Computing over the
Reals: Foundations for
Scientific Computing

Mark Braverman and Stephen Cook

Introduction

The problems of scientific computing often arise
from the study of continuous processes, and ques-
tions of computability and complexity over the
reals are of central importance in laying the foun-
dations for the subject. The first step is defining
a suitable computational model for functions over
the reals.

Computability and complexity over discrete
spaces have been very well studied since the 1930s.
Different approaches have been proved to yield
equivalent definitions of computability and nearly
equivalent definitions of complexity. From the tra-
dition of formal logic we have the notions of re-
cursiveness and Turing machine. From computa-
tional complexity we have Turing machine variants
and abstract Random Access Machines (RAMs). All
of these converge to define the same well-accepted
notion of computability. The Church-Turing thesis
asserts that this formal notion of computability is
broad enough, at least in the discrete setting, to in-
clude all functions that could reasonably be con-
strued to be computable.

In the continuous setting, where the objects are
numbers in R, computability and complexity have
received less attention, and there is no one accepted

Mark Braverman is a Ph.D. student in the Department of
Computer Science, University of Toronto. His email address
ismbraverm@cs.toronto.edu. Partially supported by an
NSERC Postgraduate Scholarship.

Stephen Cook is Distinguished University Professor in the
Department of Computer Science, University of Toronto.
His email address is sacook@cs.toronto.edu. Partially
supported by an NSERC Discovery Grant.

NOTICES OF THE AMS

computation model. Alan Turing defined the no-
tion of a single computable real number in his
landmark 1936 paper [Tur36]: a real number is
computable if its decimal expansion can be com-
puted in the discrete sense (i.e., output by some Tur-
ing machine). But he did not go on to define the
notion of computable real function.

There are now two main approaches to model-
ing computation with real number inputs. The first
approach, which we call the bit-model and which
is the subject of this paper, reflects the fact that
computers can store only finite approximations
to real numbers. Roughly speaking, a real function
f is computable in the bit model if there is an al-
gorithm which, given a good rational approxima-
tion to x, finds a good rational approximation to
f(x).

The second approach is the algebraic approach,
which abstracts away the messiness of finite ap-
proximations and assumes that real numbers can
be represented exactly and each arithmetic oper-
ation can be performed exactly in one step. The
complexity of a computation is usually taken to be
the number of arithmetic operations (for example,
additions and multiplications) performed. The al-
gebraic approach applies naturally to arbitrary
rings and fields, although for modeling scientific
computation the underlying structure is usually R
or C. Algebraic complexity theory goes back to the
1950s (see [BM75, BCS97] for surveys).

For scientific computing the most influential
model in the algebraic setting is due to Blum, Shub,
and Smale (BSS) [BSS89]. The model and its theory
are thoroughly developed in the book [BCSS98]

VoOLUME 53, NUMBER 3

Wwww oy

Figure 1. The Koch snowflake and the graph of the equation y = e*.

(see also the article [BlumO04] in the Notices for an
exposition). In the BSS model, the computer has reg-
isters which can hold arbitrary elements of the un-
derlying ring R. Computer programs perform exact
arithmetic (+, —, -, and + in the case R is a field)
and can branch on conditions based on exact com-
parisons between ring elements (=, and also <, in
the case of an ordered field). Newton’s method, for
example, can be nicely presented in the BSS model
as a program (which may not halt) for finding an
approximate zero of a rational function, when
R =R. A nice feature of the BSS model is its gen-
erality: the underlying ring R is arbitrary, and the
resulting computability theory can be studied for
each R. In particular, when R = Z>, the model is
equivalent to the standard bit computer model in
the discrete setting.

One of the big successes of discrete com-
putability theory is the ability to prove uncom-
putability results. The solution of Hilbert’s 10th
problem [Mat93] is a good example. The theorem
states that there is no procedure (e.g., no Turing
machine) which always correctly determines
whether a given Diophantine equation has a solu-
tion. The result is convincing because of general ac-
ceptance of the Church-Turing thesis.

A weakness of the BSS approach as a model of
scientific computing is that uncomputability re-
sults do not correspond to computing practice in
the case R = R. Since intermediate register values
of a computation are rational functions of the in-
puts, it is not hard to see that simple transcendental
functions such as eX are not explicitly computable
by a BSS machine. In the bit model these functions
are computable because the underlying philosophy
is that the inputs and outputs to the computer are
rational approximations to the actual real numbers
they represent. The definition of computability in
the BSS model might be modified to allow the pro-
gram to approximate the exact output values, so
that functions like e* become computable. However

MARCH 2006

formulating a good general definition in the BSS
model along these lines is not straightforward: see
[Sma97] for an informal treatment and [Brv05] for
a discussion and a possible formal model.

For uncomputability results, BSS theory con-
centrates on set decidability rather than function
computation. A set C < R" is decidable if some
BSS computer program halts on each input X € R"
and outputs either 1 or 0, depending on whether
X € C. Theorem 1 in [BCSS98] states thatif C = R"
is decided by a BSS program over R then C is a
countable disjoint union of semi-algebraic sets. A
number of sets are proved undecidable as corol-
laries, including the Mandelbrot set and all non-
degenerate Julia sets (Figure 2). However again it
is hard to interpret these undecidability results in
terms of practical computing, because simple sub-
sets of R? which can be easily “drawn”, such as the
Koch snowflake and the graph of y = e* (Figure 1)
are undecidable in this sense [Brt03].

