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Bayes’s Theorem. Bayes’s theorem is elementary
probability; its application to the world involves a
conceptual struggle of the first magnitude. Several
hypotheses compete to explain the available exper-
imental evidence. The
data are accumulated,
the evidence is at
hand. Which hypoth-
esisisindicated? The
decision can be quite
serious.

Here is an artifi-
cial but illuminating
example. Two kinds
of structural material
are made. The good
one is reasonably
strong; the bad one
fails considerably
more often. A sam-
ple of material is de-
livered, but its composition is unknown. Thus there
are two hypotheses: G that it is good, or B that it
is bad. It is vital to know which hypothesis is true.

William G. Faris is professor of mathematics at the Uni-
versity of Arizona, Tucson. His email address is faris@
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The probability that the good material survives a
crush test is known to be P(S | G) = 5/6. The prob-
ability that the bad material survives the same crush
testis only P(S | B) = 1/3. The experimental fact is
at hand: the sample passed the crush test. What can
we say about the material?

To get some mathematics out of the way, here
is Bayes’s theorem in its most elementary form. (A
more general version comes later in this review.)
There are hypotheses 0 with “prior” probabilities
PH(0). For each hypothesis 0 there is a conditional
probability P(x | 0) for each data point x. The un-
conditional probabilities for the data points are then

(1) P(x) = > P(x | 0)P"(0).
0

Bayes’s theorem states that the “posterior” condi-
tional probability of hypothesis 0 given the observed
data point x is

P(x | 0)PH(0)

H _
@) PE(0 | x) = PX)

It is little more than the definition of conditional
probability.

The theorem can also be writtgn in terms of the
normalized likelihood function f(x, ) defined by
3) P(x | 0) = f(x, O)P(x).

The Bayes result is then that

(4) PR | x) = f(x, )P (0).
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Bayes’s Theorem at a Glance

The Sample Distribution. A sample of material
is Bad or Good; which one is not known. The re-
sult of a crush test is Success or Failure. The
starting point is probabilities of Success or
Failure given Bad or Good. In the example
P[S|B]=2/6=1/3 and P[S | G]=5/6. The
relative probabilities are indicated in the two
graphs below:

Bad Good
Success [ Success | [I1111
Failure 11T Failure [

The Joint Distribution. Suppose that the prior
probabilities of the two hypotheses are equal,
that is, PH[B] = 1/2 and PY[G] = 1/2. Then the
combined graph gives equal weight to the two
columns. This is shown below:

Bad | Good
Success MO | oo
Failure ImEE | m

The Posterior Distribution. Bayes’s theorem
gives the probabilities for the hypotheses Bad
and Good given Success or Failure. For example,
PH[G | S] = 5/7. The relative probabilities are in-
dicated in the two graphs below:

Bad Good
Success (| 1111

Bad Good
Failure 11 [ ]

Once the experiment has indicated Success or
Failure, only one of these graphs is relevant.

—Bill Casselman and Bill Faris

The theorem says that the posterior probability of
a hypothesis in light of the new evidence is obtained
from the prior probability of the hypothesis by
multiplication by the normalized likelihood func-
tion. This function incorporates the effect of the
new evidence.

To apply this to the example, suppose that the
two hypotheses good and bad have prior proba-
bilities P(G) and P¥(B), which sum to one. The
outcome was a success S. Does this indicate that
the material is good? The theorem gives
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failure

After
success

Prior to
experiment

Figure 1. Crush test. The Bayes prior
distribution with two possible Bayes posterior
distributions. After the experiment only one of

the two remains relevant.

G) PGS =5 PH(G).
6

PH(B)

This is tempting. Can we argue, for instance by sym-
metry, that PH(G)=PH(®B)= %? If so, then
PH(G|S) = %% = % The new evidence that the
sample passed the test made it much more likely
that the material is good. This seems satisfying and
exact. There is a nice picture, given in Figure 1.

The real problem in this analysis is of course with
the assignment of the prior probabilities. Should
they come from experiment, from general previous
experience, or from subjective judgement? Can
they be the result of pure reason, as suggested by
the symmetry argument? Or should they be re-
garded as a mere technical device for directing a
practical decision? This problem has a long history,
and its status is still controversial.

Laplace’s Law of Succession. In a passage in his
Théorie Analytique des Probabilités (1812) Laplace
calculated the probability that the sun will rise to-
morrow, given that it has risen every day for the
past 5,000 years. If one considers 5,000 years to
be n=1,826,213 days, then his probability is
(n+1)/(n+2)=1,826,214/1,826,215, enough to
give considerable reassurance.

