
Notes on the Deuring-
Heilbronn
Phenomenon
Jeffrey Stopple

864 NOTICES OF THE AMS VOLUME 53, NUMBER 8

Introduction
Analytic number theory studies L-functions, gen-
eralizations of the Riemann zeta function ζ(s) . It
can be difficult to see why this is number theory.
In fact, the Class Number Formula (6) of Dirichlet
gives the number h(−d) of classes of binary qua-
dratic forms of discriminant −d as the value of such
an L-function at s = 1. The location of the zeros is
important: since the functions are continuous, the
value is influenced by any zero of the function
near s = 1. Such a zero would of course contradict
the Generalized Riemann Hypothesis (GRH).

The Deuring-Heilbronn phenomenon says that
such a counterexample to the GRH for one L-
function would influence the horizontal and ver-
tical distribution of the zeros of other L-functions.
They would be forced to lie on the critical line
s = 1/2+ it , at least up to some height. This is the
“Local GRH”. More surprisingly, the imaginary parts
t would be restricted to a set which is very nearly
periodic. This is a very beautiful result indeed.
Standard analogies interpret the imaginary parts
t as frequencies; the Deuring-Heilbronn phenom-
enon means these frequencies are in harmony.

We give an overview of the proof, first in the case
h(−d) = 1 before treating h(−d) > 1. Even though
the class number 1 problem is now solved, the es-
sential features of the general problem are visible
there. We also look at some examples which indi-
cate that even in the absence of a contradiction to

GRH, “near contradictions” still cause a tendency
towards such a phenomenon.

The author would like to thank David Farmer for
suggesting the calculations in the last section.

Notations
The complex variable s is written σ + it. We write

f (x) � h(x) resp. f (x) = g(x)+O(h(x))

if there is some constant C so that

|f (x)| ≤ Ch(x) resp. f (x)− g(x) � h(x)

usually for x approaching some limiting value,
which may not be explicitly stated. We write

f (x) ∼ h(x) if f (x)/h(x) → 1.

Binary Quadratic Forms
Algebraic number theory has its roots in the beau-
tiful theorem of Fermat that an odd prime p is the
sum of two squares,

p = x2 + y2 � p ≡ 1 mod 4.

Euler, Lagrange, and Gauss developed many gen-
eralizations of this; for example, p �= 7 can be writ-
ten as

p = x2 + xy + 2y2 � p ≡ 1,2,4 mod 7.

The necessity of the congruence is the easy half,
as it is in Fermat’s theorem (4p = (2x+ y)2 + 7y2 ,
now reduce modulo 7). In general one studies pos-
itive definite binary quadratic forms, functions
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Q(x, y) = ax2 + bxy + cy2,

with − d = b2 − 4ac < 0

the discriminant. (We build the minus sign into
the notation to simplify later when we want square
root or logarithm of the absolute value.)

Two forms Q and Q′ are said to be equivalent
if there is an integer matrix M with determinant 1
such that

Q′(x, y) = Q((x, y)M).

Such forms obviously have the same range as func-
tions, i.e., represent the same integers. A calcula-
tion shows that equivalent forms have the same dis-
criminant, and it is not difficult to show the number
of classes h(−d) is finite. In fact, a very deep result
of Gauss is that they form a finite abelian group
C(−d).

Below we will need the Kronecker symbol χ−d at-
tached to a discriminant −d. In the simplest case
that d is an odd prime, χ−d reduces to the Legendre
symbol

χ−d(n) =




0, if d|n
1, if n ≡ a square
−1, otherwise.

Of course, this definition works just fine for pos-
itive discriminants as well. For odd composite dis-
criminants we can define a Jacobi symbol via mul-
tiplicativity. This no longer detects squares, for
example,

χ−15(2) = χ−3(2)χ5(2) = −1 · −1 = 1,

but 2 is not a square modulo 15. It does however,
detect whether a prime is represented by some
form of discriminant −d, just as in the example with
discriminant −7 above. For primes p with
χ−15(p) = +1 then

p = x2 + xy + 4y2 � p ≡ 1,4 mod 15

p = 2x2 + xy + 2y2 � p ≡ 2,8 mod 15.