In the bit model there is a nice definition of de-
cidability (bit-computability) for bounded subsets
of R". For the case of R?, the idea is that the set is
bit-computable if some computer program can
draw it on a computer screen. The program should
be able to zoom in at any point in the set and draw
a neighborhood of that point with arbitrarily fine
detail. Such programs can be easily written for
simple sets such as the Koch snowflake and the
graph of the equation y = eX, and more sophisti-
cated programs can be written for many Julia sets
(as will be seen below). A Google search on the
World Wide Web turns up programs that apparently
do the same for the Mandelbrot set. However no
one knows how accurate these programs really
are. The bit-computability of the Mandelbrot set is
an open question, although we will see later that
it holds subject to a major conjecture. Because of
the Church-Turing thesis, a proof of bit-
uncomputability of the Mandelbrot set would carry
some force: any program for any computing device

NOTICES OF THE AMS

purporting to draw it must draw it wrong, at least
at some level of detail.

In the rest of the paper we concentrate on the
bit model, because we believe that this is the most
accurate abstraction of how computers are used to
solve problems over the reals. The bit model is not
widely appreciated in the mathematical community,
perhaps because its principal references are not
written to appeal to a wide audience. In contrast
the BSS model has received widespread attention,
partly because its presentation [BSS89], and espe-
cially the excellent reference [BCSS98], not only
present the model but provide a rigorous treatment
of matters of interest in scientific computation. The
authors deserve credit not just for presenting an
elegant model, but also for arousing interest in
foundational issues for numerical analysis and in-
spiring considerable research. Undoubtedly the
concept of abstracting away round-off error in
computations over the reals poses important nat-
ural questions. One example is linear program-
ming: Although polynomial-time algorithms are
known for solving linear programming problems
with rational inputs, these algorithms assume that
the problem description size (in bits) is available
as an input parameter. This is not the usual frame-
work for either the bit model or the BSS model. The
commonly-used simplex algorithm can be neatly
formalized in the BSS model, but it requires expo-
nential time in the worst case. It would be very nice
to find a polynomial-time BSS algorithm for linear
programming. Such an algorithm would be called
strongly polynomial-time in the field of linear pro-
gramming, and its existence is an important open
question.

Here is an outline of the rest of the paper. The
next section gives examples of easy and hard com-
putational problems over the reals. The following
section motivates and defines the bit model both
for computing real functions and subsets of R".
Computational complexity issues are discussed.
After that we consider the computability and com-
plexity of the Mandelbrot and Julia sets as a par-
ticular application of the definitions. Simple pro-
grams are available which seem to compute the
Mandelbrot set, but they may draw pieces which
should not be there. The bit-computability of the
Mandelbrot set is open, but it is implied by a major
conjecture. Many Julia sets are not only computable,
but are efficiently computable (in polynomial time).
On the other hand some Julia sets are uncom-
putable in a fundamental sense. Finally, the last sec-
tion discusses a fundamental question related to
the Church-Turing thesis: are there physical sys-
tems that can compute functions which are un-
computable in the standard computer model?

Some of the material presented here is given in
more detail in [Brv05]. See [Ko91] and [Wei00] for
general references on bit-computability models.

NOTICES OF THE AMS

Examples of “Easy” and “Hard” Problems

“Easy” Problems

We start with examples of problems over the reals
that should be “easy” according to any reasonable
model. The everyday operations, such as addition,
subtraction, and multiplication should be consid-
ered easy. More generally, any of the operations that
can be found on a common calculator can be re-
garded as “easy”, at least in some reasonable re-
gion. Such functions include, among others, sin x,
eX, /x,and log x.

Functions with singularities, such as x + y and
tanx, are easily computable on any closed region
which excludes the singularities. The computa-
tional problem usually gets harder as we approach
the singularity point. For example, computing tan x
becomes increasingly difficult as x tends to % be-
cause the expression becomes increasingly sensi-
tive in x.

Some basic numerical problems that are known
to have efficient solutions should also be relatively
“easy” in the model. This includes inverting a well
conditioned matrix A. A matrix is well conditioned
in this setting if A~! does not vary too sharply
under small perturbations of A.

Simple problems that arise naturally in the dis-
crete setting should usually remain simple when
passing to the continuous setting. This includes
problems such as sorting a list of real numbers and
finding lengths of shortest paths in a graph with
real edge lengths.

When one considers subsets of R?, a set should
be considered “easy” if we can draw it quickly with
an arbitrarily high precision. Examples include sim-
ple “paintbrush” shapes, such as the disc B((0, 0), 2)
inR?, as well as simple fractal sets, such as the Koch
snowflake (Figure 1).

To summarize, the model should classify a prob-
lem as “easy”, if there is an efficient algorithm to
solve it in some practical sense. This algorithm
may be inspired by a discrete algorithm, a numer-
ical-analytic technique, or both.

“Hard” Problems

Naturally, the “hard” problems are the ones for
which no efficient algorithm exists. For example,
it is hard to compute an inverse A~! of a poorly
conditioned matrix A. Note that even simple nu-
merical problems, such as division (x — 1) + (y — 1),
become increasingly difficult in the poorly condi-
tioned case. It becomes increasingly hard to eval-
uate the latter expression as x and y approach 1.

Many problems that appear to be computation-
ally hard arise while trying to model processes in
nature. A famous example is the N-body problem,
which simulates the motion of planets. An even
harder example is solving the Navier-Stokes equa-
tions used in simulations for fluid mechanics. We

VOLUME 53, NUMBER 3

b"'
N

Figure 2. a: the Mandelbrot set; b-d: Julia sets with parameter values of i, —1.57,and —0.15 + 0.7i,

respectively.

will return to questions of hardness in physical sys-
tems in the last section.

