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The terminology pseudoholomorphic curve (or
J-holomorphic curve) was introduced by Gromov in
1986. The notion has transformed the field of sym-
plectic topology and has a bearing on many other 
areas such as algebraic geometry, string theory, and
4-manifold theory ; we will return to these later.

We are all familiar with the notion of a “curve”—
say a plane curve—at the elementary, and perhaps im-
precise, level of ordinary calculus. We can specify a
plane curve in two different ways: either as the set 
of solutions of an equation f (x, y) = 0 or via a para-
metrisation x = x(t), y = y(t) . For example, we can
specify a circle by the equation x2 + y2 = 1 or by the
parametrisation x = cos t, y = sin t . Another familiar
concept is that of a “family” of curves, for example,
the family of lines in the plane.

The theory of curves has, of course, been developed
extensively both in differential geometry and algebraic
geometry. The relevant branch of the classical theory
for us here is that of “complex” or “holomorphic”
curves. In the simplest situation, we replace the real
variables x, y above by complex variables z,w and con-
sider complex curves in the complex plane. Thus the
same equation z2 +w2 = 1, for example, describes
such a complex curve. Or we can consider para-
metrised complex curves z = z(τ), w = w (τ) where
z(τ), w (τ) are holomorphic functions of a complex
variable τ. More generally we may consider complex
curves in complex manifolds: parametrised by holo-
morphic maps from Riemann surfaces.

What is a holomorphic map? Think of the simplest
case of a map f from C to C : a holomorphic function.
The condition of holomorphicity is characterised by
the Cauchy-Riemann equation

∂f
∂z = 0.

This expresses the fact that the derivative of f, in the
sense of multivariable calculus, is a complex linear map

from C to C. The concept extends to the case of maps
to almost-complex manifolds. Let M be a differentiable
manifold of dimension 2n. An almost-complex struc-
ture J on M is a family of linear maps Jx : TMx → TMx,
with J2

x = −1, on each tangent space TMx of M , vary-
ing smoothly with x ∈M. Thus the tangent spaces are
made into complex vector spaces. Any complex mani-
fold has a natural almost-complex structure, but the
converse is not true if n > 1: there is an integrability 
condition which characterises these special almost-
complex structures. Many manifolds M which admit
almost-complex structures do not have any complex-
manifold structure at all.

A pseudoholomorphic curve is just the natural mod-
ification of the notion of a holomorphic curve to the
case when the ambient manifold is almost-complex.
That is, we consider a Riemann surface Σ , an almost-
complex manifold (M,J) , and a differentiable map
f : Σ→M such that for each σ ∈ Σ the derivative

dfσ : (TΣ)σ → TMf (σ )

is complex-linear with respect to the given complex
structures on the tangent spaces. We can spell out
more concretely what a pseudoholomorphic map
amounts to in the case when we take Σ = C and let M
be Cn ,  with some general almost-complex
structure J. It turns out, purely as a matter of linear
algebra, that the R-linear maps J : Cn → Cn with
J2 = −1 can be neatly parametrised by an open set
of n× n complex matrices µ = (µαβ). Thus our al-
most-complex structure is represented by a matrix-
valued function µ(z ) of z ∈ Cn. A pseudoholomor-
phic curve is given by a solution of the system of
partial differential equations

∂zα
∂τ

+
∑
β
µαβ(z )

∂zβ
∂τ

= 0,

which can be thought of as a deformation of the 
ordinary Cauchy-Riemann equations, for the vector-
valued function z(τ).
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The passage to almost-complex manifolds allows
us to move from the classical setting of holomorphic
curves in complex manifolds to a much wider, more
flexible, world. Crucially, many aspects of the theory
do not change greatly when we extend our ideas in 
this way. We can express this by the slogan the local 
theory of pseudoholomorphic curves is closely akin to
that of holomorphic curves. Here, local can have two
meanings: either that we are studying the situation 
locally in the manifold M or locally in the space of
maps. It is crucial here that we are considering curves,
rather than higher-dimensional objects. For any pair
of almost-complex manifolds M,N the notion of a
(pseudo)holomorphic map f : N →M makes sense,
but if the real dimension of N is greater than 2, this
is not a very useful concept. For example, on a generic
almost-complex manifold N of dimension greater
than 2 there are no nonconstant (pseudo)holomorphic
functions, even locally—this is exactly the source of
the integrability condition for complex-manifold 
structures.