Primes with χ−15(p) = −1 are not represented by
any form of discriminant −15. The natural (slightly
complicated) extension of this function to even
discriminants as well is called the Kronecker sym-
bol.

A weaker relation than equivalence is also use-
ful: two forms are in the same genus if they rep-
resent the same congruence classes in the multi-
plicative group modulo d. For example,

x2 + 14y2 and 2x2 + 7y2

both have discriminant −56; they must be in dif-
ferent classes since the first represents 1 while the
second does not. However, they are in the same
genus since

2 · 52 + 7 · 12 = 57 ≡ 1 mod 56.

In this case h(−56) = 4; the other two classes of
forms are

3x2 ± 2xy + 5y2.

Both these forms represent 3, while neither of the
first two forms can represent an integer congru-
ent to 3 mod 56 (reduce modulo 7). So there are
two genera each consisting of two classes. For
more details on the algebraic theory of binary qua-
dratic forms, see [2].

To bring analysis to the study of binary quadratic
forms, we introduce the classical Riemann zeta
function and the Dirichlet L-function

ζ(s) =
∞∑
n=1

1
ns
=
∏
p

(1− p−s )−1

L(s, χ−d) =
∞∑
n=1

χ−d(n)
ns

=
∏
p

(1− χ−d(p)p−s )−1.

We will also want the Epstein zeta function

ζQ(s) = 1
2

′∑
(x,y)

Q(x, y)−s

where the ′ in the sum means omit the term (0,0).
(The factor of 1/2 in the definition accounts for the
automorphism (x, y) → (−x,−y) . This is in fact the
only automorphism, if we assume d > 4, which we
do from now on. Forms with positive discriminant
have infinitely many automorphisms.) For another
way of writing this, we group together all the terms
in which the form takes on the same value, and
count them with the representation numbers rQ(n):

rQ(n) = 1
2
· #{(x, y) |Q(x, y) = n}.

This gives

ζQ(s) =
∞∑
n=1

rQ(n)n−s .

Asymptotic Behavior
We begin by generalizing the proof that

ζ(s) = 1
s − 1

+O(1).

The idea is that the sum 
∑
n<B rQ(n) of the repre-

sentation numbers is one half the number of lat-
tice points inside the ellipse Q(x, y) = B , which, as
B →∞, is approximately the area. The change of
variables that converts the ellipse to a circle has
Jacobian 2/

√
d , independent of Q , which gives∑

n<B
rQ(n) ∼ π√

d
B.
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In fact one can show the error is O(B1/2). From this
and a calculus identity for n−s, we can compute a
residue:

ζQ(s) =
∞∑
n=1

rQ(n) s
∫∞
n
x−s−1 dx

=s
∫∞

1

(∑
n<x
rQ(n)

)
x−s−1 dx

=s
∫∞

1

( π√
d
x+O(

√
x)
)
x−s−1 dx.

The integral of the error term is finite for σ > 1/2,
which gives

(1) ζQ(s) = π√
d

1
s − 1

+O(1).

The key fact is that the residue is the same for all
forms Q of discriminant −d.

This same circle of ideas will actually give us a
little more information: there is a constant C so that,
for σ > 1, we have

(2)
∣∣ζQ(s)− a−sζ(2s)

∣∣ ≤ (d
4

)1/2−σ C
σ − 1

.

Here’s a sketch of a proof. The expression a−sζ(2s)
is exactly the contribution to ζQ(s) of the terms
Q(m,n)−s with n = 0. So we want to bound the re-
maining terms

∑
m∈Z

∞∑
n=1

Q(m,n)−s

We use the fact that the sum is absolutely convergent
for σ > 1, and the usual trick of comparing a sum to
an integral. (There are some things to check care-
fully here which is why this is only a sketch.) We may
as well assume the middle coefficient b = 0; if not a
real rotation by φ = arctan (b/(a− c))/2 makes it
so, without changing the value of the integral or the
discriminant. So we want to estimate

∫∫
(ax2 + cy2)−σ dxdy,

where the annular region of integration
r > 1,φ ≤ θ ≤ φ+π contains our (rotated) lattice
points. A change of variables

x = √cr cos(θ) y = √ar sin(θ)

with Jacobian 
√
ac r = √d/4 r converts this to(d

4

)1/2−σ
π
∫∞

1
r1−2σdr =

(d
4

)1/2−σ π/2
σ − 1

.