Other problems that should be hard are the nat-
ural extensions of very difficult discrete problems.
Consider, for example, the Travelling Salesman
Problem (TSP). In this problem we are given a graph
G = (V, E) with costs c(e) associated with the edges
e € E. Our goal is to minimize the cost of a Hamil-
tonian cycle (a cycle which goes through each ver-
tex exactly once) in G. This problem is widely be-
lieved not to have an efficient solution in the
discrete case. In fact it is NP-complete in this case
([GJ79]), and having a polynomial time algorithm
for it would imply that P = NP, which is believed
to be unlikely. There is no reason to think that it
should be any easier in the continuous setting
(where the costs c(e) need not be integers) than in
the discrete case.

The hardness of numerical problems may sig-
nificantly vary with the domain of application. Con-
sider for example the problem of computing the
integral I(x) = fg f(t)dt. While it is very easy to com-
pute I(x) from f(x) in the case f is a polynomial,
integrating a general polynomial time computable
Lipschitz function is as hard as counting the num-
ber of the different shortest routes in the Travel-
ling Salesman Problem. The latter problem is

MARCH 2006

complete for a class called #P, which is believed to
subsume NP.

Quasi-fractal Examples: The Mandelbrot and
Julia Sets

The Mandelbrot and the Julia sets are common ex-
amples of computer-drawn sets. Beautiful high-
resolution images have become available to us with
the rapid development of computers. Amazingly,
these extremely complex images arise from very
simple discrete iterated processes on the complex
plane C.

For a point ¢ € C, define f.(z) = z% + c. c is said
to be in the Mandelbrot set M if the iterated se-
quence ¢, fc(c), fe(fe(c)), ... does not diverge to .
While (we believe) very precise images of M can be
generated on a computer, proving that these im-
ages approximate M would probably involve solv-
ing some difficult open questions about it.

The family of Julia sets is parameterized by
functions. In the simple case of quadratic functions
fe(z) = z% + ¢, the Fatou set K. is the set of points
X, such that the sequence X, fc(x), fc(fc(x)), ... does
not diverge to o. The Julia set J. is defined as the
boundary of K.. While many Julia sets, such as the
ones in Figure 2, are quite easy to draw, there are

NOTICES OF THE AMS

explicit sets of which we simply cannot produce
useful pictures.

As we see, it is not a priori clear whether these
sets should be “easy” or “hard”. This gives rise to
a series of questions:

¢ Is the Mandelbrot set computable?
e Which Julia sets are computable?
e Can the Mandelbrot set and its zoom-ins be
drawn quickly on a computer?
e Which Julia sets and their zoom-ins can be drawn
quickly on a computer?
These questions are meaningless unless we agree
upon a model of computation for this setting. In
the following sections we develop such a model,
based on “drawability” on a computer.

The Bit Model

Bit Computability for Functions

The motivation behind the bit model of computa-
tion is idealizing the process of scientific com-
puting. Consider, for example, the simple task of
computing the function x — eX for an x in the in-
terval [—1, 1]. The most natural solution appears
to be by taking the Taylor series expansion around
0:

k

(1) eX=S
Pl

Obviously in a practical computation we will only
be able to add up a finite number of terms from
(1). How many terms should we consider? By tak-
ing more terms, we can improve the precision of
the computation. On the other hand, we pay the
price of increasing the running time as we consider
more terms. The answer is that we should take just
enough terms to satisfy our precision needs.

Depending on the application, we might need the
value of eX within different degrees of precision.
Suppose we are trying to compute it with a preci-
sion of 27, That is, on an input x we need to out-
put a y such that |[eX — y| < 27", It suffices to take
n+1 terms from (1) to achieve this level of ap-
proximation. Indeed, assuming n > 4, for any
xe([-1,1],

n Xk (=8} Xk [} ‘X |
X
- al=] 2 = > T
k=0 k=n+1 k=n+1
1 o 1
- _ o—(n+l)
Z k! < Z ok+1 2 '
k=n+1 """ k=n+1

In fact, a smaller number of terms suffices to
achieve the desired precision. We take a portion of
the series that yields error 2-(+1) « D=1 1o allow
room for computation (round-off) errors in the
evaluation of the finite sum. All we have to do now
is to evaluate the polynomial py(x) = Y §_¢ %7 within
an error of 2-"*1_ To do this, we need to know x
with a certain precision 2~ It is convenient to use

NOTICES OF THE AMS

dyadicrationals to express approximations to x and
eX, where the dyadic rationals form the set

m
]D)={2—n|meZ,neN}.

We can then take a dyadic g = 5; € D such that
x —q| < 27™M, and evaluate p,(g) within an error
of 2-("*2) ysing finite precision dyadic arithmetic.
This gives us an approximation y € D of pn(q)
such that |y — pr(g)| < 2-"*2) In our example, an
assumption |x — g| < 2= guarantees that
Ilpn(X) — pn(@)] <272 and we can take
m=n+4. To summarize, we have

leX — y| < [eX = pn()| + [Pn(X) — Pn(@)|+
Ipn(q) — y| < 27D 4 p=(n+2) L 5=(n+2) _ 5-n

and y is the answer we want. The running time of
the computation is dominated by the time it takes
to compute our approximation to p,(q). Note that
this entire computation is done over the dyadic ra-
tionals and can be implemented on a computer in
time polynomial in n.

To find the answer we only needed to know x
within an error of 2-"*4_ This is especially im-
portant when one tries to compose several com-
putations. For example, to compute e ! within an
error 2~ on the appropriate interval, it suffices to
know x within an error of 2~ (+8),

While evaluating the function e* is hardly a chal-
lenge for scientific computing, the process de-
scribed above illustrates the main ideas in the bit
model of computation. Below are the main points
that we have seen in this example and that char-
acterize the bit model for computing functions. Sup-
pose we are trying to compute f : [a, b] — R". De-
note the program computing f by M.

