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mong Godel’s celebrated results in logic,
there are two that can be formulated in
terms that are intelligible in a general
way even to those unfamiliar with the
technicalities involved. The first is his
completeness theorem for first order logic. This the-
orem, which is not widely known outside the world
of logic, can be formulated as saying that every
statement that follows logically from a set of ax-
ioms in a formalized language, such as that used
in Zermelo-Fraenkel set theory with the axiom of
choice (ZFC) or first order Peano Arithmetic (PA),
can be proved using those axioms and the rules of
logic. A general audience of nonmathematicians
would probably find this statement of the com-
pleteness theorem intelligible but unexciting. After
all, isn’t that what “follows logically” means? It is
no easy task to explain the distinction between
the semantic concept of logical consequence and
the purely formal notion of derivability so as to
bring out the importance of this result for an au-
dience unacquainted with logic or mathematics. By
the time the expositor is done explaining that the
proof of completeness depends essentially on the
language being first order, few interested listeners
or readers are likely to remain. The distinction be-
tween first order and higher order languages, al-
though logically highly significant, is not one that
holds any immediate appeal to the imagination.
The second result, Godel’s incompleteness the-
orem, is a very different matter. “Every sufficiently
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strong axiomatic theory is either incomplete or in-
consistent.” Many nonmathematicians at once find
this fascinating and are ready to apply what they
take to be the incompleteness theorem in many dif-
ferent contexts. The task of the expositor becomes,
rather, to dampen their spirits by explaining that
the theorem doesn’t really apply in these contexts.
But as experience shows, even the most deter-
mined wet blanket cannot prevent people from ap-
pealing to the incompleteness theorem in contexts
where its relevance is at best a matter of analogy
or metaphor. This is true not only of the first in-
completeness theorem (as formulated above), but
also of the second incompleteness theorem, about
the unprovability in a consistent axiomatic theory
T of a statement formalizing “T is consistent.”
Supposed applications of the first incomplete-
ness theorem in nonmathematical contexts usually
disregard the fact that the theorem is a statement
about formal systems and is stated in terms of
mathematically defined concepts of consistency
and completeness. This mathematically essential
aspect is easily set aside, since “complete”, “con-
sistent”, and “system” are words that are used in
many different ways outside formal logic. Thus
the incompleteness theorem has been invoked in
justification of claims that quantum mechanics, the
Bible, the philosophy of Ayn Rand, evolutionary bi-
ology, the legal system, and so on, must be in-
complete or inconsistent. To dismiss such invoca-
tions of the incompleteness theorem is not to say
that it doesn’t make good sense to speak of these
various “systems” as complete or consistent, in-
complete or inconsistent. When people say that
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the Bible is inconsistent, they are arguing that it con-
tains apparently irreconcilable statements, and
those who regard the Bible as a complete guide to
life presumably mean that they can find answers
in the Bible to all questions that confront them
about how to live their lives. Einstein, in regarding
quantum mechanics as incomplete (although con-
sistent), believed that it is possible to find a more
fundamental physical theory. The system of laws
of any country is incomplete or inconsistent or
both in the sense that there are always situations
in which conflicting legal arguments can be brought
to bear, or in which no statute seems applicable.
But the incompleteness theorem adds nothing to
such claims or observations, for two reasons. The
first is that these “systems” are not at all formal
systems in the logical sense. There is no formally
specified language, and there are no formal rules
of inference in the logical sense associated with
quantum mechanics, the Bible, a system of laws,
and so on. What follows or does not follow from a
religious or philosophical text, a scientific theory,
or a system of laws is not determined by any for-
mal rules of inference, such as might be imple-
mented on a computer, but is very much a matter
of interpretation, argument, and opinion, where the
relevant reasoning is limited only by the vast bound-
aries of human thought in scientific, religious, po-
litical, or philosophical contexts.