The point of (2) is that for s in the region σ > 1,
we get

(3) ζQ(s) → a−sζ(2s) as
√
d/a →∞.

We will see below that we can extend (3) to the larger
region σ > 0, s �= 1. This is in some sense the rea-
son why the Deuring-Heilbronn phenomenon oc-
curs.

Class Number Formula
The representation numbers rQ(n) of the individ-
ual forms are mysterious, but there is a nice ex-
pression for r−d(n) , the total number of ways n is
represented by any form of discriminant −d:

(4)
∑
[Q]

rQ(n) =
∑
m|n
χ−d(m).

The proof uses the Chinese Remainder Theorem.
The right side above is the Dirichlet convolution of
the multiplicative functions χ−d and 1, the constant
function. Together with (4), this implies

∑
[Q]

ζQ(s) =
∞∑
n=1



∑
m|n
χ−d(m)


n−s

=ζ(s)L(s, χ−d).(5)

The previous calculation (1) of the residues at
s = 1 for the Epstein zeta function gives us, when
we sum over classes [Q], Dirichlet’s Analytic Class
Number Formula

(6) L(1, χ−d) = πh(−d)√
d

.

From this it is not too hard to prove upper bounds
on the class number:

h(−d) � log(d)
√
d.

(See [12] for an exposition). Figure 1 shows a scat-
ter plot of discriminants and class numbers for
d < 10000. You can see the square root upper
bound in the upper envelope of the points, roughly
a parabola.

Lower bounds are much much harder. Gauss
conjectured in Art. 303 of Disquisitiones Arith-
meticae
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Figure 1. Discriminants vs. class numbers.
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…the series of [discriminants] corre-
sponding to the same given classifica-
tion (i.e., the given number of both gen-
era and classes) always seems to
terminate with a finite number…There
seems to be no doubt that the preced-
ing series does in fact terminate, and by
analogy it is permissible to extend the
same conclusion to any other classifi-
cations…However rigorous proofs of
these observations seem to be very dif-
ficult.

Getting good answers to these questions are still
the main open problems in the theory.

Fourier Expansion
So far we have viewed the forms Q(x, y) =
ax2 + bxy + cy2 as discrete objects. A slightly 
different point of view lets us view them as sitting
in a continuous family parametrized by a variable
z in the complex upper half plane H . We deho-
mogenize the form to find roots (Heegner points)

az2 + bz + c = 0, z = −b + i√d
2a

.

Then
Q(m,n) = a|m− nz|2,

ζQ(s) = a−s
′∑

(m,n)

|m− nz|−2s .

As a function of z in the complex upper half plane,
this is invariant under z → z + 1, since

Q(m,n) ∼ Q
(

(m,n)

[
1 0
−1 1

])
,

and thus the Epstein zeta function has a Fourier
expansion in x = Re(z).

Aphorism. [Hecke] A periodic function should 
always be expanded into its Fourier series.

In fact, we will end up with a Fourier cosine 
series since our Epstein zeta function is an even
function of the x = b/2a parameter: the forms

Q(m,n) = am2 + bmn+ cn2

and Q−1(m,n) = am2 − bmn+ cn2

represent the same integers, so their Epstein zeta
functions are identical. The Fourier coefficients
will each be a function of the Dirichlet series vari-
able s , as well as Im(z) = √d/2a . To see what the
Fourier expansion looks like, we will need the K-
Bessel function Kν (y) , which is the solution to the
second order ODE (derivatives with respect to y)

u′′ + 1
y
u′ − (1+ ν

2

y2
)u = 0

which tends to 0 as y →∞ . In fact

(7) Kν (y) =
(
π
2y

)1/2

exp(−y)
(
1+O(y−1)

)
.

Also significant for us is that it has the integral rep-
resentation (Mellin transform)

(8) Kν (y) = 1
2

∫∞
0

exp(−y/2(τ + 1/τ))τν
dτ
τ
,

A good reference for this is [5]. The change of vari-
ables τ → τ−1 in the integral (8) gives

(9) Kν (y) = K−ν (y).