* The goal of My(x, n) is to compute f(x) within the
error of 27';

* My computes a precision parameter m, it needs
to know x within an error of 27" to proceed with
the computation;

* My receives a dyadic g= 2—rs such that
Ix — gl <27™;

e My computes a dyadic y such that
If(x) =yl <27

e the running time of Mp(x, n) is the time it takes
to compute m plus the time it takes to compute
y from g (both of which have finite representa-
tions by bits).

Note that the entire computation of My is per-
formed only with finitely presented dyadic num-
bers. There is a nice way to present the computa-
tion using oracle terminology. An oracle for a real
number x is a function ¢ : N — D such that for all
n, |¢p(n) — x| < 27", Note that the g in the de-
scription above can be taken to be g = ¢p(m). Instead
of querying the value of x once, we can allow My
an unlimited access to the oracle ¢. The only

VOLUME 53, NUMBER 3

limitation would be that the time it takes My to read
the output of ¢p(m) is at least m. The oracle can be
thought of as a READy(m) instruction, which
prompts the user to enter x with precision 2=, We
emphasize the fact that x is presented to My as an
oracle by writing M, ¢(n) instead of M¢(x, n). Just as
the quality of the answer of M¢(x, n) should not de-
pend on the specific 2~ ™-approximation g for x,
M/ (n) should output a 2~ "-approximation of f(x)
for any valid oracle ¢ for x.

The running time T'(n) of Mlﬁb (n) is the worst-case
time a computation on this machine can take with
a valid input and precision n. If T(n) is bounded
by some polynomial p(n), we say that Mf works
in polynomial time.

The output of M, qb(n) can be viewed itself as an
oracle for f'(x). This allows us to compose functions.
For example, given a machine M/ (n) for comput-
ing f(x), and a machine Mg (n) for computing g(x),

we can compute f o g(x) by M, M (n).

This is the bit-computability notion for functions.
Early work on the computability of real functions
was done by Banach and Mazur in 1936-1939. Be-
cause of the Second World War the results were only
published many years later [Maz63]. A definition
which is equivalent to bit-computability was first
proposed by Grzegorczyk [Grz55] and Lacombe
[Lac55]. It has been since developed and general-
ized. More recent references on the subject include
[Ko91], [PR89], and [WeiO0]. Let us see some ex-
amples to illustrate this notion.

Examples of Bit-computability

We start with a family of the simplest possible
functions, the constant functions. For a function
f(x) = ¢, c € R aconstant, we can completely ignore
the input x. The complexity of computing f(x) with
precision 27" is the complexity of computing the
number ¢ within this error. In the original work by
Turing [Tur36], the motivation for introducing Tur-
ing machines was defining which numbers can be
computed, and which Cannot

For example, the numbers 3 =1(0.01010101...)2
and /2 appear to be “easy”, with the latter bemg
“harder” than the former. There are also easy al-
gorithms for computing transcendental numbers
such as 7t and e. But there are only countably many
programs, hence all but countably many reals can-
not be approximated by any of them. To give a spe-
cific example of a very hard number, consider some
standard encoding of all the Diophantine equa-
tions, ¢ : {equations} — N.LetD = {¢p(EQ) : EQ
is a solvable equation} C N, and

d= > 47"
neD

Then computing d with an arbitrarily high preci-
sion would allow us to decide whether ¢(EQ) is in
D for any specific Diophantine equation EQ . This

MARCH 2006

would contradict the solution to Hilbert’'s 10th
Problem, which states that no such decision pro-
cedure can exist.

The following example will illustrate the bit-
computability of a more general function.

Example: Consider the function f(x) = 3+/1 — x3 on
the interval [0, 1]. It is a composition of two func-
tions: g:x — 1 —x3 and h: x — 3/X, both on the
[0, 1] interval. g is easier to compute in this case.
It is computed the same way x — eX was computed
in the previous section. The function h(x) is slightly
trickier. One possible approach is to use Newton’s
method to solve (approximately) the equation
A3 —x =0 to obtain A =~ 3./x. The fact that g(x)
and h(x) are computable is not surprising. In fact,
both of these functions can be found on a common
scientific calculator.

In general, all “calculator functions” are com-
putable on a properly chosen domain. For exam-
ple, x — 1/x is computable on any domain which
excludes 0. We can bound the time required to
compute the inverse, if the domain is properly
bounded away from 0. The only true limiting fac-
tor here is that computable functions as described
above must be continuous on the domain of their
application. This is because the value of f(x) we
compute must be a good approximation for all
points near x.

Theorem 1. Suppose that a function f : S — Rk is
computable. Then f must be continuous on S.

This puts a limitation on the applicability on the
computability notion above. While it is “good” at
classifying continuous functions, it classifies all dis-
continuous functions, however simple, as being
uncomputable. We will return to this point at the
end of the section.

Bit-computability for Sets

Just as the bit-computability of functions formal-
izes finite-precision numerical computation, we
would like the bit-computability of sets to formal-
ize the process of generating images of subsets in
]Rk, such as the Mandelbrot and Julia sets which
were discussed earlier.

An image is a collection of pixels, which can be
taken to be small balls or cubes of size €. € can be
seen as the resolution of the image. The smaller it
is, the finer the image is. The hardness of produc-
ing the image generally increases as ¢ gets smaller.
A collection of pixels P is a good image of a
bounded set S if the following conditions are ful-
filled:

e P covers S. This ensures that we “see” the en-
tire set S, and

¢ Pis contained in the e-neighborhood of S. This
ensures that we don’t get “irrelevant” compo-
nents which are far from S.

