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I
n September 1930 in Königsberg, on the third
day of a symposium devoted to the founda-
tions of mathematics, the young Kurt Gödel
launched his bombshell announcing his in-
completeness theorem. At that time, there

were three recognized “schools” on the foundations
of mathematics: the logicism based on the work of
Frege, Russell, and Whitehead that saw mathe-
matics as simply part of logic, Brouwer’s radical in-
tuitionism, and Hilbert’s proof theory (also called
“formalism”). In fact two days earlier, lectures rep-
resenting these schools had been delivered by Car-
nap, Heyting, and von Neumann respectively. Von
Neumann may have been the only person in the
room to have grasped the significance of what
Gödel had done. He saw that the goals of Hilbert’s
proof theory had been shown to be simply unat-
tainable. Logicism had also been dealt a death blow,
but Carnap, who had known about Gödel’s in-
completeness theorem for over a week when he
gave his address, seemed not to realize its signif-
icance.

Formalization of Mathematics
It was Gottlob Frege in his Begriffsschrift of 1879
who had shown how the logical reasoning used in
mathematical proofs can be reduced to the com-
binatorial manipulation of symbols. By the 1920s
foundational work had made it clear that the full
expanse of classical mathematics could be encap-
sulated in such formal combinatorial systems. In
these systems, a proposition of mathematics was

represented by a string of symbols, and a proof,
by a finite sequence of such strings. Since these sys-
tems were simple combinatorial objects, it seemed
quite possible to apply mathematical methods to
study their properties. Hilbert’s program aimed to
prove, by utterly unimpeachable methods, that
these systems were consistent and complete: that
they were safe from the catastrophic inconsistency,
due to Russell’s paradox, that had struck Frege’s
ambitious attempt to bridge the gap between the
elements of formal logic and mathematics proper,
and that with respect to some specified class of
statements, each statement of the class could be
either proved or refuted within the system. Gödel’s
incompleteness theorem did away with the sec-
ond of these goals, and shortly thereafter Gödel was
able to show that the first was likewise unachiev-
able. Gödel’s theorem had made it clear that no sin-
gle formal system could be devised that would en-
able all mathematical truths, even those expressible
in terms of basic operations on the natural num-
bers, to be provided with a formal proof.

Gödel’s Proof
Gödel proceeded to define a code by means of
which each expression of a formal system would
have its own natural number, what has come to be
called its Gödel number, associated with it. Thus,
expressions of the system that represent proposi-
tions about the natural numbers might be seen by
someone privy to the code as also making asser-
tions, incidentally as it were, about the system it-
self. Working with a particular formal system
loosely based on that of Whitehead and Russell and
exploiting this idea, Gödel showed how to con-
struct a remarkable expression of the system we
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may designate as U. To someone who didn’t know
the code, U would be seen as expressing a com-
plicated and peculiar statement about the natural
numbers. But to someone who could decipher it,
U would be seen as also asserting that some state-
ment expressible in the system is unprovable. Look-
ing more closely, it would be found that the state-
ment asserted to be unprovable is U itself. Thus we
may say:

U asserts that it is unprovable.

Thus, if U were false, it would be provable, and
hence, presumably, true. This contradiction shows
that U is true, and hence, given what it asserts, un-
provable. There are true statements unprovable in
the given system.

Of course, this heuristic outline would have
hardly been convincing. But Gödel carefully worked
out the details leaving no doubt about the cor-
rectness of his conclusions.1 Nevertheless, a whiff
of paradox hung over the matter; it seemed hard
to believe that a trick so close to puzzles usually
offered for amusement could really be used to
demonstrate something profound about mathe-
matics.

Computability Theory Makes a
Contribution
We write N = {0,1,2, . . . } for the set of natural
numbers. A function f : N → N is called computable
if there is an algorithm that given an x ∈ N will com-
pute f (x). Here the notion of algorithm is assumed
to involve no restriction as to the amount of time
or space required to complete a computation.2 Fi-
nally a set S ⊆ N is called computable if its char-
acteristic function

CS (x) =

{
1 if x ∈ S
0 otherwise

is computable.
The following is fundamental:

Theorem. There is a computable function f whose
range

K = {f (0), f (1), f (2), . . . }
is not computable.3

Computability theory provides a perspective
from which it can be seen that incompleteness is
a pervasive fundamental property not dependent
on a trifling trick. From this point of view the for-
mal systems studied by logicians are simply com-
putable functions that spew out theorems (more
precisely, Gödel numbers of theorems). Such sys-
tems are usually given in terms of a set of axioms
and rules of inference. One can then imagine an al-
gorithm that begins with the axioms and proceeds
by iteratively applying the rules of inference.