Theorem. [Chowla-Selberg]

ΛQ(s) def.=
(√

d
2π

)s−1/2

Γ (s)ζQ(s)

=T (s)+ T (1− s)+U (s),

where

T (s) =
(√

d
2π

)s−1/2

a−sΓ (s)ζ(2s)

and

U (s) = 4
√
π√
a

∞∑
n=1

ns−1/2σ1−2s (n) ×

Ks−1/2

(
πn
√
d

a

)
cos(nπb/a).

The divisor function σν (n) is defined by 
∑
m|n mν.

Notice that each term ns−1/2σ1−2s (n) is invariant
under s → 1− s, as is the K-Bessel function by (9),
and this gives as a Corollary the analytic continu-
ation and functional equation

ΛQ(s) = ΛQ(1− s).
Proof (extremely sketchy): The appearance of 

the term T (s) is not surprising; just as before it is
exactly the contribution of pairs (m,n) that have
n = 0. The remaining terms contribute a sum over
m in Z and n in N. Each summand can be written
as a Mellin transform, and the sum pulled through
the integral. Poisson Summation gives the integral
(8) for the K-Bessel function.

We wrote the Fourier expansion this way, iso-
lating the constant term T (s)+ T (1− s) , because
this term will be dominant. The details are messy
because the implicit constant in (7) depends on s ,
but it is shown in [1] that for 0 ≤ σ ≤ 1

|U (s)| ≤ 2
d1/4

Γ (σ )
|Γ (s)| exp(−π

√
d/a).

On the critical line σ = 1/2 one can get from (8)
an estimate independent of t :
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|U (1/2+ it)| ≤ 6
d1/4 exp(−π

√
d/a).

An important consequence of this is that we ex-
tend the asymptotic behavior (3)

(10) ζQ(s) → a−sζ(2s) as
√
d/a→∞

to s in the region σ > 0, and s �= 1. This has to fail
at s = 1, of course; ζQ(s) has a pole there and ζ(2s)
does not. It is slightly surprising where this pole
appears in our Fourier expansion: it is in the
T (1− s) term; the function Γ (s) has a simple pole
at s = 0.

The Siegel Zero and Consequences
Hecke’s aphorism pays off now by showing us a
deep connection between the arithmetic and the
analysis in the following three theorems.

Theorem. [Chowla-Selberg] For d/a2 > 200 ,

(i) The Epstein zeta function has a real zero in
(1/2,1).
(ii) If h(−d) = 1 , then the Generalized Riemann
Hypothesis (GRH) is false.

Proof: We start by computing ΛQ(s) at s = 1/2.
Although the term ζ(2s) has a pole at s = 1/2, a
calculation will show that T (s)+ T (1− s) has a re-
movable singularity at s = 1/2:

ζ(2s) = 1/2
s − 1/2

+ γ +O(s − 1/2)

Γ (s) = √π +√π (−γ − log(4))(s − 1/2)+O(s − 1/2)2

a−s
(√

d
2π

)s−1/2

= 1√
a
+ log(

√
d/(2πa))√
a

(s − 1/2)+O(s − 1/2)2.

Here γ is Euler’s constant, and these calculations
are classical enough that Mathematica can do them
for us. So T (s) is√

π/a/2
s − 1/2

+
√
π/a/2

(
γ + log(

√
d/(8πa))

)
+O(s − 1/2).

Adding the expansion of T (1− s) kills off all pow-
ers of s − 1/2 with odd exponent, including the
pole, and we find

T (s)+ T (1− s)|s=1/2 =√
π/a

(
γ + log(

√
d/(8πa))

)
.

Since U (1/2) is exponentially small, ΛQ(1/2) > 0 for
d/a2 � 1 (in fact bigger than 200). But recall

ζQ(s) = π√
d
· 1
s − 1

+O(1)

is negative for s → 1−. By the Intermediate Value
Theorem, ζQ(s) has a real zero in (1/2,1). This
proves (i).

Now suppose h(−d) = 1, so by genus theory d
is a prime congruent to 3 mod 4, and

Q(x, y) = x2 + xy + 1+ d
4

y2, a = 1.

We make use of (5), which now says
ζQ(s) = ζ(s)L(s, χ−d). The fact that the Riemann
zeta function has no real zeros in (0,1) follows from
Euler’s identity

(1− 21−s )ζ(s) =
∞∑
n=1

(−1)n−1n−s .