NOTICES OF THE AMS

It is convenient to take € =4 - 2-"—our computa-
tion precision in this case.

Suppose now that we are trying to construct P
as a union of pixels of radius 27" centered at grid
points (2-("*K) . 7)k The basic decision we have to
make is whether to draw each particular pixel or
not, so that the union P would satisfy the condi-
tions above. To ensure that P covers S, we include
all the pixels that intersect with S. To satisfy the
second condition, we exclude all the pixels that are
2 "-far from S. If none of these conditions holds,
we are in the “gray” area, and either including or
excluding a pixel is fine. In other words, we should
compute a function from the family

1 if Bd, 2~ NS+
2) fd,n=410 if Bd,2-27"YNnS=0
Oor1l otherwise

for every point d € (2~ . 7)k_ Here f is com-
puted in the classical discrete sense.

Example: A “simple” set, such as a point, line seg-
ment, circle, ellipse, etc. is computable if and only
if all of its parameters are computable numbers.
For example, a circle is computable if and only if
the coordinates of its center and its radius are
computable.

The way we have arrived at the definition of bit-
computability might suggest that it is specifically
tailored to computer-graphics needs and is not
mathematically robust. This is not the case, as will
be seen in the following theorem. Recall that the
Hausdorff distance between bounded subsets of R¥
is defined as

dy(S,T)=1inf{d : S Cc B(T,d) and T C B(S,d)}.
We have the following.

Theorem 2. Let S ¢ RX be a bounded set. Then the
following are equivalent.

1. A function from the family (2) is computable.
2. There is a program that for any & > 0 gives an
g-approximation of S in the Hausdorff metric.

3. The distance function ds(x)=inf{|x —y|:
y € S} is bit-computable.

1. and 3. remain equivalent even if S is not bounded.

Example: The finite approximations K; of the Koch
snowflake are polygons that are obviously com-
putable. The convergence K; — K is uniform in the
Hausdorff metric. So K can be approximated in the
Hausdorff metric with any desired precision. Thus
the Koch snowflake is bit-computable.

The last characterization of set bit-computabil-
ity in Theorem 2 connects the computability of sets
and functions. There is another natural connection

NOTICES OF THE AMS

between the computability notions for these ob-
jects—through plots of a function’s graph.

Theorem 3. Let D c RX be a closed and bounded
computable domain, and letf : D — R be a contin-
uous function. Then f is computable as a function
if and only if the graph Iy = {(x,f(x)) : x € D} is
computable as a set.

Example: Consider the set S={(x,y):x,y
€ [0,1], x3 +y3 = 1}.Itis the graph of the function
f(x) =341 — x3 on [0, 1], which we have seen to be
computable. By Theorem 3, S is a bit-computable
set. This is despite the fact (pointed out in [BlumO04])
that by the cubic case of Fermat’s Last Theorem the
only rational points in § are (0,1) and (1, 0).

A more detailed discussion of bit computabil-
ity for sets can be found in [BW99, Wei0O0, Brv05].

Computational Complexity in the Bit Model

Since the basic object in the discussion above is a
Turing Machine, the computational complexity for
the bit model follows naturally from the standard
notions of computational complexity in the discrete
setting. Basically, the time cost of a computation
is the number of bit operations required.

For example, the time complexity Tr(n) for com-
puting the number 17 is the number of bit opera-
tions required to compute a 2~ "-approximation of
7. The time complexity Tex(n) of computing the ex-
ponential function x — e* on [—1, 1] is the number
of bit operations it takes to compute a
2 "-approximation of eX given an x € [—1, 1]. This
running time is assessed at the worst possible ad-
missible x. We have seen that Tex(n) is bounded by
a polynomial in n, and it is not hard to see that the
same holds for T (n).

This computational complexity notion can be
used to assess the hardness of the different nu-
merical-analytic problems arising in scientific com-
puting. For example, the dependence of matrix in-
version hardness on the condition number of the
matrix fits nicely into this setting.

Another example is a result by Schonhage [Sch82,
Sch87] showing how the fundamental theorem of
algebra can be implemented by a polynomial time
algorithm in the bit model. More precisely, he has
shown how to solve the following problem in time
O((n3 + n%s)log®(ns)): Given any polynomial
P(z)=anz"+---+ao with ajeC and
[P|=>,layl <1, and given any s € N, find ap-

proximate linear factors Lj(z)=u;z+vj
(1<j=<n) such that [P—LiLy---Lpl <275
holds.

Some of the early work regarding the computa-
tional complexity of operators such as taking de-
rivatives and integration was done in [KF82]. A
more detailed exposition of the results can be
found in [Ko91].

VOLUME 53, NUMBER 3

The complexity of computing a set is the time
T(n) it takes to decide one pixel. More formally, it
is the time required to compute a function from
the family (2). Thus a set is polynomial-time com-
putable if it takes time polynomial in n to decide
one pixel of resolution 27,

To see why this is the “right” definition, suppose
we are trying to draw a set S on a computer screen
which has a 1000 x 1000 pixel resolution. A
27 M-zoomed in picture of S has O(22") pixels of
size 27", and it would take time O(T(n) - 22") to
compute. This quantity is exponential in n, even if
T(n) is bounded by a polynomial. But we are draw-
ing S on a finite-resolution display, and we will need
to draw only 1000 - 1000 = 10% pixels. Deciding
these pixels would require 0108 - T(n) = O(T(n))
steps. This running time is polynomial in » if and
only if T(n) is polynomial. Hence T(n) reflects the
“true” cost of zooming in when drawing S.
Beyond the Continuous Case
As we have seen earlier, the bit model notion of
computability is very intuitive for sets and for con-
tinuous functions. However, by Theorem 1 it com-
pletely excludes even the simplest discontinuous
functions. For example the step function can be de-
fined by

Oa
3) sa(x) = {

1, ifx>«

if x <«

Consider sp—the simplest case when « = 0. The
function is bit computable on any domain that ex-
cludes 0. One could make the argument that a
physical device really cannot compute sg. There is
no bound on the precision of x needed to compute
So(x) near 0. Hence no finite approximation of x suf-
fices to compute sg even within an error of 1/3.

