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Introduction

This paper proposes and discusses a list of ax-
ioms for set theory based on the principle: Accept
as much regularity or specificity as possible with-
out weakening the theory.

The philosophy of mathematics has little or no
influence upon 99% of mathematics. But there is
that 1% where it matters, namely the choice of ax-
ioms of set theory, and this is the theme of this
paper.

There are two extreme ontologies of mathe-
matics: (a) Platonism, which tells us that pure math-
ematics is a description of an ideal structure that
exists independently of humanity, and (b) Formal-
ism, which says that pure mathematics is just a
game with symbols. (Both views acknowledge the
seminal role of applications, e.g., both agree that
Greek geometry is an abstract approximate de-
scription of the physical space-time.) We think that
neither (a) nor (b) is convincing; (a) assumes too
much, it violates Ockham’s principle entia non sunt
multiplicanda praeter necessitatem, and (b) ignores
that logic and set theory constitute a framework and
a tool for describing reality which was given to us
by natural evolution. We believe the latter since peo-
ple of all cultures agree that mathematical argu-
ments are convincing, and those who study the
rules of logic and the axioms of set theory (ZFC with
urelements allowed) think that they are evident.
[Some postmodernists try to refute this observa-
tion by quoting various psychological experiments.
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We cannot take here the time and space to criticize
them, but we believe that the evidence in favor of
our opinion is overwhelming.] (Note: In this article,
I will use parentheses to indicate additional infor-
mation that is necessary but outside the main flow
of ideas, square brackets for additions that are
more remote from the main flow, and curly braces
for digressions.)

Thus we accept a view which is intermediate be-
tween (a) and (b) and which says that not only ap-
plications but (in a great measure) human nature
itself defines and causes pure mathematics. The
ideal actually infinite sets of the Platonists are re-
placed by physical phenomena in human brains,
that is, thoughts of things like boxes whose con-
tent is not fully imagined (see [Hj]). The meaning
of quantifiers is explained as follows (see [SK] and
[H2]): If we claim in pure mathematics that
Vx3y@(x,y), where x and y range over a universe
U, we assert only that we have a mental operation
such that given any a in U we can imagine a b in
U satisfying @(a, b). Hence the infinite sets and uni-
verses of pure mathematics are not actually but only
potentially infinite. (For a fuller explanation see re-
mark 3 at the end of this paper.) Thus pure math-
ematics is a finite human construction in a state
of growth dealing with imaginary objects. It makes
no sense to call it true or false since truth can ap-
pear only in applications (this does not contradict
the fact that there exists a mathematical theory of
the relation of truth). And yet logic and set theory
are not arbitrary since human intelligence is made
to describe reality in this framework (i.e., to clas-
sify using sets, sets of sets. etc.).
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{Although we have explained pure mathemat-
ics without introducing actual infinity, it seems
that actual infinity does exist in physical reality, e.g.,
the space-time continuum appears to be infinite (see
e.g., [P]). But some objects or structures of mathe-
matics are purely imaginary, for example, a well-
ordering of the real line, while others have poten-
tial interpretations as physical objects or processes,
and we call them real. In mathematical practice
many real objects are constructed or explained by
means of imaginary ones. This is the natural way
to do mathematics, such are the necessities of
human intelligence. Constructivism, which tries to
avoid imaginary objects, is unwieldy, but the dis-
tinction between imaginary and real objects is in-
teresting, see [DM] and [Ms].}

Although the concept of truth does not apply to
pure mathematics, we can ask does such and such
a set-theoretic proposition P constitute a natural law
of thought? Of course if the answer is yes we ac-
cept P as an axiom. If it is no, but P is consistent
with the natural laws, then we are free to accept
or to reject P. After Godel and Cohen it is known
that many simple set-theoretic propositions P are
in that last category. And yet some of them can be
desirable axioms if they have any of the following
properties: (1) They simplify set theory, inducing
regularities without excluding any interesting ob-
jects. (2) They strengthen set theory and enrich its
universe with interesting objects.