To obtain a form of the incompleteness theorem
let us begin with the set K whose existence is given
by the theorem above, and consider propositions
of the form n �∈ K where n is a fixed natural num-
ber. We can suppose that, in a particular formal sys-
tem these propositions are each represented by a
corresponding string of symbols we may write as
Pn . We need only assume that there is an algo-
rithm for obtaining Pn given n.4 Let us use the sym-
bol F for some formal system, and write 	F Pn to
mean that Pn is provable in F. We will say that F
is sound if

Whenever 	F Pn for a particular n,
it will also be the case that n �∈ K.

Since Pn is intended to stand for the proposition
n �∈ K, soundness simply means that the provable
statements are true.

Incompleteness Theorem. Let F be a sound formal
system. Then there is a number n0 such that n0 �∈ K,
but it is not the case that 	F Pn0.

Again, we have a true sentence that is not prov-
able. Note that we only succeed in changing the
value of the particular number n0 as we attempt
to create stronger and stronger formal systems
that can prove more and more.

Proof of the Incompleteness Theorem. Sup-
pose that there is no such n0. Then we would have:

	F Pn for a particular n, if and only if n �∈ K.
Recall that K is the range of the computable func-
tion f. Then the following would be an algorithm
for computing CK (n) for a given value of n, con-
tradicting the fact that K is not computable: Begin
generating the theorems of F and at the same time
begin computing the successive values
f (0), f (1), f (2), . . . . If n ∈ K, then n will eventually
show up in the list of values of f so CK (n) = 1 . Oth-
erwise, Pn will eventually show up in the theorem
list of F so that CK (n) = 0 .      �

1Detailed proofs can be found in a number of textbooks,
for example [3]. In addition Gödel’s clear and meticulous
original exposition [8] still repays study.
2 Computability theory has provided a number of precise
characterizations to replace this heuristic explanation,
and they have all been proved equivalent to one another.
3See for example [1]. Computability theory is also known
as recursion theory and used to also be called recursive
function theory. Computable functions are also called re-
cursive. Sets that are the range of a computable function
as well as the empty set are called recursively enumerable,
or more recently, computably enumerable, or listable.

4 In a traditional formal system, for a given number n , Pn
will be obtained by replacing, in a certain specific formula,
a symbol for a variable by a “numeral” representing the
number n .
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A Diophantine Perspective
The following result, known variously as MRDP
and as Matiyasevich’s Theorem, enables it to be seen
that the truths unprovable in specified formal sys-
tems can have a straightforward mathematical
form.

Theorem. If S is the range of a computable func-
tion, then there is a polynomial p(a, x1, . . . , xm) with
integer coefficients such that the equation
p(a, x1, . . . , xm) = 0 has a solution in natural num-
bers x1, . . . , xm for a given value of a if and only if
a ∈ S (see [9, 2]).

Applying this result to the case S = K , let us
call the corresponding polynomial p0. Now we can
think of the expressions Pn as standing for the
proposition that p0(n, x1, . . . , xm) = 0 has no solu-
tions in natural numbers, and say that F is Dio-
phantine-sound if 	F Pn implies that the equation
p0(n, x1, . . . , xm) = 0 does indeed fail to have solu-
tions. Then, the incompleteness theorem of the
previous section takes the form:

Diophantine Incompleteness Theorem. Let F be
Diophantine-sound. Then there is a number n0 such
that the equation p0(n0, x1, . . . , xm) = 0 has no so-
lutions in natural numbers although it is not the case
that 	F Pn0.

It is worth remarking that the proof of MRDP is
entirely constructive so the polynomial p0 could
be produced quite explicitly.

Two Formal Systems: PA and ZFC
What Frege showed is that the ordinary reasoning
in proofs of mathematical theorems amounts to for-
mal manipulations of the propositional connec-
tives ¬ → ∨ ∧ together with the quantifiers ∀ ∃.
Manipulations of the propositional connectives
amounts to carrying out the operations of Boolean
algebra. The quantifiers get in the way of this, and
careful rules are needed to justify removing and re-
instating them. Once these rules are specified
(which can be done in a number of equivalent
ways), the way is open to set up formal systems en-
capsulating greater or lesser portions of mathe-
matics. This involves supplying a vocabulary of
symbols representing various constants, functions,
and relations appropriate to the part of mathe-
matics being formalized. Finally a list of axioms
must be given: these are written using this vocab-
ulary together with the symbols listed above cor-
responding to the operations of logical inference.
A symbol for equality should also be available.5

For the system PA (for “Peano Arithmetic”), the
vocabulary consists of symbols for the number 0,

and for the successor, sum, and product functions
on the natural numbers. The axioms are the familiar
Peano postulates together with equations serving
to implicitly define sum and product. The induc-
tion postulate, whose informal statement is that a
set of natural numbers containing 0 and closed
under successor must consist of all natural num-
bers, appears in a restricted form: it is stated only
for sets definable in terms of the vocabulary.6