On the other hand, one might want to include
this function, and other simple functions in the
computable class, because the primary goal of this
classification is to distinguish between “easy” and
“hard” problems, and computing so does not look
hard. If we were to allow the step functions, we
would probably like s to be computable if and only
if o is a computable real. There are several differ-
ent approaches one can take on the computability
of discontinuous functions. We will only mention
two here.

One possibility would be to say that a function
is computable if for an}/ input n we can approxi-
mate it correctly on 1 — - portion of the x’s (in mea-
sure). It is not hard to see that under this defini-
tion computability of « implies computability of
Sx(x). Another approach is to say that a function
is computable if we can plot its graph. By Theorem
3, this definition extends the standard bit-
computability definition in the continuous case. Ob-
viously it makes sy computable whenever « is
computable.

MARCH 2006

How Hard Are the Mandelbrot and Julia
Sets?

First let us consider questions of computability of
the Mandelbrot set M. Despite the relatively sim-
ple process defining M, the set itself is extremely
complex and exhibits different kinds of behaviors
as we zoom into it. In Figure 3 we see some of the
variety of images arising in M.

The most common algorithm used to compute
M is presented on Figure 4. The idea is to fix some
number T—the number of steps we are willing to
iterate. Then for every grid point c iterate
fe(z) = z2 + c on ¢ for at most T steps. If the orbit
escapes B(0, 2), we know that ¢ ¢ M. Otherwise, we
say that ¢ € M. This is equivalent to taking the in-
verse image of B(0, 2) under the polynomial map

fT(c)=fcofco -+ ofelc). InFigure 4 (right) a few
—_

T times
of these inverse images and their convergence to
M are shown.

One problem with this algorithm is that its analy-
sis should take into account roundoff error in-
volved in the computation z — z2 + c. But there
are other problems as well. For example, we take
an arbitrary grid point ¢ to be the representative
of an entire pixel. If ¢ is notin M, we will miss this
entire pixel even if part of it intersects M. This prob-
lem arises especially when we are trying to draw
“thin” components of M, such as the one in the
upper-right corner of Figure 3.

Perhaps a deeper objection to this algorithm is
the fact that we do not have any estimate on the
number of steps T(n) we need to take to make the
picture 2~ "-accurate. That is, a T(n) such that for
any ¢ which is 27"-far from M, the orbit of ¢
escapes in at most T(n) steps. In fact, no such es-
timates are known in general, and the question of
their existence is equivalent to the bit-computability
of M (cf. [Hert05]).

Some of the most fundamental properties of M
remain open. For example, it is conjectured that it
is locally connected, but with no proof so far.

Conjecture 4. The Mandelbrot set is locally con-
nected.

When one looks at a picture of M, one sees a
somewhat regular structure. There is a cardioidal
component in the middle, a smaller round compo-
nent to the left of it, and two even smaller compo-
nents on the sides of the main cardioid. In fact, many
of these components can be described combinato-
rially based on the limit behavior of the orbit of c.
E.g., in the main cardioid, the orbit of ¢ converges
to an attracting point. These components are called
hyperbolic components because they index the hy-
perbolic Julia sets that will be discussed below.
Douady and Hubbard have shown that Conjecture

NOTICES OF THE AMS

326

Figure 3. A variety of different images arising in zoom-ins of the Mandelbrot set (in black).

4 implies the density of hyperbolic components in
M:

Conjecture 5. Hyperbolic components are dense
in M.

Hertling [Hert05] has shown that Conjecture 5
implies the computability of M. There is a possi-
bility that M is computable even without this con-
jecture holding, but it is hard to imagine such a con-
struction without a much deeper understanding of
the structure of M. Moreover, even if M is com-
putable, questions surrounding its computational
complexity remain wide open. As we will see, the
situation is much clearer for most Julia sets.

A Julia set J, is defined for every rational func-
tion r from the Riemann sphere into itself. Here we
restrict our attention to Julia sets corresponding
to quadratic polynomials of the form f¢(z) = z2 + c.
Recall that the Fatou set K. is the set of points x
such that the sequence x,fc(x),fc(fc(x)),... does
not diverge to o. The Julia set J. = 0K, is the
boundary of the Fatou set.

For every parameter value c¢ there is a different
set J¢, so in total there are uncountably many Julia
sets, and we cannot hope to have a machine

computing J. for each value of c. What we can
hope for is a machine computing J. when given ac-
cess to the parameter ¢ with an arbitrarily high pre-
cision. The existence of such a machine and the
amount of time the computation takes depend on
the properties of the particular Julia set. An ex-
cellent exposition on the properties of Julia sets can
be found in [Mil0O].