For these reasons it is rational to add new ax-
ioms, when we think they satisfy (1) or (2). But I feel
that, for a long time, set theorists have not taken
advantage of this freedom; that is, they accept in
practice the view of Platonists who worry that the
prospective axioms could be false. (The only axioms
extending ZFC which set theorists accept rather
freely are the large cardinal axioms, see [Ka] and
Axiom SC below.) For example, my paper [M3] was
written under the spell of that restrictive tradi-
tion. On the other hand, such new axioms cannot
be written in stone. Since the future developments
of mathematics may require their rejection, they
can reflect only the actual state of mathematics.

The purpose of this paper is to propose and to
discuss briefly a system ST of axioms for set the-
ory which appear at present to be the natural
choices of a rationalist. ST will be much stronger
than the traditional theory ZFC, since several “con-
jectures” will be accepted as axioms. I will argue
that the acceptance of these “conjectures” (they are
known to be consistent with the original axioms if
the latter are consistent) is well motivated.

The Axioms of ST
We propose a set theory ST based on ten axioms:
The Axiom of Extensionality:

(1) VxylVzlzex — zey] - x=Yl].
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This axiom defines the concept of a set in terms
of the membership relation €. Since x and y are
unrestricted variables, (1) also precludes the exis-
tence of objects that are not sets. This may appear
too restrictive since in real life we imagine many
objects which we do not treat as sets. Therefore in
some older books the universe of set theory is di-
vided into sets and non-sets (called urelements), and
in the Axiom of Extensionality the range of x and
v is restricted to sets; see e.g., [KM] and [Su]. How-
ever, experience has shown that in mathematics ure-
lements are not essential (they can be constructed
in terms of sets and a modification of the relation
€). Therefore, in view of its simplifying role, we ac-
cept the Axiom of Extensionality.

The Axiom of Union:
(2) Vx3dyVzlzey — 3As[zes&s eX]].

Of course we often need to construct a set y in
terms of a set x in the above way. Thus we accept
the Axioms of Union. (We write y = J(x).)

The Axiom of the Powerset:
(3) Vx3dyVz[zey — Vs[lzes—sex].

Once again, we often need to construct y in terms
of x in the above way. Thus we accept the Axiom
of the Powerset. (We write y = P(x).)

The Axiom of Replacement:
valVxy3azlex,y,a) -y =z] -
VdarvVyly e r — 3Ix[x €d & p(x,y, 0)]l].

Here @1 denotes a finite string of variables, and ¢
is any formula written in terms of — (negation), —
(implication), V and 3 (universal and existential
quantifiers), the symbols = and €, and variables,
and such that the variables x, y, z,d, ¥ do not ap-
pear in &i. This axiom is really a rule of proof since
we can put for @ any formula we wish. It tells us
that if we pick any string of sets i1, and a formula
@(x,y, 1) such that for all x there is at most one y
which satisfies it, then for every set d (the domain)
there exists a set v (the range) which is the image
of d under @. Again we often use this rule to con-
struct ¥ from d (and i1), and hence we accept the
Axiom of Replacement.

[For example, if we choose @ to be the formula
x =y & Y(x,01), then r is the subset of d consist-
ing of these x that satisfy @(x, i1). If we choose a
@ that is always false then r is the empty set &.
Then using the Powerset Axiom we can construct
the set d = PP(Q)={D,{J}}. And, using this d
and an appropriate @(x, y, a, b), (4) yields the un-
ordered pair {a,b}. Then we can build the single-
ton {a} and the ordered pair {{a}, {a,b}}, etc.]

The Axiom of Regularity:
(5) VX[x#@ — Aylyex& Vs[lsey —s & x|l
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The only role of this axiom is to simplify the uni-
verse of sets. It precludes the existence of infinite
sets {aj,ap,...} such that a; > ap > as,.... In-
deed if x was such a set it would violate (5). It also
precludes sets a such that a € a. Indeed, for such
an a, the set x = {a} would violate (5). Of course
any urelements would also violate (5). Set theories
without the axiom of regularity have been consid-
ered, but they do not appear to lead to any suffi-
ciently interesting mathematics. Therefore, in view
of its simplifying role, we accept the Axiom of Reg-
ularity.

