
Find Me a Hash
Susan Landau

330 NOTICES OF THE AMS VOLUME 53, NUMBER 3

W
e’re accustomed to hearing about
the unreasonable effectiveness of
mathematics, delightful—and unex-
pected—applications of theory to
the real world. In the world of the In-

ternet, we’ve seen it in the use of number theory
in public-key cryptography (the Diffie-Hellman sys-
tem, the RSA algorithm, elliptic curve cryptosys-
tems), in the utilization of graph theory in net-
work design. In the world of Internet data security,
currently we face the opposite situation: a problem
in search of mathematical theory. The problem is
hash functions.

A hash function is an easy-to-compute com-
pression function that takes a variable-length input
and converts it to a fixed-length output. The hashes
in which we are interested, called cryptographic
hash functions, are “one-way”, which is to say, they
should be easy to compute and “hard”, or compu-
tationally expensive, to invert1. Hash functions are
used as a compact representation of a longer piece
of data—a digital fingerprint—and to provide mes-
sage integrity. The way hashes are used to provide
integrity is that the hash value of a particular piece
of data, h0 , is computed at an initial time t0. When
the data needs to be used later at time t1, the hash,
h1, is recomputed. If the two hashes are equal,
then the data has not been altered. Ralph Merkle,
a co-inventor of public-key cryptography, calls
hashes the “duct tape” of cryptography. Among
other things, hashes are used to ascertain soft-
ware integrity, in digital signatures, in message

authentication, and as one-time passwords; they are
employed in many Internet protocols including
SSL/TLS, the transport-layer protocol that enables
secure Web transactions, IPsec, and SSH.

Because hash functions “shrink” data, collisions
between hashes are inevitable. There are three fun-
damental properties that a cryptographic hash
should satisfy: pre-image resistance (sometimes
called non-invertibility): it should be computation-
ally infeasible to find an input which hashes to a
specified output, second pre-image resistance: it
should be computationally infeasible to find a sec-
ond input that hashes to the same output as a
specified input, and collision resistance: it should
be computationally infeasible to find two different
inputs that hash to the same output. In 1979 Merkle
[10, pp. 12–13] and Gideon Yuval [12] indepen-
dently observed that because of the “birthday”
paradox—the well-known result that in a group of
twenty-three people, the probability that two peo-
ple share the same birthday is slightly more than
half—on average one needs to search only square
root of the search space to find a collision. Thus
hash functions of n bits are at best n/2 bits secure
against collision attacks.

A common method for hash function design is
iteration: use a small set of operations combined
in what is called a round. This way the algorithm
is put together using a small set of instructions, an
important issue for implementations (the same de-
sign paradigm is also true for block ciphers). Merkle
and Damgå̇rd independently showed how to take
a collision-resistant compression function and it-
erate it to produce a collision-resistant hash

Susan Landau is at Sun Microsystems. Her email address
is susan.landau@sun.com.
1Hash functions may be “keyed” or “unkeyed” depending
on the application; we will ignore that distinction here,
although we note that keyed hash functions include
Message Authentication Codes, or MACs, whose theory is
well understood.

Editor’s Note: The month of April is Mathe-
matics Awareness Month. The 2006 theme for
MAM is Mathematics and Internet Security.

MARCH 2006 NOTICES OF THE AMS 331

function [11], [2]. The idea, called the Merkle-
Damgå̇rd construction, goes as follows: Let f be a
collision-resistant compression function that maps
n +m bits to n bits. Break the input I into blocks
x1, . . . , xk of length n, padding out the last block
with 0’s as necessary. Start with a random string
of n bits, called the initialization vector, IV . Let b
be the length of I and define an extra block xk+1
which holds the right-justified representation of b
written in binary (assume that b < 2n); the left part
of xk+1 is filled with 0’s. Then the hash function h
is defined by: h(x) = Hk+1 where || denotes con-
catenation and:

H0 = IV
Hi = f (Hi−1||xi),1 ≤ i ≤ k + 1.