Here is one way to think of his calculation. Con-
sider a Solar System. Each day it flips a biased coin
with probability 0 of heads to decide whether to
have the sun rise. So given this Solar System, the
probability that the sun will rise tomorrow is 0 it-
self, quite independent of whatever has happened
before.

Laplace asked: What if we know that we are in
a Solar System where the sun has already risen n
days in a row? A first thought might be that 0 is
the value that makes this most likely to happen.
This would imply that 0 = 1. However, for Laplace
this answer seemed to express almost too much
confidence in what, after all, is a limited amount
of data.

Here is one possible line of reasoning that
Laplace could have used. A Solar System Con-
struction Utility has created a huge (perhaps infi-
nite) number of Solar Systems that have various val-
ues of 0. Furthermore, these values are evenly
spread over the unit interval. Whether the sun rises
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tomorrow depends on which Solar System is taken
and on how the corresponding coin flip turns out.
Without any further information we would say that
this probability is 1/2, because when we look at all
Solar Systems and all corresponding coin flips,
the fraction with heads is the same as the fraction
with tails. But not every Solar System has experi-
enced n days in a row where the sun rose. Know-
ing that we have such a Solar System gives us
useful information. With this extra information
the values of 0 are not spread out uniformly any
more; in fact, they are concentrated rather near (but
not equal to) 8 = 1. What then is the probability of
the sun rising tomorrow for this restricted class
of Solar Systems? To find this, look at the fraction
of these Solar Systems and corresponding coin
flips for which the result is heads. Since in most
of these Solar Systems the 0 is very close to one,
the fraction is itself very close to one. Laplace’s cal-
culation showed thatitis (n+1)/(n+2).

Laplace did not need to believe in multiple Solar
Systems to make his argument. Another possible
interpretation of the same mathematics is that
there is only one Solar System. An initial state of
ignorance is followed by increasing knowledge at
each sunrise. In this view the probability calcula-
tion is an indication of the current state of knowl-
edge.

Some have considered Laplace’s argument ab-
surd, but E. T. Jaynes, the author of the book under
review, regards the technique as important and
useful and defends Laplace against his critics. He
admits that Laplace’s choice of example is unfor-
tunate, but he quotes Laplace himself stating that
this particular calculation omits relevant informa-
tion from celestial mechanics. As for the 5,000
years, Jaynes writes in a footnote (p. 564):

Some passages in the Bible led early
theologians to conclude that the age of
the world is about 5,000 years. It seems
that Laplace at first accepted this figure,
as did everyone else. But it was during
Laplace’s lifetime that dinosaur remains
were found almost under his feet (under
the streets of Montmartre in Paris), and
interpreted correctly by the anatomist
Cuvier. Had he written this near the end
of his life, we think that Laplace would
have used a figure vastly greater than
5,000 years.

A more mathematical derivation of the Laplace
“law of succession” is as follows. Suppose the prob-
ability that the sun will rise each day is 6, and
given this 0 the events for different days are in-
dependent. Consider a sequence of n consecutive
days. A day counts as a success if the sun rises that
day. The probability of success on a certain spec-
ified subset of ¥ days and failure on the remaining
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Figure 2. Sunrises. According to Laplace, each
day the sun rises the distribution for the
probability of another sunrise moves to the
right and becomes more peaked near one.

n—r days is 0"(1 — 0)"~". Suppose (with Bayes
and Laplace) that this 0 is random and uniformly
distributed on the unit interval. That is, the prior
measure expressing the state of ignorance is do.
The joint probability for a particular pattern x and
a particular probability near 6 is the product
0" (1 — 0)"" dO, where r is the the total number of
successes. Given the extra information of a par-
ticular pattern x with exactly r successes, the con-
ditional probabilities for 0 are calculated with

apio | x) = S A= g
[Lora - oyrdo

0"(1-0)"""do.

(6) 1

Br+1l,n—-r+1)

The constant B(r + 1,n — r + 1) is the conventional
notation for the value of the integral in the de-
nominator; it ensures that dPH(0 | x) defines a
probability measure. So given the historical infor-
mation, the probability of yet one more sunrise is

1
1
H —
7 L 0dp (9|X)_B(r+1,n—r+1) x
Jl 9r+1(1_9)n—rd9_ r+1
0 _}’1+2.