However, we will introduce below an axiom (7)
which implies (5); thus (5) is superfluous in ST, but
it will appear in some later remarks.

The Axiom of Infinity:
(6) IxIx#D&Vylyex—yuliytexl,

where y U {y} = U{y, {y}}. This axiom is essential
for the construction of infinite sets, for example,
of the set N of positive integers. The former axioms
(1)-(5) of set theory constitute a system defini-
tionally equivalent to Peano’s Arithmetic (PA), and
this system is not strong enough to develop math-
ematics in a natural way. For example, (6) is nec-
essary for the development of analysis.

[A very artificial finitistic way of doing set the-
ory is possible. It is based on the Completeness The-
orem of GOdel. Namely, we can develop mathe-
matics within the theory PA + Con(S), where PA is
Peano’s Arithmetic and Con(S) expresses in the
language of PA (by means of Gddel numbers) the
consistency of a set theory S. In this theory we can
define a model of S. But this is not natural since it
is only a translation of the idea of S into the lan-
guage of PA.]

The Axiom V = OD:

From now on we depart from the beaten track
since V = OD and the remaining axioms have not
yet been accepted by other set theorists. To explain
this axiom, recall first that the class of ordinal
numbers Ord is defined to be the smallest class
of sets that contains @ and that is closed under
unions of its subsets and closed under the func-
tion x — x U {x}. (One shows that @« € Ord if and
only if Vxy[x <y € «x— x € y € «].) The former
axioms (1)-(6) yield a proof that each ordinal « is
well-ordered by the relation €. As usual, € re-
stricted to ordinals is denoted by <, and w denotes
the least infinite ordinal. For every ordinal «, we
define x + 1 = ¢ U {«}. Then we define recursively
the sets Vy (x € Ord):

Va= U P(ve).

E<x

Thus Vo=@, V1 = {3}, Vo ={D,{D}},...,Vas1 =
P(Vy),.... The former axioms (1)-(6) yield the
theorem:
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Vx3Iuxlx € Vyl,

and we write
() V= J Va

xeOord
Thus V denotes the universe of all sets. Unlike the
V«'s, V is not a set, and hence () is not a formal
definition in the language of set theory.

Now we form the models (Vy, €), and we denote
by D the set of elements of V which can be de-
fined by unary formulas in the model (V, €). Then
OD is a class informally defined as follows:

OD= |J D
xe0rd

Again OD is not a set. But our seventh axiom, V =
OD, can be formally expressed as follows:

(7) Vx3x[x € Dyl.

Notice that each Dy is finite or countable. Still the
union g« x D builds up relentlessly, so we never
need in mathematics any set that has to be outside
of OD. [Of course we could assume that there exist
such sets, but heretofore this assumption has not
led to any interesting mathematics.]

We mention three consequences of V = OD: (a)
it implies the Axiom of Choice, and moreover it
yields a certain binary formula @(x, y) that well or-
ders all of V; (b) it implies the Axiom of Regular-
ity (5); (c) the set theory S based on the axioms
(1)-(7) has the elegant property that the definable
elements of any model M of S constitute an ele-
mentary submodel of M. Peano’s arithmetic also has
this property, but the traditional system of axioms
ZFC does not have it. I believe that, in view of these
consequences and for sake of definiteness, it is ra-
tional to accept V = OD.

Of course this may be a temporary situation. For
example, some interesting theory involving real
numbers that are not in OD could arise in the fu-
ture. But we have no reason to predict that such a
thing will happen.

[It appears natural to add a refinement (7*) of
(7), which, in the presence of (5), implies (7):

(7%) Vacs | Ds,

E<IVal
where |V4| is the ordinal of the least well-order-
ing of V. But I do not know any interesting con-
sequences of (7*). Every set x has the structure of
a tree (Tr(x), €), where

Trx)={x} uxuJxuvJlUJxnu...