That h is collision-resistant follows from the
observation that any collision for h would imply a
collision for f at some stage i.

The Merkle-Damgå̇rd construction underlies
most popular hash functions. A half-dozen years
ago, there were several popular cryptographic hash
functions from which to choose, including MD5 and
SHA-1. MD5, developed by Ron Rivest, is a 128-bit
hash that is a strengthened form of an earlier
Rivest hash function, MD4. Because of the birthday
attack, MD5 can only be 64 bits strong; the short
length contributed to the National Institute of Stan-
dards and Technology (NIST) decision not to cer-
tify MD5 as a Federal Information Processing Stan-
dard (FIPS). FIPS certification means the system is
approved for sale to the federal government, an im-
portant market for the computer industry. Instead
NIST certified SHA-0, the Secure Hash Algorithm
(SHA-0 was originally simply SHA). The algorithm
was developed by the National Security Agency
(NSA) and was also based on MD4; it was a 160-bit
hash that was built to work with Skipjack, the block
cipher with 80-bit key that was part of the Clipper
system. Two years later NSA proffered SHA-1, an
algorithm that differed from SHA-0 by a circular
shift operation in the round function, which also
became a FIPS. The rapid development of SHA-1
shortly after SHA-0 caused users to shy away from
the earlier algorithm—and indeed weaknesses were
found in SHA-0—but both MD5 and SHA-1 have
been widely deployed (MD5 was used in many pro-
tocols despite not being a FIPS). And as a result we
are in trouble.

MD5 was already in difficulty in 1993, when
Bert den Boer and Antoon Bosselaers found prob-
lems with its compression function [3]; further
problems were discovered three years later by Hans
Dobbertin [4]. The situation became a great deal
worse in 2004. At a cryptography meeting in Santa
Barbara, California, Xiaoyun Wang, Denggou Feng,
Xuejia Lai, and Hongbo Yu received a standing ova-
tion for work showing collision attacks on MD5 (the
attacks also applied to several other hash functions:

HAVAL, MD4, and RIPEMD) [13]. There had already
been a move away from MD5, but this was the final
blow. At the same meeting, Eli Biham and Rafi
Chen [1] showed how to find “near” collisions in
SHA-0 and Antoine Joux demonstrated an actual
collision attack on SHA-0 [5]. SHA-1 still seemed
safe.

In 2005 the situation got worse. Wang, in col-
laboration with Yiqun Lisa Yin and Hongbo Yu,
showed a collision attack on SHA-1 that took 269

steps (instead of the expected 280) [14]; then Wang,
in collaboration with Andrew Yao and Frances Yao,
demonstrated a collision attack on SHA-1 that re-
quired only 263 steps [15]. The good news is that
this was not a second pre-image attack and the at-
tack does not mean that all protocols using
SHA-1 for integrity were at risk (for example, the
usage of SHA-1 in the “handshake” of SSL 3.0/TLS
protocol is not affected by these attacks). But it did
mean that SHA-1 should be replaced as quickly as
possible and should not be used for new applica-
tions. How to proceed was both clear and cloudy.

SHA-256, also developed by NSA is waiting in the
wings, and is already a FIPS (as are SHA-384 and
SHA-512). SHA-256 is three to four times slower
than SHA-1, but that is not the real problem. Mov-
ing a new algorithm into the infrastructure, whether
SHA-256 or a direct SHA-1 replacement (including
the established RIPEMD-160, SHA-256 truncated
to 160 bits, or a “patched” SHA-1), is not an easy
task. Although computer manufacturers under-
stand the importance of replacing SHA-1, and
SHA-256 is in the next operating systems being
fielded by Microsoft, Sun, and other manufactur-
ers, SHA-1 and MD5 will remain in legacy systems
for years to come. And while SHA-256 may share
some of the structure of SHA-1 and thus be po-
tentially vulnerable to attack, at 256 bits, the al-
gorithm is large enough, and strong enough, to
suffice for now. This is the clear step forward.