In the example of Laplace the sun rose each of the
n days, so ¥ = n. The picture for this case is given
in Figure 2.

A main objection to Laplace’s calculation was to
his use of prior probability to express knowledge
(or ignorance). If the probability of the sun rising
tomorrow belonged to a sequence of numbers in
the unit interval generated by a well-constructed
random number generator (the Solar System Con-
struction Utility), then there would be no problem.
But here it seems to be a case of probability with-
out a frequency interpretation.

Frequency Versus State of Knowledge. The
mathematical theory of probability is consistent in-
dependent of any interpretation. However, many
consumers of this theory regard probability as a
mathematical construct that predicts frequency.
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Frequency in this context means relative frequency
or sample proportion, the number of successes di-
vided by the total number of trials. The law of
large numbers (which models the situation where
the number of trials is large) shows that this in-
terpretation has internal consistency.

Jaynes considers the frequency interpretation of
probability as far too limiting. Instead, probability
should be interpreted as an indication of a state of
knowledge or strength of evidence or amount of
information within the context of inductive rea-
soning. The foundation of his discussion is an ax-
iomatic derivation (following R. T. Cox) of rules of
inference for degrees of plausibility. At one point
he suggests that instead of using a probability p
in the interval [0, 1], one could use an odds ratio
p/(1 — p) in the interval [0, + 0], or even a measure
of evidence log(p/(1 — p)) in the interval [—co, +o0].
In the Laplace example, where the odds ratiois n + 1
with n well above a million, the evidence log(n + 1)
(using base 10) would be above 6 bels (60 decibels).
Such a number represents extremely strong evi-
dence.

Furthermore, he argues that probability as em-
pirical frequency hardly ever occurs in a pure form.
Thus he writes (p. 337):

In most recent treatments of probabil-
ity theory, the writer is concerned with
situations where a strong connection
between probability and frequency is
taken for granted—indeed, this is usu-
ally considered essential to the very no-
tion of probability. Nevertheless, the
existence of such a strong connection
is clearly only an ideal limiting case,
unlikely to be realized in any real ap-
plication. For this reason, the laws of
large numbers and limit theorems of
probability theory can be grossly mis-
leading to a scientist or engineer who
naively supposes them to be experi-
mental facts, and tries to interpret them
literally in his problems.

The goal of his presentation is to blur the dis-
tinction between probability theory (where one
goes from the mathematical model to data) and sta-
tistical inference (where one goes from data to a
mathematical model). Each probability value is to
be a conditional probability of an event given other
events. The emphasis is on discrete probabilities.
The purpose of such a probability is to express a
“judgement”, not a physical fact (p. 86). All exist-
ing evidence must be taken into account, and when
there is little existing evidence one must use prior
probabilities for the hypotheses that express this
ignorance. The fundamental tool in statistical in-
ference is Bayes’s theorem, which gives a method
of passing from the conditional probability of data
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given a hypothesis to the conditional probability
of a hypothesis given the data. In his view, there
are heros (R. T. Cox, H. Jeffreys) and villains
(R. A. Fisher and subsequent frequentists). The
tone is polemical.

Jaynes is not the first writer to make such an ar-
gument; it is typical of many Bayesian statisticians.
However, his background was not in statistics, but
in physics. As a physicist he was prominent in a
number of areas; in particular he is noted for pro-
moting the method of maximum entropy, a tech-
nique for assigning prior probability distributions
in order to reason about physical systems about
which one has incomplete information. This led him
to a more general interest in Bayesian inference and
to the project of writing a book on the subject that
would serve both as a reference and as a text book.
At the time of his death in 1998 the book was par-
tially finished, with some chapters still missing. The
manuscript was edited by G. Larry Bretthorst, and
now it appears as a published book of well over
seven hundred pages. It should be mentioned that
Bayesian statistics is not a new subject: it is treated
in many other books (for instance [4] or the more
advanced [1], [3]).

Maximum Likelihood Parameter Estimation.
Laplace’s calculation may seem frivolous, but con-
sider the following example. A disease has jumped
from an animal host to humans. An international
health conference is convened to recommend ac-
tion. The participants need to know the survival rate
(survival probability) to high accuracy in order to
make further decisions. This rate is a number be-
tween 0 and 1; these numbers constitute a set of
infinitely many hypotheses. The existing sample of
infected humans is rather small, of size only n = 16.
Of these a certain number r survived. This exper-
imental number should be available in a few hours.
What is the appropriate estimate, based on this ev-
idence, of the survival rate from this disease in hu-
mans? There is no time to collect new evidence; only
one day is left to evaluate the existing data.