Perhaps one can postulate some more detailed re-
lation between the definitions of definable sets
and their trees?]

The Axiom GCH:
The cardinal number of a set a, in symbols |al, is
the smallest ordinal number which has a bijection
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to a. Thus the least infinite cardinal number is w,
also denoted Xg. The next one is denoted w1 or N1,
etc. For every cardinal number « we define
2% = |P(x)| and ot = (the least cardinal larger than
«). The Axiom GCH is:

For every infinite cardinal «
(8) we have 2% = x™.

This axiom greatly simplifies the theory of infi-
nite cardinal numbers, and it adds many interest-
ing theorems to the combinatorics of infinite sets.
These well known advantages are so significant
that it is rational to accept GCH as an axiom of set
theory. (Even CH, that is 2% = X1, has many inter-
esting consequences.)

Set theorists often say that probably GCH re-
stricts too much the sets PP(x). But one can also
surmise the opposite. Indeed 2% > «* precludes the
existence of any subset of P(x) which codes a func-
tionf : P(x) — P(«x) such that whenever x,y € P(x)
and x # y, then f(x) and f(y) code different well-
orderings of «. Since, as we explained in the first
section, PP(«x) is only potentially infinite, we are
free to accept GCH. [It is often said that the Axiom
of Choice (AC) and CH have consequences that
contradict probabilistic intuition that is based on
physical experience. However, a closer look shows
that those paradoxical consequences do not per-
tain to any mathematical objects that have a po-
tential for direct physical interpretations (for a de-
tailed discussion see [DM] and [Ms]). On the other
hand AC and GCH have similar organizing or sim-
plifying roles, which motivate their presence in ST.
(As mentioned earlier AC is a consequence of V =
OD.)]

The acceptance of GCH leads us to the follow-
ing considerations. If we have a nontrivial proof of
a theorem T which does not use GCH, such that T
becomes trivial if GCH is assumed, then that proof
ought to give a stronger theorem T* that is still
nontrivial even in the presence of GCH. I will give
two examples where I do not know the correct
statement of T*.

The first is a theorem of R. McKenzie and
S. Shelah [MS]. To state it we need the following con-
cepts. An algebra A of countable type is a system
(A, f1,f2,...),where A is anonempty set and each
frn is a function of finitely many variables running
over A and with values in A. Let X be an infinite
system of equations written in terms of the f},’s and
any (possibly infinite) number of unknowns. A is
said to be equationally compact if every X has the
property that if all its finite subsystems can be
solved in A then the entire system X can be also
solved in A. And, A will be called folded if for
every proper homomorphic image B of A there ex-
ists a finite system X which can be solved in B but
not in A. It was known (W. Taylor [T]), that if A is
of countable type, equationally compact, and folded
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then |A| < 2%, McKenzie and Shelah proved with-
out using CH that Rg < |A| < 2%0 is impossible.
According to the idea expressed earlier, the proof
should yield a stronger theorem T* which remains
nontrivial even if we assume the theorem of Tay-
lor and CH. I do not know such a theorem.

Another example of this situation is the fol-
lowing. A well known conjecture of R. L. Vaught says
that if T is a countable theory, then the number «
of isomorphism types of countable models of T can-
not satisfy g < & < 280, Morley [Mo] has shown a
little less, namely that 81 < & < 2%0 is impossible.
Again I think that a stronger conjucture and a the-
orem that do not follow immediately from CH
should exist.