Our more precise form of our slogan is the state-
ment that if Σ is a compact Riemann surface, there is
a nonlinear Fredholm theory which describes the 
deformations of a given pseudoholomorphic curve
f : Σ→ (M,J) . This means, roughly, that the defor-
mations are parametrised by a finite-dimensional
manifold or moduli space M, whose dimension can
be computed from standard topological data. More-
over, again roughly, the moduli space will deform
smoothly with variations in the almost-complex struc-
ture J or the Riemann surface structure on Σ . For 
example, suppose we take M to be the complex pro-
jective plane with its standard complex-manifold
structure and Σ to be the Riemann sphere. Then any
“line” (in the sense of projective geometry) in M , 
together with a choice of parametrisation, gives a
pseudoholomorphic curve. Thus the moduli space M
is a bundle over the dual plane with fibre PGL(2,C)—
the group of Möbius maps. The nonlinear Fredholm
theory tells us that if we deform the almost-complex
structure slightly, while we probably cannot describe
the pseudoholomorphic maps explicitly, we get a 
moduli space of the same general character.

Gromov’s insight was that the local understanding
of the pseudoholomorphic maps furnished by the
Fredholm theory extends to good global theory in the
situation where the almost-complex structure on M
is compatible with a symplectic structure. Recall that
a symplectic structure is given by an exterior 2-form
ω satisfying two conditions. One is pointwise and 
algebraic: at each point ω is a nondegenerate skew-
symmetric form on the tangent space of M . The other
is more global and differential geometric: the form ω
is closed. We say that J is compatible with ω if the
bilinear form on tangent vectors

g(v,w ) =ω(v, Jw )

is symmetric and positive definite. Then g is a Rie-
mannian metric on M . Let f : Σ→M be a pseudo-
holomorphic map. Then we can think of the integral

I =
∫
Σ
f∗(ω)

in two ways. On the one hand, the pointwise compati-
bility between the structures means that I is essentially
the area of the image of f, measured in the Riemannian
metric g. On the other hand, the condition that ω is
closed means that I is a topological (homotopy) invari-
ant of the map f. So the areas of pseudoholomorphic
curves, in this situation, are controlled by straightfor-
ward topological data. This allowed Gromov to prove a
partial compactness theorem for the moduli spaces.
For example, consider as before the maps from the 
Riemann sphere to the complex projective plane. If we
allow large and arbitrary deformations of the standard
almost-complex structure, then we cannot say much, be-
cause the pseudoholomorphic curves may degenerate
in some very complicated way as we deform the struc-
ture and perhaps “disappear”. But if we restrict to almost-
complex structures compatible with a symplectic form,
the curves cannot degenerate, because their area is con-
trolled, and in fact Gromov showed that in this case the
curves must persist, however large the deformation.

These two properties—the Fredholm theory and
compactness—lay the foundations for Gromov’s the-
ory, in which the pseudoholomorphic curves are used
as a tool in symplectic topology. The curves have been
used in two main ways. The first way is as geometric
probes to explore symplectic manifolds: for example
in Gromov’s result (later extended by Taubes) on the
uniqueness of the symplectic structure on the com-
plex projective plane, proved by sweeping out the
manifold by “lines” (i.e., the pseudoholomorphic curves
of the same topological type as lines in the standard
case). The second way is as the source of numerical
invariants: Gromov-Witten invariants. In the simplest
case, where our moduli space has dimension zero
and consists of a finite set of points, we might get an
integer invariant by counting these points. This sec-
ond direction has been developed most extensively in
the years following Gromov’s paper. The theory of
Floer homology is based on pseudoholomorphic curves
with boundary lying on a Lagrangian submanifold. This
leads on to the notion of the Fukaya category. In four
dimensions, Taubes discovered that the Gromov-
Witten invariants coincide with the Seiberg-Witten 
invariants, defined in a completely different way. In
the case when the manifold M is in fact a complex
manifold, say an algebraic variety, the invariants are
related to classical enumerative problems in alge-
braic geometry. The same invariants also appear in
topological string theory, arising from Feynman inte-
grals. This has provided completely new insights and
uncovered wonderful and intricate algebraic struc-
tures in the invariants such as quantum cohomology.
The Fukaya category is related to the phenomenon of
mirror symmetry, as formulated by Kontsevich.
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