The most obvious answer is the sample pro-
portion r/n. It turns out, however, that this is not
the only possible answer. This raises the question
of how one justifies such a calculation.

The framework for a discussion of such issues
is a situation where there are a number of possi-
ble parameter values or hypotheses. For each pa-
rameter value 0 there is a probability measure
P(- | 0), representing the probabilities for various
sets of datavalues. This is ordinarily called the sam-
ple distribution. The question is how to use the
data to estimate the parameter. In the example
each parameter value is a number 6 between zero
and one. This is the unknown survival rate. The data
point x is the pattern of survival and loss; it has
2" possible values, each 1 or 0. In what follows the
only function of the data that matters is ¥ = > X,
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the number of survivors out of the n patients in
the sample. Figure 3 shows the probabilities of the
possible r/n values as determined by the sample
distribution.

Here is one inference procedure that is simple,
universal, and works reasonably well in many prac-
tical situations. For fixed 6 consider the density of
P(- | 0) with respect to some reference measure Q
on the data space, so

(8) dP(x | 0) = f(x,0)dQ(x).

For each parameter value 0 this density f(x, 0) is
a function of the data value x. Alternatively, for each
data value x one may consider f(x, 0) as a function
of the parameter value 0; this is called the likeli-
hood function. It is uniquely determined up to a fac-
tor that depends only on x. The procedure is to take
the actual data, compute the parameter value that
maximizes the likelihood function, and use this for
the estimate of the true parameter value.

In the example the probability of survival for
each patient is 0, and the probability of death is
1 — 0. The likelihood function defined with respect
to counting measure on the 2" possible outcomes
is

9) f(x,0)=0"(1-0)"",

where r = >’ x is the number of survivors. It is easy
to see that the maximum likelihood value of 0 is
r/n, the sample proportion.

Bayes Theory. The new ingredient in Bayes the-
ory is the Bayes prior distribution, a probability
measure PH on the parameter space. It is assumed
given before the current experiment is performed.
(This measure could also be called the unconditional
parameter distribution.) With this marvelous object
one can construct other useful quantities. There is
anew probability measure P for the data, called the
Bayes unconditional data distribution. This is ob-
tained by averaging the sample distribution with
respect to the Bayes prior distribution. In this con-
text, the sample distribution P(- | ) could be called
the conditional data distribution. There is a nor-
malized likelihood function f . This is a function of
the data variable x and the parameter variable 0.
It is defined by

(10) dP(x | 0) = f(x, 0) dP(x).

In the language of measure theory f (-, 0) is the den-
sity or Radon-Nikodym derivative of the condi-
tional data distribution P(- | 8) with respect to the
unconditional data distribution P.

The most important object in Bayesian analysis
is the Bayes posterior distribution. This could also
be called the conditional parameter distribution. It
is the distribution of the parameters given the
data, and it represents the updated account of
what is known after the experimental results are
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Figure 3. Distribution of the sample proportion. In
this example the parameter value is 0 = 0.65, and
the sample size is n = 16. The plot shows the
probabilities associated with each value of ¥ /n,
forr=0,1,2,... ,n.These are computed from the
binomial distribution. For each value of 6 between
0 and 1 there is a corresponding such plot. The
method of maximum likelihood says to choose the
value of 0 that makes the experimental result
most probable.

in. Mathematically, it is a family of probability mea-
sures P (. | x) on the parameter space that give
conditional probabilities for fixed data values x.
Bayes’s theorem says that the Bayes posterior dis-
tribution is given by multiplying the Bayes prior dis-
tribution by the normalized likelihood function.
That is, the posterior probabilities given the data
X are given by integrating

(11) dPH(0 | x) = f(x, 0)dPH(0).

Thus f (x, ) is the density or Radon-Nikodym de-
rivative of the conditional parameter distribution
PH(. | x) with respect to the unconditional para-
meter distribution P¥. This remarkable result is
named after the Reverend Thomas Bayes, who pre-
sented a version of it in 1763.

One version of Bayesian statistical inference is
the following. Acquire somehow on the basis of ex-
perience or intuition an appropriate Bayes prior dis-
tribution P¥. Perform the experiment and acquire
the actual data x. The final (or updated) product
is the Bayes posterior probability distribution
PH(. | x) corresponding to the data. This summa-
rizes the revised state of knowledge and can be used
however one wishes.