The above ideas should not be construed as a
criticism of a branch of foundations called Reverse
Mathematics. In this branch one proves theorems
of the form T — A, where T is some interesting the-
orem and A is an axiom (of course A is not assumed
in the proof of T — A). Some examples of such the-
orems are the following. Tarski’s theorem: (For all
infinite sets X there exists a bijection of X to X x X)
— (Axiom of Choice). Or Sierpinski’s theorem: (The
space R3 with a Cartesian coordinate system
X,Y, Z, is aunion of three sets A, B, and C such that
every linear section of A parallel to X is finite,
every linear section of B parallel to Y is finite, and
every linear section of C parallel to Z is finite) —
CH. There are many interesting theorems of Reverse
Mathematics, but some critics do not care for such
results. [Tarski told me the following story. He
tried to publish his theorem (stated above) in the
Comptes Rendus Acad. Sci. Paris but Fréchet and
Lebesgue refused to present it. Fréchet wrote that
an implication between two well known proposi-
tions is not a new result. Lebesgue wrote that an
implication between two false propositions is of no
interest. And Tarski said that after this misadven-
ture he never tried to publish in the Comptes Ren-
dus.]

The Axiom SH:

If A is a linearly ordered set such that
every set of disjoint open intervals of A
9) is countable then A has a countable
subset which intersects every non-empty
open interval of A.

This axiom, called Suslin’s Hypothesis, has been
extensively studied (see [Ku]). Once again, we do
not meet in mathematics any linear orders violat-
ing (9). So we accept (9) since it simplifies set the-
ory in a natural way.

It may be of some interest to recall a statement
equivalent to (9) (see e.g., [Ku]). By a tree we mean
a partially ordered set T such that the set of pre-
decessors of any element of T is fully well-ordered.
A subset of T is called a chain if and only if it is
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well-ordered; it is called an antichain if no two of
its elements are comparable. Then (9) can be ex-
pressed equivalently as follows:

9") If every chain and every antichain
of a tree T is countable then T is countable.

(Perhaps the simplifying nature of (9”) is more
salient than that of (9). SH or (9") may suggest sim-
ilar axioms for higher cardinal numbers.)

The Axiom ADL®:

To explain this axiom we need the following con-
cepts. For every set A, we form the relational struc-
ture (A, €), where € is restricted to A. Then a set
X < Ais called A-constructible if there exists a for-
mula of set theory @(x,y) and a finite string a of
elements of A such that

x € X — (p(x,a) is true in (A, €)).

Let C(A) denote the set of A-constructible subsets
of A.
Then we define

La= | CLy)
E<x
and
L= |J L&
xeOrd
We define also
LO(R) = Vw+1,

and, for all & > 0,

La(R) = | C(Lg(R)),

E<x

and finally

L®)= |J La®).
xeO0rd

(The notation L(R) derives from the existence of
natural bijections from V1 to the set R of real
numbers.) The structures (L, €) and (L(R), €) are
of special interest. The first satisfies all the axioms
(1)-(8) (but not (9)), and the second satisfies (1)-(6).
In fact (L(R), €) is the smallest structure which
contains R and all the ordinal numbers and which
satisfies (1)-(6).

Although L(R) is minimal in the above sense it
is large enough for mathematical analysis. For ex-
ample, it contains not only all the real numbers but
also the projective sets of all ranks < w1, and pre-
sumably all sets that are of true significance for
analysis over Polish spaces. On the other hand, it
does not contain sets that appear pathological in
a probabilistic sense. But these claims depend on
the axiom ADL® which we will explain presently.

Consider the following infinite binary game of
perfect information. Let {0, 1} % be the set of all in-
finite sequences (g, €1, ...) where &, € {0,1}, and
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let a set X < {0, 1}% be given. Player I chooses &,
then player II chooses &1, then again I chooses ¢,
and II chooses &3, etc. The set X and the sequence
(€0, ..., En—1) are known to the player choosing &y.
I wins if the sequence (&g, €1, ...) belongs to X and
II wins otherwise.

The Axiom of Determinacy AD is the statement
for every X one of the players has a winning strat-
egy. It is easy to prove using the Axiom of Choice
that AD is false. But the Axiom ADY® [which was
suggested in [MgS] and in [M4] footnote (1)] is the
following restriction of AD:

(10) AD is true provided X € L(R).