The series converges for real s > 0 by the Alter-
nating Series Test; now group the terms in pairs to
see that the sum is positive. So L(s, χ−d) has a real
zero in (1/2,1), a Siegel zero.

The Argument Principle tells us the number of
zeros minus the number of poles, inside the circle
of say radius 1/4 around, s = 1, is given by

1
2πi

∫
|s−1|=1/4

ζ′Q(s)
ζQ(s)

ds.

By (10), for sufficiently large d this is

= 1
2πi

∫
|s−1|=1/4

ζ′(2s)
ζ(2s)

ds = 0

because ζ(2s) has neither zeros nor poles near
s = 1. Of course one has to justify passing the
limit through the integral. The convergence is not
uniform, but it is uniform on a compact set con-
taining the path of integration. Since the Epstein
zeta function has one simple pole, there is only one
Siegel zero close to s = 1.

In fact, you can say even more about the loca-
tion of this zero:

Exercise. Use Mathematica to compute the Laurent
expansion

T (s)+ T (1− s) = c−1

s − 1
+ c0 +O(s − 1)

around s = 1 . Neglecting the higher order terms
and the U (s) contribution, show the zero is at 1− β
for

β ∼ 6a
π
√
d

as
√
d/a→∞.

Still under the hypothesis h(−d) = 1 and d� 1,

Theorem. [Deuring] Except for the Siegel zero, all
other zeros of ΛQ(s) in 0 < σ < 1 , 0 ≤ t < √d have
real part σ = 1/2. This is the “Local GRH”.

Outline of Proof: Write

T (s)+ T (1− s) = T (s)
(

1+ T (1− s)
T (s)

)
.

The term |T (s)| is never zero for σ ≥ 1/2: Γ (s) has
no zeros, and the fact that ζ(s) is nonzero for
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σ ≥ 1 is equivalent to the Prime Number Theo-
rem.
1. Deuring shows |T (1− s)/T (s)| < 1 as long as
σ > 1/2 and |s − 1| > 1/4. This depends on
known estimates for Γ (s) and ζ(2s) but basi-
cally works because for d large relative to t , the
(
√
d/2π )s−1/2 term dominates, as long as we stay

away from the pole of T (1− s) at s = 1. Thus

T (s)+ T (1− s) = 0 ⇒ σ = 1/2.

2. Next, he shows these zeros are simple as follows:
Write f (s) for T (1− s)/T (s), so the zeros occur
at ρ = 1/2+ it such that f (ρ) = −1. Then

d
ds
T (s) (1+ f (s))

∣∣∣∣
s=ρ

= T (ρ)f ′(ρ).

For

f ′(ρ) = − f
′(ρ)
f (ρ)

=
d
ds T (s)
T (s)

−
d
ds T (1− s)
T (1− s)

∣∣∣∣∣
s=ρ

he can get a lower bound f ′(ρ) � log(d) from
known estimates for the logarithmic derivative
of the Riemann zeta function, as long as t is small
enough relative to d. Similarly, known estimates
give T (ρ) � 1/ log(d).

3. He then shows that

|T (s)+ T (1− s)| > |U (s)|,
and so by Rouché’s Theorem ΛQ(s) has the same
number of zeros in the box 0 < σ < 1 ,
0 ≤ t < √d as does T (s)+ T (1− s) . Here he
needs t <

√
d , since by Stirling’s formula, Γ (s)

also has exponential decay as t increases.
4. Around each zero ρ of T (s)+ T (1− s) , Deuring

puts a circle of radius exp(−π√d) and uses the
Cauchy Integral Formula to get upper bounds on
the Taylor series coefficients

T (s)+ T (1− s) = c1(s − ρ)+
∞∑
n=2

cn(s − ρ)n

of the form cn � Kn . By (2) above he already has
c1 � 1. The triangle inequality and summing a
geometric series gives T (s)+ T (1− s) �
exp(−π√d) on the circle. He can then apply
Rouché’s Theorem again to see ΛQ(s) has one
zero in that circle. Since any zeros off the line
would come in symmetric pairs (by the func-
tional equation s → 1− s), that zero is on the
line.
Deuring’s theorem is quite strong. Since the

zeros of ζ(s) are a subset of the zeros of ζQ(s)
whenever h(−d) = 1 by (5), as a Corollary we get
that either there are only finitely many d with
h(−d) = 1, or the Riemann hypothesis for ζ(s) is
true! Of course it is now known that the former is
true, but Deuring’s theorem was an essential first
step in solving the problem.1

Folklore Theorem. [Deuring, Heilbronn] In the
presence of a Siegel zero, the low-lying zeros
s = 1/2+ it of L(s, χ−d) are very regularly spaced:

(11) t ∼ π
log(

√
d/2π )

· n, for integer n.