Bayes Decision Theory. Decision theory is an-
other ingredient in statistical inference. The idea
is to be explicit about actions and their conse-
quences. There is a set of actions. In estimation this
may consist of the values of certain parameter
components, while in hypothesis testing it may be
a set with as few as two points. There is also a loss
function L that takes as inputs an action a and a
state of nature 6 and calculates a corresponding
loss L(a, 0). This loss function may be measured
crudely in dollars, or perhaps better in some sort
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of utility units. Finally, a statistical inference pro-
cedure is a decision function 6 from data values to
possible actions. Thus decision theory moves from
statistical inference as a way of gaining knowledge
toward statistical inference as a guide to practical
action, taking into account the economic conse-
quences.

It is not difficult to combine Bayes theory and
decision theory. Jaynes seems to be willing to do
this, though with some reluctance. The procedure
is simple. First look at the data x. Then consider
the Bayes posterior risk

(12) n(a) = jL(a, 0)dPH(0 | x)

of action a. The Bayes decision 6(x) is the a that
minimizes this quantity. Its risk is then ry(d(x)).

The Bayes posterior risk of action a given data
x may be written explicitly as

13)  rda) = JL(a, 0)f (x, 0)dP"(0).

For the purposes of finding the Bayes decision 6(x)
by minimization one can replace the normalized
likelihood function f(x, 8) by any other likelihood
function f(x, 0), in particular one that is defined
independent of the Bayes prior distribution. Then
the Bayes prior distribution P¥ enters only in
combination with the loss function L(a, 0) as the
product L(a, ) dPH(0). As we shall see below,
Jaynes has vigorous comments on this point.

Bayes Versus Frequentist. A frequentist might
have no problem using a Bayes decision function
6. However, in this view the Bayes prior distribu-
tion PH is merely a convenient way of selecting the
6. As an index of performance, the natural object
is the risk function of the decision procedure 6
given by

(14 Rs(0) = jL(é(xx 0)dP(x | 0).

This makes no reference either to the Bayes prior
distribution or to actual experimental results.

A critic might ask: Why show me a risk function
defined by a sum or integral over all data values,
when you already have the actual data at hand? The
frequentist answer is that the risk function shows
how the procedure works in the long run, in all pos-
sible circumstances. One neither knows the actual
circumstance, nor whether today’s experiment gave
an appropriate decision. A statistician can at best
hope to do well most of the time, but on each in-
dividual experiment fate works its will.

The decision function 6 maps data to actions.
Suppose that there is also a reasonable estimation
function ¢’ from data to parameters. (If the action
space is the parameter space, then 6 may serve as
6’.) Then the frequentist statistician can estimate
the risk for the particular experimental data x at
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hand by reporting the number Rs5(8’(x)). This ex-
perimental number attempts to describe the risk
of the decision; it may well differ from the Bayes
posterior risk of the same decision.

One would think that natural selection would
have eliminated one of the schools of statisticians
by now. Why has this not happened? A mathe-
matical identity may provide a clue. It says that the
average of the Bayes posterior risk over all data val-
ues is the average of the frequentist risk over all
parameter values. Thus

(15) jrx(a(x» dP(x) = JR(S(@) dPH(0).

Perhaps if the priors are not too crazy, then the two
risk estimates are roughly compatible.

Bayes Parameter Estimation. Return to the ex-
ample of the patients with the new disease. This
example is so simple that it is does not fairly rep-
resent Bayesian statistics or indeed statistical in-
ference in general, but it illustrates some of the is-
sues.

The unknown parameter is a number 6 between
zero and one. This is the survival rate for humans
in general. The experimental sample consists of n
patients. For each patient survival is indicated by
1 and death by 0, so the data vector x consists of
alist of n values, each 1 or 0. The task is to use the
data to estimate the parameter € and to present
this estimate to the health conference.

Decision theory needs a loss function. Economics
experts assisting in the preparation of the
conference have concluded that the problem at
hand is an estimation problem with loss function
L(a, 0) = (a — 0)2. One might suspect that this
choice may be more for mathematical convenience
than the result of a deep analysis of the conse-
quence of error. However it allows the analysis to
proceed.