This axiom has many interesting consequences.
Assuming ADL® the class L(R) becomes the nat-
ural universe of sets for mathematical analysis in
Polish spaces. Indeed, AD implies that: all un-
countable sets of reals have perfect subsets, all sets
of reals are Lebesgue-measurable, and all have the
property of Baire (see [M2]). Also the theory of pro-
jective sets gets a very regular form (see e.g., [M]).

Therefore it is rational to accept the axiom
ADL®),

The Axiom SC:

To explain this axiom we need the following con-
cepts. For every infinite cardinal «, a Hausdorff
space S is called «x-compact if every covering of S
with open sets has a subcovering with less than «
sets. (Thus w-compact means compact in the usual
sense.) A cardinal « is called strongly compact if
every topological Cartesian product of any number
of x-compact spaces is x-compact. By the Ty-
chonoff product theorem, w is a strongly com-
pact cardinal. (There exist other definitions of
strongly compact cardinals. They were introduced
in [KT] and the above definition was shown in [M; ].)
The axiom SC is the following:

For every cardinal k there exists a
(11) strongly compact cardinal larger than k.

It is natural to replace the product topology in
the definition of a strongly compact cardinal « by
alarger topology whose basis is the set of all cylin-
ders over products of less than « open sets. But
the corresponding concept of strong compactness
is equivalent to the former.

Thus SC postulates the existence of many car-
dinal numbers similar to w. One can prove many
large cardinal properties of «-compact cardinals,
for example they are strongly inaccessible and
even measurable (see [D] and [Ka]).

The axiom SC is also interesting for other rea-
sons. One of them is a theorem of R. M. Solovay [So],
which says that all cardinals «, which are larger than
the least uncountable strongly compact cardinal
and are singular and strong limit!, satisfy 2% = «*.

Lo is strong limit if k < @ — 2K < «.
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{Again we believe that the proof in [So] should
yield a property of « stronger than 2% = x*, which
does not become obvious under the assumption of
GCH.}

To state an interesting consequence of SC let us
generalize the infinite game defined in the previ-
ous section. We replace the set {0,1} by an arbi-
trary set P, and the set X by any X < P®. (Thus the
players I and II choose their &, in P.) Let N be a
countable set, and consider the product topology
in P® x N® where both P and N are given the dis-
crete topology. A set X < P® is called analytic if
it is a projection of a closed subset of P® x N®. It
is a consequence of SC that if X is analytic then the
game is determined, i.e., one of the players has a
winning strategy. (In fact alarge cardinal axiom sig-
nificantly weaker than SC suffices to prove this the-
orem, viz. (3k > |P|) [k — (w1)5“], see [Mz]. This
result for P = w is due to D. A. Martin; in [M>] his
proof is generalized to all sets P.)

Large cardinal axioms much stronger than SC
have been proposed and studied. Some of them
imply the axiom ADL® (this is a difficult theorem
of Martin, Steel, and Woodin, see [N1], [N2] and
[Ka]), but I stated SC rather than those stronger ax-
ioms since the latter are more complicated and, as
far as I know, unlike SC, they are not suggested by
any properties of .

Conclusion

This concludes my definition of a set theory ST
which I believe to be reasonable, that is, as strong
and simple as possible and unrestricted by any
Platonic beliefs. Thus

ST = [ZF + (V = OD) + GCH + SH + ADL® 1 5],

where, as usual, ZF denotes the system (1)-(6). But,
as explained in the introduction, ST is an attempt
at a good synthesis of the current state of mathe-
matics. It will have to be strengthened or modified
if mathematics calls for more sets.

However, much of the current work in set the-
ory consists of difficult and ingenious proofs in
theories weaker than ST (see e.g., [Ka], [KL], and [S]),
and of constructions of very artificial models that
yield independence and consistency results. Of
course this is interesting to the specialists, but I
think that it is difficult to justify such work to
mathematicians at large. Indeed they can object: We
are not very interested in methodology; if you have
the freedom to assume strong and simplifying ax-
ioms why don’t you assume them?