The second reason for the irrelevance of Godel’s
theorem in such discussions is that the incom-
pleteness of any sufficiently strong consistent ax-
iomatic theory established by that theorem con-
cerns only what may be called the arithmetical
component of the theory. A formal system has such
a component if it is possible to interpret some of
its statements as statements about the natural
numbers, in such a way that the system proves
some basic principles of arithmetic. Given this, we
can produce (using Rosser’s strengthening of
Godel’s theorem in conjunction with the proof of
the Matiyasevich-Davis-Robinson-Putnam theorem
about the representability of recursively enumer-
able sets by Diophantine equations) a particular
statement of the form “The Diophantine equation
p(x1,...,Xn) =0 has no solution” which is unde-
cidable in the theory, provided it is consistent.
While it is mathematically a very striking fact that
any sufficiently strong consistent formal system is
incomplete with respect to this class of statements,
it is unlikely to be thought interesting in a non-
mathematical context where completeness or con-
sistency (in some informal sense) is at issue. No-
body expects the Bible, the laws of the land, or the
philosophy of Ayn Rand to settle every question in
arithmetic.

There is also a different kind of appeal to the
first incompleteness theorem outside mathemat-
ics, one that recognizes that the theorem applies
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only to formal mathematical theories. This is a line
of thought that tends to appeal to postmodernists
and theologians. From this point of view, the in-
completeness theorem shows that even in mathe-
matics, that supreme bastion of reason, truth is ei-
ther beyond us or a matter of more or less arbitrary
consensus rather than objective fact. Given our
most powerful mathematical theory, we know that,
assuming its consistency, we can produce an arith-
metical statement such that we can add either that
statement or its negation to the theory, obtaining
incompatible theories that are still consistent. So
either reason is powerless in this context (as in the
wider context of the universe as a whole, with truth
ultimately resting only in God), or there is no other
truth than that which we more or less arbitrarily
agree upon (just as in the physical sciences, ac-
cording to this line of thought). Either way, after
Godel’s theorem, mathematics flounders in a sea
of undecidability.

When we look at mathematical practice, however,
we find that mathematicians, although generally
aware of the phenomenon of incompleteness, and
therewith of the theoretical possibility that a prob-
lem they are working on may be unsolvable in the
current axiomatic framework of mathematics, are
by no means floundering in a sea of undecidabil-
ity.
In the year 1900 David Hilbert made a famous
affirmation in his presentation of twenty-three
problems facing mathematics in the twentieth cen-
tury [Browder 1976]. At first glance, it might be
thought that the incompleteness theorem scuttles
the confidence expressed in this affirmation:

Take any definite unsolved problem,
such as the question as to the irra-
tionality of the Euler-Mascheroni con-
stant C, or the existence of an infinite
number of prime numbers of the form
2" + 1. However unapproachable these
problems may seem to us, and however
helpless we stand before them, we have,
nevertheless, the firm conviction that
their solution must follow by a finite
number of purely logical processes.
...This conviction of the solvability of
every mathematical problem is a pow-
erful incentive to the worker. We hear
within us the perpetual call: There is the
problem. Seek its solution. You can find
it by pure reason, for in mathematics
there is no ignorabimus.

Although Hilbert did not specify just what he
meant by a “definite” problem, it is no doubt sig-
nificant that his two examples are statements that
can be formulated in arithmetical terms. Today,
mathematicians have accepted that some appar-
ently straightforward questions in set theory, such
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as the very first problem on Hilbert’s list, that of
the truth or falsity of Cantor’s continuum hy-
pothesis, cannot in fact be settled by a mathemat-
ical proof as proof is ordinarily understood in
mathematics today. Instead, we must either rest
content with proving hypothetical statements such
as “Assuming CH, there is a group G with the prop-
erties...” or extend set theory by new axioms. Also,
mathematicians who work in set theory or areas
closely connected with set theory have learned to
recognize the kind of problem or conjecture that
may well be affected by the incompleteness of set
theory. (It should be emphasized that this category
of incompleteness, although established on the
basis of the pioneering work in set theory by Godel,
and later Paul Cohen, is not a consequence of the
incompleteness theorem.)