Suppose that there is prior information that the
human survival rate for new diseases that jump
from animal hosts is usually above 50 percent. In
fact, a survival rate of about 75 percent might be
reasonable, but this is not a firm figure. One sim-
ple device for arriving at a Bayes prior distribution
that is mainly distributed above 50 percent is to
consider that it would have about as much influ-
ence on the final result as if the sample size were
increased by m = 8 and the number of successes
were increased by s = 6. Of course there is no claim
that there was ever an actual sample of size m =8
with s = 6 successes. This is just a device for defin-
ing a Bayes prior distribution that is centered near
75 percent (since s/m =6/8 =0.75) but has con-
siderable spread (since m is so small).

The mathematical representation of this distri-
bution is
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Figure 4. Procedures for estimating survival
rates. Risk functions for the maximum
likelihood estimator and for a Bayes estimator.
Is one less risky than the other?

1

H —
16) dPM(0) = e —

051 (1 —o)y" st do.

Here is where this comes from. Complete igno-
rance is expressed by a distribution proportional
to 06-1(1 — 0)~!. (Never mind that this starting
point is not a probability distribution.) Each suc-
cess adds one more power of 0, and each failure
adds one more power of (1 — 0). The normalization
constant makes this a measure with total proba-
bility one, at least when s and m — s are both
greater than zero. This particular prior distribution
is convenient mathematically, and it is indeed
spread out over the required range of parameter
values.

The effect of the experimental data is captured
in the normalized likelihood function, which in
this case is

a9 fx0 = Bls,m = 5)

r+s,n+m-3s)

er(l _ g)n—r’

where ¥ = > x is the number of successes. The
Bayes posterior distribution is the product of the
normalized likelihood function with the Bayes prior
distribution, that is,

(18) dPH(0 | x) =

1

r+s-1 _ n+m-r-s-1
B(r+s,n+m—s)9 (1-96) ao.

This posterior distribution incorporates more in-
formation and therefore is more concentrated than
the prior distribution. The Bayes estimate of 6
(under squared error loss) is the conditional mean
of the Bayes posterior distribution, which is given

by
ryr+3S8 n r m S
+

(19) o(x) = = — —,
n+m n+4mn n+mm

where again r is the number of successes in the data
set x. Indeed, it says to act as if the sample size
were increased by m and the number of survivals
were increased by s. This gives a combination of
the maximum likelihood estimate r/n and the non-
experimental ratio s/m.
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Even a frequentist may use such an estimator.
From this point of view it is reasonable to look at
the risk function Rg, perhaps forgetting that the
particular estimator ¢ has Bayesian origins. The ad-
vantage of considering the risk function is that it
makes no reference to the Bayes prior distribution
or to the experimental data values. With squared
error loss this risk function is the sum of the vari-
ance with the square of the bias:

(20)
Rs(0) =

n? 00-0) , m? ( s)z_

(n + m)? n (n + m)? m

The frequentist may consider various possible
choices for the m and s (with fixed sample size n)
that define the estimator. The problem is that one
is not clearly better than the other. Less risk for one
range of 0 values is compensated by more risk at
other 0 values, and 0 is unknown. However, if n is
large enough, then perhaps at least one of the risk
functions is acceptable to the frequentist. For sam-
ple size n = 16 the maximum likelihood risk func-
tion (s = 0, m = 0) is contrasted with the Bayes risk
function (s = 6, m = 8) in Figure 4. The Bayes risk
function has less risk in the range of 0 values that
the Bayesian considers most probable, but more
risk elsewhere. These are not the only possibilities.
A frequentist worried about the worst that could
happen might prefer the estimator with s/m =1/2
and m = /n, since it has constant risk.

In the example the sample size is n = 16, so the
decision function that gives the Bayes estimate is
r+s)/n+m)=(r+6)/(16+8)=(r+6)/24. This
is a biased estimate, but that may be just what is
needed. In fact, the Bayesian might argue that it is
better to bias the result from the sample propor-
tion toward the prior value of 0.75. After all, if the
new findings deviate greatly from this, an experi-
enced observer might well suspect a misleading run
of bad luck in a relatively small sample. In short,
it is foolish to ignore relevant evidence.

If the prior hypothesis of something like an av-
erage 75 percent survival rate is even roughly cor-
rect, then using it to bias the estimate toward this
value is perhaps quite helpful. However, if the new
disease, unlike its predecessors, is highly fatal (6
near zero), then the use of the prior hypothesis
could lead to a nasty bias in the wrong direction.
Has anyone thought of this possibility? What is the
actual situation? Nobody knows for sure, and, in
our scenario, the decisive meeting is just hours
away. Suppose the decision is to use the particu-
lar Bayes estimate at hand, as the best way of
updating what one hopes is the best available
information.