Idea of proof: We make use of the fact that for
s = 1/2+ it , 1− s = s . The zeros of L(s, χ−d) are
zeros of ΛQ(s), which we have seen are very near
the zeros of

T (s)+ T (1− s) =
T (s)+ T (s) = T (s)+ T (s)
=2Re(T (s))

=2 |T (s)| cos
(
arg

(
(
√
d/2π )itΓ (s)ζ(2s)

))
,

We saw above that the term |T (s)| is never zero on
the line σ = 1/2. Meanwhile, Γ (s) is very near to real
for t � 1, so does not contribute much to the ar-
gument. And

ζ(2s) = 1/2
s − 1/2

+ γ +O(s − 1/2)

1An editorial comment: this result made me have a lot more
respect for Rouché’s Theorem, which previously I thought
existed only to provide problems for analysis qualifying
exams.

Figure 2. A page from Stark’s thesis.
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so arg(ζ(2s)) ∼ −π/2 for s = 1/2+ it ∼ 1/2. Fi-
nally

arg
(√
d/2π

)it = t log
(√
d/2π

)
,

and

cos
(
t log

(√
d/2π

)
−π/2

)
= sin

(
t log

(√
d/2π

))
.

So
t log

(√
d/2π

)
∼ nπ.

(Actually, it is not enough above that |T (s)| is
nonzero. To make this argument precise, we need
to estimate a lower bound.) To the extent that one
can bound the tail of the Fourier expansion, every

n above corresponds to a zero by Rouché’s Theo-
rem.

The other factor ζ(s) of ζQ(s) has no low-lying
zeros, but the same analysis shows that the zeros
ρ = 1/2+ iγ of ζ(s) with γ �√

d make T (ρ)
nearly pure imaginary.

Experimental Observations I
Even in the absence of a Siegel zero, can one see
this effect for a class number extremely small rel-
ative to its discriminant? Stark, in his 1964 Ph.D.
thesis, was the first to investigate this numerically;
see Figure 2 for a cryptic comment.

For a graphical interpretation, one can use Math-
ematica to plot
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T (s) =
(√

d
2π

)s−1/2

Γ (s)ζ(2s)

on the critical line s = 1/2+ it for various values
of d that have h(−d) = 1. How close to the imagi-
nary axis is T (ρ) for ρ that are known zeros of ζ(s)?
Figures 3–6 show several examples for various d,
with the same five lowest zeros ρ of ζ(s) indicated
in red on each. Since Stirling’s Formula for Γ (s)
makes |T (s)| decay exponentially as t increases, one
does not see the function “wrap around” the ori-
gin, so I have renormalized the absolute value by
taking the logarithm, without changing the argu-
ment. Increasing t corresponds to spiraling in coun-
terclockwise.

Figure 6 shows graphically what Stark was re-
ferring to: the zeros of ζ(s) can “see” the extremal
discriminant −163. This is, as Stark later showed,
the largest d with h(−d) = 1.

L-function Magic
Since the class number problem h(−d) = 1 is al-
ready solved, we want to think about lower bounds
in general. In this case the Dedekind zeta function∑

[Q]

ζQ(s) = ζ(s)L(s, χ−d)

is a sum over all classes of Epstein zetas. Whenever
d/a2 > 200, the corresponding ζQ(s) has a zero in
(1/2,1) by Chowla-Selberg. This does not contra-
dict any GRH, since the individual Epstein zetas do
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Figure 7. d = 85507 = 2311 · 37
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Figure 8. d = 991027
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Figure 9. d = 553348867 = 5507 · 89 · 1129
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not have Euler products over primes, only the sum
does.