The cloudy part is what happens next. Ten years
ago, there was a need to replace the Data Encryp-
tion Standard (DES), the encryption algorithm with
a 56-bit key that had been functioning since the
1970s (see, for example, [6], [7]). Fortunately, since
the 1980s there had been fundamental research into
the design of block ciphers, much of it from ideas
learned through attacks on DES. The strength of the
Advanced Encryption Standard (AES), approved as
a FIPS in 2002, is based on that research [8]. It is
clear that we need new hash functions, but hash
research is not in the same place as block ciphers
were a decade ago. Until we really understand the
underpinnings of secure hash functions2, it does
not make sense for NIST to begin a serious com-
petition for the next one. DES, a good algorithm for

2There are hash functions based on hard mathematical
problems, making them likely to be secure, but these hash
functions are inefficient and not used in practice.

332 NOTICES OF THE AMS VOLUME 53, NUMBER 3

developing an understanding of the security of
block-structured ciphers, provided practice for
cryptanalysts. SHA-256 is probably the right place
to start to do the same for secure hash functions.
What is the theory of hash functions? It is not
often that mathematicians are asked to develop a
theory for duct tape, but there is a clear and pre-
sent need to do so now for cryptographic hash
functions.

References
[1] E. BIHAM, R. CHEN, A. Joux, P. CARRBAULT, W. JALBY, and

C. LEMUET, Collisions in SHA-0 and Reduced SHA-1,
Advances in Cryptology—Eurocrypt ’05, pp. 36–57,
2005.

[2] I. B. DAMGÅ̇RD, A Design Principle for Hash Functions,
Advances in Cryptology—CRYPTO ’89, Springer-
Verlag LNCS 455, pp. 416–427.

[3] BERT DEN BOER and ANTOON BOSSELAERS, Collisions for the
Compression Function of MD5, Advances in Cryptol-
ogy, Proceedings Eurocrypt ’93, Springer-Verlag LNCS
765, 1994, pp. 293–304.

[4] HANS DOBBERTIN, Cryptanalysis of MD5, Rump Session,
Eurocrypt 1996.

[5] ANTOINE JOUX, Collisions for SHA-0, Rump Session,
CRYPTO ’04, August, 2004.

[6] SUSAN LANDAU, Standing the test of time: The Data En-
cryption Standard, Notices of the American Mathe-
matical Society, March 2000, pp. 341–349.

[7] ——— , Communications security for the twenty-first
century: The Advanced Encryption Standard, Notices
of the American Mathematical Society, April 2000, pp.
450–459.

[8] ——— , Polynomials in the nation’s service: Using
algebra to design the Advanced Encryption Standard,
American Mathematical Monthly, February 2004,
pp. 89–117.

[9] ALFRED MENEZES, PAUL VAN OORSCHOT, and SCOTT VAN-
STONE, Handbook of Applied Cryptography, CRC Press,
2001.

[10] RALPH MERKLE, Secrecy, Authentication, and Public Key
Systems, UMI Research Press, Ann Arbor, Michigan,
1979.

[11] ——— , A fast software one-way hash function, Jour-
nal of Cryptology 3 (1979), 43–58.

[12] GIDEON YUVAL, How to swindle Rabin, Cryptologia 3
(1979), 187–190.

[13] XIAOYUN WANG, DENGGUO FENG, XUEJIA LAI, and HONGBO

YU, Collisions for Hash Functions, Rump Session,
CRYPTO ’04, August, 2004.

[14] XIAYUN WANG, YIQUN LISA YIN, and HONGBO YU, Finding
Collisions in the Full SHA-1, Advances in Cryptology—
CRYPTO ’05, pp. 17–36.

[15] XIAYUN WANG, ANDREW YAO, and FRANCES YAO, New Col-
lision Search for SHA-1, Rump Session, CRYPTO ’05,
August 2005.