The experimental result just came in. The data
for the sixteen patients are

(1) x=(1,0,0,0,1,1,0,0,0,0,1,0,1,0,1,0).
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Figure 5. Disease survivors. As information on
the seriousness of the disease accumulates, the
Bayes distribution for the chance of survival
becomes more peaked and moves to the left.
Posterior distributions are shown for
n=4,8,12,16.

There are only ¥ =6 survivors out of the 16 pa-
tients, so the Bayes estimate of the population
survival probability is 12/24 = 0.5. This is consid-
erably above the maximum likelihood estimate
6/16 =0.375, but, given the assumptions, it is
the best combination of prior knowledge and new
evidence.

The prior distribution centered at 0.75 and
posterior distributions that reflect accumulating
evidence are shown in Figure 5. The final posterior
distribution is centered at 0.5, well above the
experimental proportion of 0.375, but reflecting its
influence.

Ignorance Priors. Since the work of A. Wald
relating Bayesian theory to decision theory there
is not much dispute about whether Bayesian meth-
ods are reasonable; clearly in many cases they are
[2]. The misgivings are about the interpretation of
the prior probability measure PH in circumstances
when it has no natural frequency interpretation.
There are really two problems: How to choose the
prior? In what sense is the choice correct?

Jaynes reviews several proposals for how to
choose the prior. In the case of complete igno-
rance one should look for group invariance to
choose the prior. Thus, for instance, in the case of
alocation parameter 0; this would be a multiple of
d 0;, while in the case of a scale parameter 5 > 0
this would be a multiple of d0s/60;. The problem
that these are not probability measures may be
overcome by various devices.

In the case of the unit interval a natural prior
for 0 with 0 < 8 <1 is given by taking the evi-
dence 0; =1og(0/(1 — 0)) as a location parameter,
so that a multiple of

1
(22) ae, = o0 -0 ae
is the preferred choice.
This, by the way, is not the choice made by
Laplace. He avoided the maximum likelihood esti-
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mator r/n, perhaps on the ground that a run of
r = n sunrises should not suggest that the sun will
certainly rise. Instead his estimator was (r +1)/
(n+2). Laplace was using the Bayes prior d@ for
which there is a prior bias toward 1/2 as strong as
that which would come from a sample of size 2.
That is, equation (6) corresponds to equations (16)
and (18) with s =1 and m = 2.

Say that there there is already a non-informative
prior PH, presumably a uniform distribution
determined by group invariance. One wants to
incorporate additional information to the effect
that a certain quantity h has specified expectation
equal to E. The statistician needs a new prior Pl?
such that

(23) Jh(@) dPi(0) = E.

Jaynes argues that the least informative such PX
is given by the maximum entropy principle. The re-
sult of using this principle is that

(24) dPg(@) = ie"m’(e) dpPH(o).
Zg

For each fixed B the constant Zg is chosen so that
Pé{ is a probability measure. The constant S is
then to be chosen so that the expectation is equal
to E. It is no accident that such formulas are fun-
damental in equilibrium statistical mechanics. In
that context h(0) is the energy of configuration 6,
while B is inversely proportional to the tempera-
ture, and E is the expected energy corresponding
to equilibrium at the given temperature.

The obvious objection is that there may be no
group invariance available to determine the prior
expressing total lack of information. Furthermore,
whether or not there is group invariance, there is
a general question of how to justify a method of
choosing the Bayes prior distribution.

Jaynes discusses writers who are reluctant to in-
troduce the notion of prior probability. He states
(p. 419):

But these same writers do not hesitate
to pull a completely arbitrary loss func-
tion out of thin air, and proceed with the
calculation! Our equations show that if
the final decision depends strongly on
which prior probability assignment we
choose, it is going to depend just as
strongly on which particular loss func-
tion we use. If one worries about arbi-
trariness in the prior probabilities, then,
in order to be consistent, one ought to
worry just as much about arbitrariness
in the loss functions. If one claims (as
sampling theorists did for decades and
as some still do) that uncertainty as to
the proper choice of prior probabilities
invalidates the Laplace-Bayes theory,
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then, in order to be consistent, one must
claim also that uncertainty as to the
proper choice of loss functions invali-
dates Wald’s theory.

Jaynes admits that there has been work on the
problem of determining loss/utility functions. How-
ever he claims (p. 420):

Such constructions, if one can transfer
them into a computer, will be better
than nothing; but they are clearly des-
peration moves in lieu of a really satis-
factory formal theory such as we have
in the principles of maximum entropy
and transformation groups for priors.