The reduced representatives of the forms can
have a as big as 

√
d/3, which means the exponen-

tial bound on the tail U (s) in the Fourier expansion
can be as big as exp(−π√3) ≈ .0044 for each of the
h(−d) terms. We still get the benefit of the d1/4 term
in the denominator, though, so if h(−d) is very
small relative to 

√
d (i.e., much smaller than d1/4),

then the sum of the tails is still small. Under this
hypothesis L(s, χ−d) has a Siegel zero, and the Deur-
ing-Heilbronn Phenomenon reappears as before: we
get the Local GRH, and the low-lying zeros are uni-
formly spaced just as in (11). But more is true.

Given a homomorphism on the class group

ψ : C(−d) → C×

we can form an L-function

L(s,ψ) =
∑
[Q]

ψ(Q)ζQ(s).

More generally, for an auxiliary discriminant f we
can “twist” the Epstein zeta function

ζQ(s, χf ) =
∞∑
n=1

χf (n)rQ(n)n−s

and form

L(s,ψ · χf ) =
∑
[Q]

ψ(Q)ζQ(s, χf ).

For any odd fundamental discriminant k1 , we
can make the Dirichlet L-function L(s, χk1 ) appear
as a factor of such an expression, by careful choice
of ψ and f: Factor −d = D1 ·D2 as a product of fun-
damental discriminants, in such a way that
D1 = gcd(k1, d). By a theorem of Kronecker, this
factorization corresponds to a genus character ψ
with

(12) L(s,ψ) = L(s, χD1 )L(s, χD2 ),

generalizing (5). In fact the genera of quadratic
forms mentioned above are exactly the cosets of
the class group C(−d) modulo the subgroup C(−d)2

of squares of classes. The genus group is therefore
a product of copies of Z/2, and Gauss showed the
number of terms is g − 1, where g is the number
of prime factors of d. The corresponding genus
characters are exactly those taking only the values
±1.

By a comparison of the corresponding Dirichlet
series in (12)∑

[Q]

ψ(Q)
∑
n>0

rQ(n)n−s =
∑
n>0



∑
c|n
χD1 (c)χD2 (n/c)


n−s ,

and the uniqueness of Dirichlet series coefficients,
we deduce that for all n,

(13)
∑
[Q]

ψ(Q)rQ(n) =
∑
c|n
χD1 (c)χD2 (n/c).

This is a generalization of (4).

Theorem. Let f = k1/D1, k2 = fD2. Then

(14) L(s, χk1 )L(s, χk2 ) = L(s,ψ · χf ).

Proof: The idea goes back to Heilbronn:

L(s,ψ · χf ) =
∑
[Q]

ψ(Q)ζQ(s, χf )

=
∑
[Q]

ψ(Q)
∑
n>0

χf (n)rQ(n)n−s

=
∑
n>0

χf (n)



∑
[Q]

ψ(Q)rQ(n)


n−s .

By (13) we get

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4
k1 = −5507 , k2 = 100481, f = 1

−15 −10 −5 5 10 15

−15

−10

−5

5

10

15

k1 = 17, k 2 = −83, f = 1

Figure 11. d = 553348867 = 5507 · 89 · 1129 Figure 12. d = 1411 = 83 · 17
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L(s,ψ · χf ) =
∑
n>0

χf (n)



∑
c|n
χD1 (c)χD2 (n/c)


n−s

=
∑
n>0



∑
c|n
χf (c)χD1 (c)χf (n/c)χD2 (n/c)


n−s

=
∑
n>0



∑
c|n
χk1 (c)χk2 (n/c)


n−s

=L(s, χk1 )L(s, χk2 ).

From the right side of (14), we have a Fourier ex-
pansion(

|f |√d
2π

)s−1/2

Γ (s)L(s, χk1 )L(s, χk2 ) =

T (s)+ T (1− s)+U (s)

similar to the previous one, with now

T (s) =
(
|f |√d

2π

)s−1/2

Γ (s)ζ(2s)Pf (s)A(s),

and

Pf (s) =
∏
p|f

(1− p−2s ), A(s) =
∑
[Q]

ψ(Q)χf (a)a−s .

In fact in the examples below, we take f = 1. In this
case we have a linear combination of the Chowla-
Selberg Fourier expansions; the coefficients are
merely the character values ψ(Q).