PA formalizes the elementary number theory of
the textbooks as well as (via clever coding) sub-
stantial parts of elementary analysis. In contrast
ZFC formalizes the full scope of modern set-
theoretic mathematics including such things as
general topology and transfinite arithmetic. The vo-
cabulary can be extremely parsimonious consist-
ing only of the symbol ∈ for set membership. For
our purposes it will be useful to be slightly less fru-
gal, allowing as well symbols ∅ (the empty set),
{. . . } (the set consisting of a single element), and
∪ (binary union). The axioms are those of Zermelo-
Fraenkel together with the axiom of choice, and the
resulting system is powerful enough to encapsu-
late the full scope of classical mathematics, and in-
deed, much more (see for example [4]).

We write 	PA and 	ZFC for provability in PA
and ZFC, respectively. We will use F as a subscript
to refer ambiguously to either of these systems.
Also we write �	F to express non-provability in the
corresponding systems.

In each of PA and ZFC, a simple notation is avail-
able for representing the natural numbers by se-
quences of strings we call numerals. We will write
n for the numeral representing the natural num-
ber n. In PA this may be defined as follows using
the letter s for successor and letting 0 be repre-
sented by its usual symbol:

0 = 0 ; n + 1 = sn

Following von Neumann, the numerals in ZFC can
be defined as follows:

0 =∅; n + 1 = n∪ {n}
Now, for F standing for either PA or ZFC, associ-
ated with the polynomial p0 of the previous sec-
tion, there is a formula πF (x0, x1, . . . , xm) such
that for arbitrary natural numbers a,a1, . . . , am:

if p0(a,a1, . . . , am) = 0 then 	F π (a,a1, . . . , am)

if p0(a,a1, . . . , am) �= 0 then 	F ¬π (a,a1, . . . , am)

For PA, this is almost a triviality because symbols
for addition and multiplication are part of its vo-
cabulary, and the axioms justify ordinary calcula-
tions. For ZFC, some circumlocution is needed, but

5Equality can be thought of as the most “advanced” part
of the underlying logic, or as the most fundamental math-
ematical relation.

6A fuller account of PA will be found in Feferman’s arti-
cle [5] in this issue of the Notices. Full details will be found
in textbooks such as [3].
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the ordinary facts about addition and multiplica-
tion of natural numbers can still be replicated.

Incompleteness Theorem for PA and ZFC. If F is
consistent, then there is a natural number n0 such
that

�	F (∀x1) . . . (∀xm)¬π (n0, x1, . . . , xm),
and

�	F ¬(∀x1) . . . (∀xm)¬π (n0, x1, . . . , xm).

Thus the sentence (∀x1) . . . (∀xm)¬π (n0, x1,
. . . , xm) is undecidable in F : neither it nor its 
negation is provable. However, what that sentence
asserts, namely that the equation p0(n0, x1, . . . , xm)
= 0 has no solutions in natural numbers, is true.
Moreover that truth is a consequence of its unde-
cidability. For if p0(n0, a1, . . . , am) = 0 we would
have 	F π (n0, a1, . . . , am) and using elementary
logic we would obtain

	F (∃x1) . . . (∃xm)π (n0, x1, . . . , xm)

from which we readily obtain

	F ¬(∀x1) . . . (∀xm)¬π (n0, x1, . . . , xm)

contradicting the claimed undecidability.
There has been much confusion about this sit-

uation. How is it that we can see that the proposi-
tion is true although a system as powerful as ZFC
cannot? The answer is that ZFC can indeed see
what we can, namely that if ZFC is consistent then
the proposition is true but undecidable by its
means. In fact, it was precisely by analyzing this
situation that Gödel could conclude that systems
like PA and ZFC cannot prove their own consistency,
thereby shattering Hilbert’s hopes.

The fact that ZFC is stronger than PA (in actual
fact very much stronger) is exemplified by the fol-
lowing result:

Theorem. If PA is consistent, then there is a natural
number n0 such that

�	PA (∀x1) . . . (∀xm)¬π (n0, x1, . . . , xm),
and

�	PA ¬(∀x1) . . . (∀xm)¬π (n0, x1, . . . , xm),
but

	ZFC (∀x1) . . . (∀xm)¬π (n0, x1, . . . , xm).

So the undecidability in PA is decided in ZFC! But
then ZFC has its own undecidability and with the
very same formula π . Only the number n0 changes.
The values of n0 for either system will be enormous
since all the complexity of the algorithms for gen-
erating theorems these systems provide must be
contained in those numbers.