He even argues that “a change in prior infor-
mation which affects the prior probabilities could
very well induce a change in the loss function as
well” (p.424). In a footnote he gives a literary
illustration:

Quasimodo, condemned by an accident
of Nature to be something intermediate
between man and gargoyle, wished that
he had been made a whole man. But,
after learning about the behavior of
men, he wished instead that he had
been made a whole gargoyle: ‘O, why
was I not made of stone like these?’

Opinions. Jaynes has little patience with mea-
sure theory and scant interest in stochastic
processes. For instance, he states that “those who
persist in trying to calculate probabilities condi-
tional on propositions of probability zero, have
before them an unlimited field of opportunities for
scholarly research and publication—without hope
of any meaningful and useful results” (p. 485).
This is consistent with the fact that he sees little
use for the terms “sigma-algebra, Borel field, Radon-
Nikodym derivative” (p. 676). As for stochastic
processes, he asserts that “the most valuable ap-
plications of probability theory are concerned with
incomplete information and have nothing to do with
those so-called ‘random phenomena’ which are
still undefined in theory and unidentified in
Nature” (p. 709). Clearly his book is not the place
to learn modern probability theory.

The central thesis of the book occurs in the
following passage (p. xxii):

Our theme is simply: probability theory
as extended logic. The ‘new’ perception
amounts to the recognition that the
mathematical rules of probability the-
ory are not merely rules for calculating
frequencies of ‘random variables’; they
are also the unique consistent rules for
conducting inference (i.e. plausible
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reasoning) of any kind, and we shall
apply them in full generality to that end.

For the author, “maximum entropy is the appro-
priate (safest) tool when we have little knowledge
beyond the raw data” (p. xxiv). Another passage
summarizes his view of the role of uniform or
maximum entropy priors (p. xxiv):

Bayesian and maximum entropy meth-
ods differ in another respect. Both pro-
cedures yield the optimal inferences
from the information that went into
them, but we may choose a model for
Bayesian analysis; this amounts to ex-
pressing some prior knowledge—or
some working hypothesis—about the
phenomena being observed. Usually
such hypotheses extend beyond what is
directly observable in the data, and in
that sense we might say that Bayesian
methods are—or at least may be—spec-
ulative. If the extra hypotheses are true,
then we may expect that Bayesian re-
sults will improve on maximum entropy;
if they are false, the Bayesian inferences
will likely be worse.

This prescription of Bayesian analysis as a
universal recipe is too enthusiastic. A working
hypothesis may be an incorrect hypothesis. Fur-
thermore, the maximum entropy method is to be
used in a situation of almost complete ignorance,
where only a few moments are known. It depends
ultimately on some uniform prior, typically de-
fined by group invariance. From a frequentist point
of view, the use of a uniform distribution as a prior
seems to represent a definite knowledge claim. If
this claim is far off the mark, then what is the
virtue of making it? Perhaps a Bayes decision is a
procedure to be evaluated in the same way as any
other such procedure. If there is enough data the
risk can be kept acceptably low.

A positive feature of the book is that the author
thinks for himself (within this ideological frame-
work) and writes in a lively way about all sorts of
things. It is worth dipping into it if only for vivid
expressions of opinion. The annotated References
and Bibliography are particularly good for this.
For instance, in the annotation to C. J. Preston’s ex-
cellent book on Gibbs States on Countable Sets [5]
Jaynes writes (p. 715):

Here we have the damnable practice of
using the word state to denote a prob-
ability distribution. One cannot think of
a more destructively false and mis-
leading terminology.

There are many books on Bayesian statistics, but
few with this much color. The term “state”, by the
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way, has its origin in quantum theory, and its trans-
fer to probability is quite natural. On the other
hand, for Jaynes quantum theory presents problems
(p. 328):

As Bohr stressed repeatedly in his writ-
ings and lectures, present quantum
theory can only answer questions of the
form: ‘If this experiment is performed,
what are the possible results and their
probabilities?’ It cannot, as a matter
of principle, answer any question of
the form: ‘What is really happening
when...?” Again, the mathematical for-
malism of present quantum theory, like
Orwellian newspeak, does not even pro-
vide the vocabulary in which one could
ask such a question.

This is an unusual perspective from a physicist,
but others have been troubled by this issue [6].
Perhaps Jaynes has a point.
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