Computationally, the “easiest” case is that of the
hyperbolic Julia sets. These are the sets for which
the orbit of the point O either diverges to co or con-
verges to an attracting orbit. Equivalently, these are
the sets for which there is a smooth metric ¢ on a
neighborhood N of J. such that the map f¢ is
strictly expanding on N in u. Hence, points escape
the neighborhood of J. exponentially fast. That is,
if d(Jc,x) > 27", then the orbit of x will escape
some fixed neighborhood of J, in O(n) steps. This
gives us the divergence speed estimate we lacked
in the computation of the Mandelbrot set M and
shows that in this case J. is computable in poly-
nomial time. The set M can be viewed as the set of
parameters ¢ for which J. is connected. The hy-
perbolic Julia sets correspond to the values of ¢
which are either outside M or in the hyperbolic

NOTICES OF THE AMS VOLUME 53, NUMBER 3

Cutput l=141

cgM ceM F—Zo4C

Figure 4. The naive algorithm for computing M, and some of its outputs.

components inside M. It can be shown that if Con-
jecture 5 holds, all the points in the interior of M
correspond to hyperbolic Julia sets as well. None
of the points in M correspond to hyperbolic Julia
sets.

We have just seen that the most “common” Julia
sets are computable relatively efficiently. These
are the Julia sets that are usually drawn, such as
the ones on Figure 2. This raises the question of
whether all Julia sets are computable so efficiently.
The answer to this question is negative. In fact, it
has been shown in [BY04] that there are some val-
ues of ¢ for which J. cannot be computed (even with
oracle access to c¢). The construction is based on
Julia sets with Siegel disks. A parameter ¢ which
“fools” all the machines attempting to compute J,
is constructed, via a diagonalization argument sim-
ilar to the one used in other noncomputability re-
sults. Thus, while “most” Julia sets are relatively
easy to draw, there are some whose pictures we
might never see.

Computational Hardness of Physical
Systems and the Church-Turing Thesis

In the previous sections we have developed tools
which allow us to discuss the complexity of com-
putational problems in the continuous setting. As
in the discrete case, true hardness of problems de-
pends on the belief that all physical computational
devices have roughly the same computational
power. In this section we present a connection be-
tween tractability of physical systems in the bit
model, and the possibility of having computing
devices more powerful than the standard com-
puter. This provides further motivation for ex-
ploring the computability and computational com-
plexity of physical problems in the bit model. The
discussion is based in part on [Yao02].

MARCH 2006

The Church-Turing thesis (CT), in its common
interpretation, is the belief that the Turing ma-
chine, which is computationally equivalent to the
idealized common computer, is the most general
model of computation. That is, if a function can be
computed using any physical device, then it can be
computed by a Turing machine.

Negative results in computability theory depend
on the Church-Turing thesis to give them strong
practical meaning. For example, by Hilbert’s 10th
Problem, Diophantine equations cannot be gener-
ally solved by a Turing Machine. This implies that
this problem cannot be solved on a standard com-
puter, which is computationally equivalent to the
Turing Machine. We need the CT to assert that the
problem of solving these equations cannot be
solved on any physical device and thus is truly
hard.

When we discuss the computational complexity
of problems, we are not only interested in whether
a function can be computed or not, but also in the
time it would take to compute a function. The Ex-
tended Church-Turing thesis (ECT) states that any
physical system is roughly as efficient as a Turing
machine. That is, if it computed a function f in time
T(n), then f can be computed by a Turing Machine
in time T(n)¢ for some constant c.

In recent years, the ECT has been questioned, in
particular by advancements in the theory of quan-
tum computation. In principle, if a quantum com-
puter could be implemented, it would allow us to
factor an integer N in time polynomial in log N
[Shor97]. This would probably violate the ECT,
since factoring is believed to require superpoly-
nomial time on a classical computer. On the other
hand there is no apparent way in which quantum
computation would violate the CT.

Let f be some uncomputable function. Suppose
that we had a physical system A and two feasible

NOTICES OF THE AMS

Cop—=| A

Figure 5. Computing f using a “hard” physical device A (left); a fair coin cannot be considered a

translators ¢ and y, such that ¢ translates an
input x to f into a state ¢(x) of A. The evolution
of A on 0¢ = ¢(x) should yield a state or such that
Y(or) = f(x) (Figure 5). This means that at least in
principle we should be able to build a physical de-
vice which would allow us to compute an uncom-
putable function. To compute f on an input x, we
translate x into a state 0g = ¢(x) of A. We then
allow A to evolve from state og to or—this is the
part of the computation that cannot be simulated
by a computer. We translate or to obtain the out-
put f(x) = p(or).

To make this scheme practical, we should require
A to be robust around oo = ¢(x), at least in some
probabilistic sense. That is, for a small random
perturbation oy + € of 0y, Y(or) should be equal
to f(x) with high probability.

It is apparent from this discussion that such an
A should be hard to simulate numerically, for oth-
erwise f would be computable via a numerical sim-
ulation of A. On the other hand, “hardness to sim-
ulate” does not immediately imply “computational
hardness”. Consider for example a fair coin. It is
virtually impossible to simulate a coin toss nu-
merically due to the extreme sensitivity of the
process to small changes in initial conditions. De-
spite its unpredictability, a fair coin toss cannot be
used to compute “hard” functions because it lacks
robustness. In fact, due to noise, for any initial
conditions that put the coin far enough from the
ground, we know the probability distribution of the
outcome: 50% “heads” and 50% “tails”. Another ex-
ample where “theoretical hardness” of the wave
equation does not immediately imply a violation of
the CT is presented in [WZ02].

This leads to a question that is closely related
to the CT:

() Is there a robust physical system
that is hard to simulate numerically?

This is a question that can be formulated in the
framework of bit-computability. Since the only

NOTICES OF THE AMS

“hard” device.

numerical simulations a computer can perform
are bit simulations, hardness of some robust sys-
tem A for the bit model implies a positive answer
for (x). On the other hand, proving that all com-
putationally hard systems are inherently highly
unstable would yield a negative answer to this
question.