We will refer to statements to the effect that
some polynomial equation has no solutions in nat-
ural numbers as ∀-statements.7 They all have the

property just exhibited that their undecidability in
a reasonable formal system implies their truth. It
follows from the MRDP theorem that statements
asserting that some computable property holds
for all natural numbers are provably equivalent
(for example in PA) to a ∀-statement. Many fa-
mous problems are thus seen to belong to this
class, in particular, Fermat’s last theorem, the Gold-
bach conjecture, the four-color theorem, and the
Riemann Hypothesis (see [2]).

Beyond ZFC
At the same time that the ZFC axioms provide a
foundation for mathematics, they also can be re-
garded as defining a class of mathematical struc-
tures. From this point of view they can be seen as
providing “closure” under such operations as form-
ing the set of all subsets of a given set or the union
of all of its elements. In a normal situation of this
kind it would be natural to find the least set closed
under all of the operations called for by the axioms.
Remarkably, as natural as such an object appears,
its existence cannot be proved in ZFC. This is be-
cause if such existence could be proved, it would
provide a model for the axioms and hence lead to
a proof in ZFC of its own consistency. And this,
Gödel had proved to be impossible. So systems
like ZFC lead in a natural way to extensions, and
in each such extension new ∀-propositions be-
come provable. In fact there will be new values of
n0 for which the fact that the equation
p0(n0, x1, . . . , xm) = 0 has no solutions in natural
numbers becomes provable. What remains unclear
is whether some really mathematically significant
∀-propositions, perhaps like some of those men-
tioned at the end of the previous section, require
means beyond ZFC for their proof. We conclude this
article with a recent example announced by Har-
vey Friedman (see [7]) of a ∀-proposition that is un-
provable in ZFC, but becomes provable with the aid
of a so-called “large cardinal” axiom, an assump-
tion of the existence of an infinite set of a size larger
than any whose existence can be proved in ZFC.8

Friedman’s example concerns finite directed
graphs (no multiple edges allowed) whose vertices
are finite sequences of integers. What is striking is
that what looks like a harmless additional conclu-
sion in a theorem provable in ZFC (and even in much
weaker systems) results in a proposition that is un-
provable in ZFC but becomes provable on the ad-
dition of a large cardinal axiom, an assumption of
the existence of a set too large for that existence
to be provable in ZFC.9 Some preliminary defini-
tions are needed. For a natural number n we write

7Logicians call these Π0
1 statements. As this notation sug-

gests, they find their place in a hierarchy. 

8The article by Juliet Floyd and Akihiro Kanamori [6] in
this issue of the Notices contains some discussion of large
cardinal axioms.
9Specifically, an axiom of the Mahlo type.
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n̂ for the set {1,2, . . . , n}. So n̂k is the set of all se-
quences of these numbers of length k . If x, y ∈ n̂k,
we write x∗ y for the element of n̂2k obtained by
concatenating x and y . We will work with directed
graphs G whose vertex set V (G) consists of ele-
ments of n̂k for certain fixed n, k. For x, y ∈ V (G)
we write (x, y) for a possible edge proceeding from
x to y. G is called an upgraph if for every edge (x, y)
of G , we have max(x) <max(y) . We say that
u, v ∈ n̂� are order equivalent if for all 1 ≤ i, j ≤ �,
we have ui < uj if and only if vi < vj . An upgraph
G is called order invarant if whenever x∗ y is
order equivalent to z ∗w, we have (x, y) is an edge
of G if and only if (z,w ) is an edge of G . For
A ⊆ V (G) we write GA = {y | ∃x ∈ A say that (x, y)
is an edge of G}. A is called independent if no two
elements of A are connected by an edge of G . Sets
B,C ⊆ V (G) are G -isomorphic if there is a bijection
h from B to C such that for all x, y ∈ B , (x, y) is an
edge in G if and only if (hx,hy) is also an edge in
G . Finally, we call x ∈ V (G) two-powered if each xi
is a member of the set {1,2,4,8, . . . } of powers of
2. Now, we have:

Theorem. For all n, k, r ≥ 1 every order-invariant
upgraph G on n̂k has an independent set A such
that if B ⊆ V (G)−A and |B| ≤ r , then B is G -
isomorphic to a set C ⊆ GA such that B and C have
the same two-powered elements.

This is provable not only in ZFC but also in PA and
even in still weaker systems. However consider the
following variant:

Proposition. For all n, k, r ≥ 1 every order-
invariant upgraph G on n̂k has an independent set
A such that if B ⊆ V (G)−A and |B| ≤ r , then B is
G -isomorphic to a set C ⊆ GA such that B and C
have the same two-powered elements, and fur-
thermore, the particular number 2(4kr )2 − 1 doesn’t
occur in any element of C .

Harvey Friedman has announced that this
∀-statement is not provable in ZFC but becomes
provable on the  addition of a large cardinal axiom.
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