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Teruhisa Matsusaka
(1926–2006)
János Kollár

From his arrival at the
Unversity of Chicago in
1954 until his retirement
from Brandeis University
in 1994, Matsusaka has
been a key figure of
American algebraic geom-
etry. He was a quiet math-
ematician to whom alge-
braic geometry was a
personal friend whose
company one can best ap-
preciate away from the
rush of the academic life.
Instead of going to con-
ferences or working with
others, he most enjoyed
sitting in his fishing boat
and thinking about math-

ematics. Yet for those who knew him well, his love
of the subject and his devotion to the deep under-
standing of important problems was infectious.

Matsusaka received his Ph.D. in 1952 at Kyoto
University, but the person with the greatest influ-
ence on his research career was André Weil. Dur-
ing the difficult years after the Second World War,
Matsusaka worked on several problems connected
with Weil’s Foundations of Algebraic Geometry.
This led to a correspondence and eventually Weil
invited Matsusaka to the University of Chicago
(1954–57) where they became life-long friends.

After three years at Northwestern Unversity and a
year at the Institute for Advanced Study, Princeton,
he went to Brandeis University in 1961 where he
stayed until 1994, helping to build the department
to its current prominence. Matsusaka was invited
to address the Edinburgh International Congress
of Mathematicians in 1958, and he was elected to
the American Academy of Arts and Sciences in
1966.

Most of the early works of Matsusaka are devoted
to extending basic theorems of complex algebraic
geometry to arbitrary fields, following the direction
established by Weil. These theorems carry the name
of the original authors who proved them over the
complex numbers, and very few of the young gen-
eration know that the existence of the Albanese and
Picard varieties [Mat52], the projectivity of Abelian
varieties [Mat53], the Lefschetz theorem comput-
ing the Picard variety of a hyperplane section
[Mat54], and the Torelli theorem that the polarized
Jacobian determines a smooth curve [Mat58] are all
due to Matsusaka in the general case.

It is also in these early years that he proved a
characterization of Jacobians, now known as the
Matsusaka criterion [Mat59]:

A principally polarized Abelian variety of 
dimension g containing a curve (C ⊂ A,Θ) is the 
Jacobian of C if and only if (g − 1)! · C is numeri-
cally equivalent to the self-intersection Θg−1.

After these results Matsusaka turned his atten-
tion to the moduli problem of algebraic varieties,
and he devoted the rest of his career to this topic.
Nowadays moduli problems are built into the 
basics of algebraic geometry, but in the 1950s and
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1960s the existence and nature
of moduli spaces was a major
open question, where even the
basic definitions were unsettled.

It was realized early on that
the set of isomorphism classes
of varieties of a given type does
not carry any reasonable alge-
braic structure. Some of the
worst examples are given by
Abelian and K3 surfaces.

Matsusaka devoted thirty
years of work to proving that
the right objects to consider are
polarized varieties, that is, pairs
(X,H) where X is a projective va-
riety and H is an ample divisor
class.

Two major preliminary ques-
tions need to be settled before
one can start building a sensible
moduli space, and both were
solved by Matsusaka: is the
moduli problem separated and
bounded?

The separatedness problem concerns unique-
ness of limits. Assume that (Xt,Ht ) depend con-
tinuously or algebraically on t where t ≠ 0. Is it true
that there is at most one pair (X0,H0) that can be
viewed as the limit of this family?

It is easy to write down examples where this com-
pletely fails if we allow X0 to be singular. It is
harder to come up with smooth counterexamples,
but P1-bundles over curves give many. The basic
paper of Matsusaka and Mumford [MM64] shows
that these are the only obstructions: the limit is
unique as long as X0 is smooth and not birational
to a P1-bundle.

The boundedness problem asks about the total-
ity of all pairs (X,H). Maybe there are too many of
them to be parametrized by the points of a single
algebraic variety? This happens already for curves:
we need infinitely many algebraic varieties to pa-
rametrize all polarized curves (C,H) , but we need
only one variety if we fix the genus of C and the de-
gree of H. Equivalently, we can fix the Hilbert poly-
nomial χ(C,OC (tH)) = t · (degree of H)+ 1− g(C) .

