian metric” where the element
of arc length is expressed by the square root of a
quadratic form in the differentials of the coordi-
nates (or in the language of differentiable mani-
folds: the tangent space at each point is endowed
with a positive definite inner product). However, the
term “non-Euclidean geometry” is almost univer-
sally identified now with “hyperbolic geometry”, in
which the metric has constant negative curvature.
The qualifier “almost” refers to the fact that one
sometimes sees two alternatives given to the par-
allel postulate, in one of which there are two dis-
tinct lines through a point parallel to a given line
and angles in a triangle add up to less than 180°,
and the other in which there are no lines through
a point parallel to a given one and the angles add
up to more than 180°. If one wishes in the latter
case to still have any two lines intersect in a sin-
gle point, then one can use as a model the projec-
tive plane, with metric inherited from the sphere
after identifying pairs of antipodal points. The
geometry given by this second alternative to the par-
allel postulate is sometimes termed “elliptic geom-
etry”, in contrast to hyperbolic,* and sometimes
“Riemann’s non- Euclidean geometry,” only adding

4 The terminology of elliptic, hyperbolic, and parabolic
geometries was introduced by Felix Klein in his 1871 paper
“On the so-called non-Euclidean geometry”, in which he
provides a unifying overview by means of projective geom-
etry. (See the book of Stillwell cited above.)
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to the confusion between “Riemannian” and “non-
Euclidean” geometry.

To come back to the main point, the debate as
to whether the physical space we inhabit obeys
the laws of Euclid or those of Bolyai/Lobachevskii
has been superseded for 150 years now by the far
more likely alternative of being neither, but rather
Riemannian (or even “non-Riemannian”) and for al-
most 100 years by the strong likelihood that it is
the three-dimensional space component of a four-
dimensional pseudo-Riemannian space-time. Gray
devotes a brief section entitled “The Nature of
Space”, pp. 118-9, to a way in which a model of
space-time in the vicinity of a gravitating mass can
be related to the geometry of a negatively curved
surface (although not constant negative curvature)
and hence to something like non-Euclidean geom-
etry.

Let me conclude with a few final remarks.

First, this volume is part of a series of Burndy
Library publications, each of which focuses on
some book in the library’s collection. The library
is devoted to the history of science and technology
and is currently located on the campus of the Mass-
achusetts Institute of Technology. The facsimile of
the copy of Bolyai’s appendix is from the Burndy
collection, as are the many other illustrations in the
book, all done in sepia tones and very handsome.

Second, Gray is an excellent expositor. He cov-
ers a wide swath of the history of Euclidean and
non-Euclidean geometry, but also goes into some
depth in discussing Bolyai’s contribution and the
ways it resembles and differs from Lobachevskii’s
approach. Anybody wishing to study exactly what
it was that Bolyai did would find this an excellent
reference.

Third, there are several additional notes in the
volume, among them a biographical sketch of
Bolyai’s translator, George Bruce Halstead, that I
found quite interesting and an announcement from
2002 that for the first time there seems to be a re-
liable image of Bolyai, which is reproduced here.
What is notably missing is an index, an omission
that never ceases to puzzle me whenever I en-
counter it. Why, when so much time and effort is
put into making an attractive and useful addition
to the literature, does the author (as well as the ed-
itor) not take the minimal additional time and ef-
fort needed to enhance its usefulness to a reader
by adding an index?

Fourth, Gray takes the very sensible approach
of not trying to include a comprehensive bibliog-
raphy but to focus on books and articles to which
he makes reference in the text. I would just like to
note two references that I have personally found
very useful and which are not included in the bib-
liography: the books by Rosenberg and Stillwell
cited in the footnotes.
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Finally, Gray’s “Introduction” ends with two
paragraphs labeled “Conclusions” (pp. 120-21).
The first paragraph reviews the ways in which Eu-
clidean geometry has failed to maintain either of
its traditional roles as the epitome of rigorous de-
ductive reasoning or as the model for the physical
universe we live in. The second paragraph starts
with “And yet, and yet.” It goes on to relate some
of the ways in which Euclidean geometry remains
the remarkable achievement that it always was. I
would like to add two more “and yet’s” of my own.
First, although Euclid’s reasoning is anything but
rigorous to the modern eye, it brought mathemat-
ics to a level unlike anything else produced by hu-
manity in the succeeding two thousand years. In
particular, I do not know of a single theorem stated
by Euclid that has turned out to be false. In each
case it was simply a question of polishing up de-
tails and filling in gaps. That is quite an astonish-
ing feat.

The other “and yet” was perhaps best stated by
John Kelley.> I would like to let Kelley have the last
word. After describing his background as a true
“country boy” in rural America and a “devastating”
encounter with high school algebra, he writes:

The following year I took my last high
school mathematics course, geometry.
It was a traditional course, very near to
Euclid. It talked about axioms and pos-
tulates, defined lines and points in ut-
terly confusing ways. The woman who
taught us had a chancy disposition and
she had been known to throw erasers
at inattentive students. It was the loveli-
est course, the most beautiful stuff that
I've ever seen. I thought so then; I think
SO Now.

>0n p. 473 of J. L. Kelley, “Once over lightly”, A Century
of Mathematics in America, Part IIl (Peter Duren, ed.),
Amer. Math. Soc., Providence, RI, 1989, pp. 471-93.
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