The situation is different with Hilbert’s exam-
ples of “definite unsolved problems.” It would be
startling indeed if it turned out that ZFC does not
settle whether or not there are infinitely many Fer-
mat primes. In such a case, very few mathemati-
cians would be content to note that we can con-
sistently take the number of Fermat primes to be
either finite or infinite, and leave it at that. Rather,
mathematical instinct, if nothing else, tells us that
whether or not there are infinitely many Fermat
primes is not a question that can be meaningfully
settled by stipulation, but if it can be settled at all
calls for an argument that we perceive as mathe-
matically compelling. Given such an incompleteness
result, the search for new axioms in mathematics
would take on a new urgency.

However, no famous arithmetical conjecture has
been shown to be undecidable in ZFC. We do know
that certain natural statements formalizable in
arithmetic are undecidable in ZFC (given the con-
sistency, or more accurately what is called in logic
the 1-consistency, of ZFC), typically consistency
statements, such as a statement formalizing “ZFC
is consistent.” Here again mathematical instinct
tells us that whether or not ZFC is consistent can-
not be meaningfully settled by stipulation, but
statements of this kind are not at all what mathe-
maticians normally seek to prove. Mathematicians
tend to be content with accepting that the consis-
tency of the most powerful formal theory to which
they ordinarily refer in foundational contexts can-
not be proved in ordinary mathematics, without
thereby concluding that their own mathematical ef-
forts are likely to run up against the barrier of un-
decidability. For, while we have no basis for a gen-
eral claim that every arithmetical problem that
arises naturally in mathematics is decidable in ZFC,
we don’t have a single example of an arithmetical
problem—about primes or Diophantine equations
or other such things—that has occurred to math-
ematicians in a natural mathematical context being
shown to be unsolvable in ZFC. From a logician’s

NOTICES OF THE AMS

point of view, it would be immensely interesting if
some famous conjecture in arithmetic turned out
to be undecidable in ZFC, but it seems too much
to hope for. In short, while Hilbert’s affirmation
does not have any theoretical support from logic,
logic does not refute that affirmation, as naturally
understood from the point of view of the working
mathematician.

It is thus understandable that the first incom-
pleteness theorem has not had much of a “popu-
lar impact” among mathematicians, who are un-
likely to seek to apply a mathematical theorem to
the Bible and so on, and who are, for the reasons
indicated, not overly concerned about the possi-
bility of an arithmetical problem that they are
working on being unsolvable in current mathe-
matics. Mathematics may be “floundering” as far
as solving a particular problem is concerned, but
this neither leads to any inclination to regard prob-
lems such as those mentioned by Hilbert as in any
way solvable by fiat or consensus, nor instills any
sense that the problem may be unsolvable. This nat-
ural attitude is, furthermore, supported both by ex-
perience and by logical and philosophical argu-
ment, as briefly touched on above.

The second incompleteness theorem, although
not as often referred to in nonmathematical con-
texts, has also prompted theologians and post-
modernists to reflect that since mathematics can-
not prove its own consistency, reason is powerless
to justify itself, so that either there is no justifica-
tion to be had, or reason can be supported only by
faith. Without going into detail about such ideas,
it is a relevant observation that a somewhat simi-
lar line of thought seems to have had considerable
“popular impact” even among mathematicians, in
their more philosophical moments. What I have in
mind here is the following. Mathematicians often
tend to regard proofs of consistency, not only of
ZFC but of such very much weaker theories as PA,
as somehow more unattainable or problematic
than proof’s of ordinary arithmetical statements. In-
deed, it is not uncommon for mathematicians to
say that arithmetic cannot be proved consistent.
Thus Ian Stewart, in summing up the second in-
completeness theorem for popular consumption,
remarks that “Goedel showed that...if anyone finds
a proof that arithmetic is consistent, then it isn’t!”
([Stewart 1996], p. 262)