Note that even if the answer to () is affirma-
tive and CT does not hold, and there exists some
physical device A that can compute an uncom-
putable function f, it does not imply that this de-
vice could serve some “useful” purpose. That is, it
might be able to compute some meaningless func-
tion f, but none of the “interesting” undecidable
problems, such as the Halting Problem or solv-
ability of Diophantine equations.

Acknowledgments

The authors are grateful to the following people for
helpful comments on a preliminary version of this
paper: Eric Allender, Lenore Blum, Bill Casselman,
Peter Hertling, Ken Jackson, Charles Rackoff,
Michael Shub, Klaus Weihrauch, and Michael Yam-
polsky. We would like to thank Philipp Hertel for
supplying a program that was helpful in produc-
ing the images.

References

[BlumO04] L. BLum, Computing over the reals: Where Tur-
ing meets Newton, Notices Amer. Math. Soc. 51 (2004),
1024-1034.

[BSS89] L. BLum, M. SHUB, and S. SMALE, On a theory of com-
putation and complexity over the real numbers: NP-
completeness, recursive functions and universal ma-
chines. Bull. Amer. Math. Soc. 21 (1989), 1-46.

[BCSS98] L. BLum, F. Cucker, M. SHUB, and S. SMALE, Com-
plexity and Real Computation, Springer, New York,
1998.

[BM75] A. BoropIN and 1. Munro, The Computational Com-
plexity of Algebraic and Numeric Problems, Elsevier,
New York, 1975.

[Brt03] V. BRATTKA, The emperor’s new recursiveness: The
epigraph of the exponential function in two models
of computability, Words, Languages & Combinatorics

VOLUME 53, NUMBER 3

III, (Masami Ito and Teruo Imaoka, eds.), pp. 63-72,
World Scientific Publishing, Singapore, 2003. ICWLC
2000, Kyoto, Japan, March 14-18, 2000.

[BW99] V. BraTTKA and K. WEHRAUCH, Computability of sub-
sets of euclidean space I: Closed and compact subsets,
Theoretical Computer Science, 219 (1999), 65-93.

[BY04] M. BRAVERMAN and M. YAMPOLSKY, Non-computable
Julia sets, J. Amer. Math. Soc., to appear.

[BrvO5] M. BRAVERMAN, On the complexity of real functions.
Available from |http://www.arxiv.org/abs/
Es-.CC/05020664. Also in Proc. of 46th IEEE FOCS, pp.
155-164, 2005.

[BCS97] P. BURGISSER, M. CLAUSEN, and M. A. SHOKROLLAHI, Al-
gebraic Complexity Theory, Springer, New York, 1997.

[GJ79] M. R. Garey and D. S. JounsoN, Computers and In-
tractability: A Guide to the Theory of NP-Complete-
ness, W. H. Freeman and Company, 1979.

[Grz55] A. GrzeGorczyK, Computable functionals, Fund.
Math. 42 (1955), 168-202.

[HertO5] P. HERTLING, Is the Mandelbrot set computable?
Math. Logic Quart. 51(1) (2005), 5-18.

[KF82] K. Ko and H. FriepmaN, Computational complexity
of real functions, Theor. Comp. Sci. 20(3) (1982),
323-352.

[Ko91] K. Ko, Complexity Theory of Real Functions,
Birkhduser, Boston, 1991.

[Lac55] D. Lacomsg, Extension de la notion de fonction
récursive aux fonctions d'une ou plusieurs variables
réelles, C. R. Acad. Sci. Paris, 240 (1955), 2478-2480;
241 (1955), 13-14, 151-153.

[Mat93] Y. MATIYASEVICH, Hilbert’s Tenth Problem, MIT
Press, Cambridge, London, 1993.

[Maz63] S. Mazur, Computable Analysis, Rozprawy Matem-
atyczne, Vol. 33, Warsaw, 1963.

[Mil00] J. MiLNOR, Dynamics in One Complex Variable—In-
troductory Lectures, second edition, Vieweg, 2000.
[PR89] M. B. Pour-EL and J. I. RicHARDS, Computability in
Analysis and Physics, Perspectives in Mathematical

Logic, Springer, Berlin, 1989.

[Sch82] A. ScHONHAGE, The fundamental theorem of alge-
bra in terms of computational complexity, Technical
report, Math. Institut der. Univ. Tiibingen, 1982.

[Sch87] ____ , Equation solving in terms of computa-
tional complexity, Proceedings of the International
Congress of Mathematicians, 1986, (A. Gleason, ed.),
Amer. Math. Soc., 1987.

[Shor97] P. SHOR, Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26 (1997), 1484-1509.

[Sma97] S. SMALE, Complexity theory and numerical analy-
sis, Acta Numerica 6 (1997), 523-551.

[Tur36] A. M. TurING, On Computable Numbers, with an
Application to the Entscheidungsproblem, Proc. Lon-
don Math Soc., (1936), 230-265.

[WeiOO0] K. WEmHRAUCH, Computable Analysis, Springer,
Berlin, 2000.

[WZ02] K. WEmHRAUCH and N. ZHONG, Is wave propagation
computable or can wave computers beat the Turing
machine?, Proc. London Math Soc. 85(3) (2002), 312-
332.

[Yao02] A. Yao, Classical physics and the Church-Turing

thesis, J. of ACM 50 (2003), 100-105. Available from

http://www.eccc.uni-trier.de/eccc-reports/
2002/TR02-062/.

MARCH 2006 NOTICES OF THE AMS 329

http://www.arxiv.org/abs/cs.CC/0502066+
http://www.arxiv.org/abs/cs.CC/0502066+
http://www.eccc.uni-trier.de/eccc-reports/2002/TR02-062/