Similarly, in higher dimensions we need to fix
the Hilbert polynomial

Hilb(X,H)(t) := χ(X,OX (tH))

first. It turns out that one can restate boundedness
in the following form:

For every polynomial p(t) find a constant
c = c(p(t)) such that if (X,H) is a polarized pair with
p(t) = Hilb(X,H)(t) then |cH| is very ample.

Matsusaka’s best known result [Mat72], dubbed
Matsusaka’s Big Theorem by Lieberman and
Mumford [LM75], gives the positive answer to this

question when X is smooth and
the characteristic is 0.

Later Matsusaka showed that
the answer is also positive if X
is smooth, dimX ≤ 3 [Mat81],
and the characteristic is arbi-
trary, or when X has rational
singularities and the character-
istic is 0 [Mat86]. (The more gen-
eral cases of smooth varieties in
positive characteristic and nor-
mal varieties in characteristic
0 are still unknown.)

Once boundedness holds,
one can parametrize all pairs
(X,H) with a given Hilbert poly-
nomial by an open subset of
the Chow variety (or Hilbert
scheme) of a fixed projective
space PN . The remaining prob-
lem is that we obtain every
(X,H) many times, since the
embedding of X into PN is
unique only up to an automor-
phism of PN . This leads us to

the question: when is the quotient of an algebraic
variety by a group also an algebraic variety? In
some cases the answer is given by Mumford’s geo-
metric invariant theory or by Artin’s theory of al-
gebraic spaces, but a truly satisfactory general an-
swer is still lacking. Matsusaka’s main contribution
to this area is the theory of Q-varieties [Mat64]. This
is the first clear instance in the literature where the
currently popular “stacky viewpoint” appears in al-
gebraic geometry. In both approaches the starting
point is the dictum that one should not worry
about the existence of the quotient. Instead, one
should work out a theory of the more general quo-
tient objects. Afterwards we may prove that the
quotient also exists in the classical sense, but at the
end this may turn out to be unimportant.

Following the theory of Weil, Matsusaka always
worked with varieties, so his theory is about quo-
tients of varieties by equivalence relations. By the
time his book appeared in 1964, schemes took
over algebraic geometry, and the current theory of
stacks preserved only the basic philosophy of his
approach.

Matsusaka’s last published paper [Mat91]
strengthens his Big Theorem by proving that only
the two leading terms of the Hilbert polynomial
Hilb(X,H)(t) matter. Namely, if dimX = n and H is
ample (or just nef and big) then there is an effec-
tively computable function C(x, y, z) such that
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André Weil and Ryoko Matsusaka,
1956. Photo by Teruhisa Matsusaka.
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and a similar inequality holds when we replace
h0(X,OX (tH)) by χ(X,OX (tH)) . Note that the Hirze-
bruch–Riemann–Roch theorem computes
χ(X,OX (tH)) exactly in terms of all the Chern
classes of X, whereas the above result needs only
the first Chern class KX = −c1(X) .
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About the Cover

A Hénon horseshoe
This month’s cover was suggested by Ruelle’s

article on strange attractors. It portrays an ap-
proximation to the non-wandering set Ω, as well
as a portion of the homoclinic tangle, for the
Hénon map

f : (x, y) → (y,1− ay2 + bx)

with a = 6, b = 0.9. For these values, the Hénon
map does not possess an attractor, but instead
offers an instance of one of Smale’s horseshoes,
and that is what the cover more or less illus-
trates. The logic is exhibited in more detail by the
following sequence of pictures:

We begin with a region R bounded by parts of
the stable manifold of one fixed point and the un-
stable manifold of the other. Any point outside
R is taken off to infinity by iterates of either f or
f−1, so Ω lies inside it.The next pictures show f (R)
and f−1(R) , then f 2(R) and f−2(R) . Each intersec-
tion f n(R)∩ f−n(R) also contains Ω.

The symbolic dynamics of this example, the
same as those of the horseshoe, are simple. As
Ruelle mentions, the more complicated symbolic
dynamics of the classical Hénon map with
a = 1.4, b = 0.3 are specified by the pruning front
conjecture. For more information, look at the
AMS Feature Column for June 2006 (available at
http://www.ams.org/featurecolumn/) and
the book Classical and Quantum Chaos by
Cvitanovi ć and others, available at
http://ChaosBook.org.

—Bill Casselman
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