Recently W. H. Woodin and others have pro-
posed set theories that are inconsistent with ST, but
I think that the motivation of ST is better (see re-
mark 2 below).

[Tt is known that in very strong set theories, e.g.,
ZFC + (there exists a supercompact cardinal), one
can prove that ST is consistent. But the definitions
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of supercompact cardinals or any cardinals suffi-
cient for that proof (see [Ny, N2]), are so compli-
cated that the claim that ST is consistent is more
convincing to me than the claim that these very
strong theories are consistent.]

Additional Remarks

Let ZFC denote (as usual) the system of axioms
(1)-(6) plus the Axiom of Choice. Let me reiterate
the motivation of ST. As we mentioned in the In-
troduction, ZFC is natural in the sense that almost
every mathematician who reads its axioms feels that
he accepts them. However, as explained in our dis-
cussion of axioms (1) and (5), ZFC departs from the
natural way of thinking by accepting some simpli-
fications which eliminate certain sets that are not
important for mathematics (urelements and sets
that are not well founded). So it is natural to fol-
low this path and accept the other axioms of ST that
simplify the theory, namely V = OD, GCH, SH, and
ADE® _(Of course SC enriches rather than simpli-
fies.)

This suggests the question why these well known
propositions are not yet generally accepted by
most set theorists. I see three reasons: (a) the tra-
dition of treating them as open problems; (b) the
thought that they oversimplify set theory; (c) the
belief of Platonists that they could be false. In the
next three sections I will argue contra (a), (b), and
(0).

1. Ad(a). Of course (a) should be dismissed
since it is known that none of the axioms (7)-(11)
is a consequence of the other ones.

2. Ad (b). If we agree that ST does not appear to
impose any bounds on the consistency strength of
its possible extensions, then the fear that it over-
simplifies set theory has no motivation. Thus I feel
that (b) is not true (at least at the present time).

However, alternative theories were proposed re-
cently in [W1, W2 ]. These theories yield certain de-
scriptions of the model

<P(wl)! w1, +, -, E)!

where + and - are ordinal addition and multipli-
cation restricted to countable ordinals, and they
happen to disprove the Continuum Hypothesis;
they prove 2%0 = x». This looks odd, and it is a big
complication of the theory of cardinal numbers or
of the combinatorics of infinite sets. Moreover, all
uncountable subsets of w; (and of R) are imagi-
nary objects without the potential for any direct
physical interpretations (see [DM] and [M5]). Hence
any additions to ZFC describing these objects can
be motivated only by human preference. There-
fore the only objective criteria which can guide
our choice among these theories are precisely the
simplicity of the axioms and the regularity of their
consequences. Are the theories proposed in [Wq,
W2>] so attractive from this point of view that we

NOTICES OF THE AMS



212

should give up GCH?

[Some philosophers have tried to dismiss the
concept of simplicity of a theory, claiming that it
is vague or language-dependent or irrelevant. Yet
the simpler theories are easier to communicate
and easier to to remember, and in our descrip-
tions of reality (that appear to be true) the simplest
are the most convincing. Moreover, all generaliza-
tions or inductive inferences can be viewed as sim-
plifications of lists of special cases. Therefore it is
natural to apply also the criterion of simplicity or
elegance in our choice of set-theoretic axioms and
their consequences.]

3. Ad (c). Let me amplify some remarks made in
the Introduction. Hilbert’s view [H; ] of the struc-
ture of sets of pure mathematics as a finite array
of potentially infinite sets can be compared to the
interpretation of complex numbers as points of the
Cartesian plane (by Wessel, Argand, and Gauss). Like
the latter it gives a physical significance to some
formal concepts. I think that the idea of Hilbert is
deep since it simplifies in a dramatic way the on-
tology of pure mathematics. [It may have been an-
ticipated by Poincaré, by Skolem (in some papers
related to [Sk]), and even by Aristotle.] And yet
this idea is not yet a part of the general mathe-
matical culture (perhaps because it has little rele-
vance outside of set theory or because of a weak-
ness of the current philosophical culture). Now, a
full understanding of this interpretation also re-
quires an explanation of quantifiers that does not
use actual infinity. None of the books that I know
presents this development in modern terms, al-
though this is very easy:

Let X and y be finite strings of variables, and |5|
denotes the length of the string 3. Let € be an op-
erator which attaches to every formula @(x,y)
without quantifiers, where X and y are disjoint
strings, a string of |y| new function symbols of |X|
variables each. Denoting by ¢y this string of new
function symbols (if X is of length O they are con-
stants) we have the axiom

(H) PRX,Y) ~ QK £p (X))

essentially due to Hilbert [H2]. Granted this axiom,
quantifiers can be defined as abbreviations

Hj/(p(xl )_/) = (p(xa E(P,)_/(x))
and
V)_/(p(}_(, )_/) = CP(?_(, Eﬁ(l),)_/()_())

Then the usual rules of logic concerning quantifiers
can be derived from (H). Also using these formu-
las and working from inside out, variables (and
quantifiers) can be eliminated from every sentence;
and (H) can be viewed as an axiom-schema or a rule,
where % and y are arbitrary strings of names of con-
stants.
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{In the presence of V = OD we have a definable
well-ordering of the universe, and then the opera-
tor ¢ can be also defined: £¢ () is the least |y|-
tuple such that @(x, £¢,5(x)) holds, and, if no such
|v|-tuple exists, then ¢, 5(X) can be any y-tuple, say
(a,...,2).

Logicians who want to interpret symbols in mod-
els (within set theory) can interpret the sequence
&p,y as a variable |y|-tuple ranging over the rela-
tion (depending on %) denoted by ¢ when the lat-
ter is nonempty, and unrestricted when it is empty.}

We conclude that the feeling of concreteness and
reproducibility of mathematical objects is based on
the fact that, no matter what language we use to
describe them, they constitute finite structures in
our thoughts and memories of very definite kinds.
And the feeling of consistency of ZFC arises from
the simplicity of these constructions. Thus we are
able to explain these feelings without the as-
sumption that mathematics describes some Platonic
ideas independent of humankind.
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About the Cover

ICM Madrid 2006

As Manuel de Leon and Allyn Jackson explain elsewhere
in this issue, the next International Congress of Mathemati-
cians will be held in the summer of 2006 in Madrid. As many
mathematicians already know, a number of extremely hand-
some posters have been distributed to advertise the event.
The image on this issue’s cover, which shows the cupola of
the Sala de las dos Hermanas in the Alhambra, is taken from
one of them. Two of the posters are shown in the article by
Allyn Jackson, and the other two are reproduced below. The
verses by Ibn Zamrak, mentioned in a caption in Jackson’s
article, are just visible on the cover. One of the posters below
exhibits a view of the Colegio de las Teresianas, designed by
the Barcelonian architect Gaudi, and the other the cupola of
the imperial Escorial Palace just outside Madrid. The graph-
ics designer for all of the posters associated with the ICM
2006 was Maria Casassas of Barcelona. The photographer was
Marc Llimargas, who specializes in architectural photogra-
phy. In particular, he did the photography for a recent book
on Gaudi.

The geometric nature of Islamic design, incorporating
complex symmetries, has been well-explored from a math-
ematical point of view. A fairly sophisticated discussion, re-
ferring specifically to the Alhambra, can be found in the book
Classical Tessellations and Three-manifolds by José Maria
Montesinos. One good introduction to the Alhambra, with a
short discussion of the mathematics in context, is the book
The Alhambra by Oleg Grabar. A mathematical treatise much
respected by nonmathematicians is the University of Ziirich
Ph.D. thesis of Edith Miiller, Gruppentheoretische und Struk-
turanalytische Untersuchungen der Maurischen Ornamente
aus der Alhambra in Granada.

Our thanks to Manuel de Le6n for his help in obtaining
the images we used.

—Bill Casselman, Graphics Editor
(notices-covers@ams.org)
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