What is odd about such remarks is that we can
easily, indeed trivially, prove PA consistent using
reasoning of a kind that mathematicians other-
wise use without qualms in proving theorems of
arithmetic. Basically, this easy consistency proof ob-
serves that all theorems of PA are derived by valid
logical reasoning from basic principles true of the
natural numbers, so no contradiction is derivable
in PA. It appears that many mathematicians have
come to absorb the view that a consistency proof
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for PA is not really a consistency proof unless it
convinces somebody who does not accept the ax-
ioms of PA as expressing valid principles of math-
ematics that PA is nevertheless consistent. The
second incompleteness theorem and general ex-
perience do indeed indicate that no such proof is
to be expected. If we were to make similar de-
mands on proofs of arithmetical statements in
general, we would be forced to the conclusion that
it is equally impossible to prove the prime num-
ber theorem, Dirichlet’s theorem, and so on. The
insight underlying the idea that it is impossible to
prove, in this sense, the consistency of arithmetic
is a perfectly valid one, but it has nothing to do with
Godel’s theorem. Instead it is the insight, familiar
since antiquity, that we cannot prove everything.
We need to start from some basic principles in our
mathematical reasoning, principles that we can
justify only in informal terms. The principles for-
malized in PA are the infinity of the natural num-
ber series, the basic properties of addition and
multiplication, and the principle of mathematical
induction. As long as we accept these principles as
mathematically valid—as a large majority of math-
ematicians do in practice—there is no reason why
we should not accept a proof of the kind described
as proving the consistency of PA, just as we accept
other mathematical proofs that depend on the va-
lidity of these principles. Those who do have gen-
uine doubts about the consistency of PA will of
course not accept this proof of consistency, but
then there is no reason why they should accept stan-
dard proofs of the prime number theorem, Dirich-
let’s theorem, and so on, either.

It should be noted that in the logical literature,
there are various nontrivial consistency proofs for
PA, but the question of their interest and content
is a subtle one, and I think it can be safely said that
they will not convince anybody who has genuine
doubts about the consistency of PA.

Of course, the above comments do not apply to
every question of consistency. For example, the
consistency of PA extended with the axiom “PA is
inconsistent” is established only through the proof
of the second incompleteness theorem itself, and
proving the consistency of PA extended with Gold-
bach’s conjecture as a new axiom is equivalent to
proving Goldbach’s conjecture. In these cases, the
theory whose consistency is at issue is not one
that formalizes basic principles of mathematical
reasoning.

A point that deserves to be made in this con-
nection is that the significance of consistency proofs
as a means of justifying our mathematical reason-
ing is easily overstated. For a mathematician, it may
at times seem convenient to refer to consistency in
response to philosophical prodding about the truth
or validity of mathematical axioms and methods of
reasoning: only consistency matters, not the
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existence of the objects studied in mathematics or
the philosophical justifiability of mathematics, and
as far as we know, mathematics as it stands today
is consistent. But such a view is at odds with how
we actually think about arithmetical problems in
mathematics. For example, there is no logical basis
for claiming that there are infinitely many twin
primes if all we know is that PA is consistent and
proves the twin prime conjecture. Consistent the-
ories of arithmetic may prove false theorems (when
we are not talking about theorems having the log-
ical form of Goldbach’s conjecture), and if we con-
clude that there are infinitely many twin primes on
the basis of a proof in some particular mathemat-
ical framework, the mere consistency of that frame-
work is insufficient to justify our conclusion.

There is of course much more that could be said
about the impact of the incompleteness theorem
outside the field of logic proper. For one thing,
there is the whole subject of Lucas-Penrose argu-
ments in the philosophy of mind, which seek to es-
tablish that the human mind does not work on me-
chanical principles in mathematics by appealing to
the incompleteness theorem. A more extensive dis-
cussion can be found in [Franzén 2005].
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