If the class number h(−d) is too small, or
L(s, χ−d) has a Siegel zero, the Deuring-Heilbronn
phenomenon (11) appears for L(s, χk1 ) as well, as
long as f is not too big.

Experimental Observations II
As in the case of h(−d) = 1, we can plot T (s) on the
line s = 1/2+ it and see where the zeros of L(s, χk1 )

and L(s, χk2 ) end up. For “extreme” values of −d,
will they tend towards the imaginary axis? Figures
7–11 show some examples with small class num-
ber. The lowest five zeros of L(s, χk1 ) are shown in
red, while the lowest five zeros of L(s, χk2 ) are
shown in blue. (In some cases not all five are visi-
ble if they lie nearly on top of each other.)
1. The discriminant −85507 = −2311 · 37 has

class group isomorphic to Z/22 , so
h(−d)/

√
d ≈ .075. There is one nontrivial genus

character.
2. The discriminant −991027 has class group iso-

morphic to Z/63; there is only the trivial genus
character. This is the famous example of Shanks;
h(−d)/

√
d ≈ .063 which minimizes this ratio for

all d < 108. (Because the zeros of ζ(s) = L(s, χk1 )
are so high up, we show instead 10 zeros of
L(s, χ−d) = L(s, χk2 ) in Figure 8.)

3. The discriminant −553348867 = −5507 · 89·
1129 has class group isomorphic to
Z/732× Z/2 , so h(−d)/

√
d ≈ .062. There are

three nontrivial genus characters.
Observe that in each of the examples, the para-

meter f, which in some sense measures the corre-
lation between −d and the auxiliary discriminant
k1 , is as small as possible: f = 1 or in other words
k1|d. Even so, the correlation between the zeros is
by no means trivial. There is no obvious relation
between the class groups C(k1) and C(−d); one is
not a direct factor of the other.

Of course, these examples are hand picked to
show off this tendency towards the Deuring-
Heilbronn phenomenon; in general one sees noth-
ing like this. In the next section below we discuss
contemporary conjectures about the distribution
of zeros.

It is also interesting to look at some examples
of discriminants −d that are famous for L(s, χ−d)
having a very low-lying zero. Figures 13–17 show
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Figure 13. d = 9823 = 11 · 19 · 47
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Figure 14. d = 30895 = 167 · 5 · 37
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some examples. The low-lying zero does not appear
in the figures, rather it is “causing” the Deuring-
Heilbronn phenomenon.
1. The L -function L(s, χ−1411) has a zero at
s = 1/2+ i · 0.077967 . . . The discriminant
−1411 = −83 · 17 has one nontrivial genus
character.

2. The L -function L(s, χ−9823) has a zero at
s = 1/2+ i · 0.058725 . . . The discriminant
−9823 = −11 · −19 · −47 has three nontrivial
genus characters.

3. The L -function L(s, χ−30895) has a zero at
s = 1/2+ i · 0.018494 . . . The discriminant
−30895 = −167 · 5 · 37 also has three nontriv-
ial genus characters.

4. The L -function L(s, χ−115147) has a zero at
s = 1/2+ i · 0.003158 . . . The discriminant
−115147 = −1019 · 113 has one nontrivial
genus character.

5. L(s, χ−175990483) has a zero at s =1/2 + i·
0.000475 . . . The discriminant −d =
−175990483 = −19 · −1427 · −6491 has three
nontrivial genus characters.
In both sets of examples, T (ρ) is very nearly

pure imaginary for zeros ρ of L(s, χk1 ) or L(s, χk2 ),
and so T (ρ)+ T (1− ρ) is also very near 0. Neces-
sarily this means that the tail of the Fourier ex-
pansion U (ρ) is also very near 0, much smaller
than our estimate O

(
h(−d)d−1/4

)
.

It would be nice to have examples where the
zeros ρ not only forced T (s) to be nearly purely
imaginary, but also were restricted to near integer
multiples of π/ log(

√
d/2π ) as in (11). This would

require arg(Γ (s)ζ(2s)) to be very near its limiting
value −π/2, and thus k1 very large in order that
L(s, χk1 ) have several zeros so low. But this may
allow f > 1 as well.

Can You Hear the Class Number?
In 1966 Mark Kac posed the question, “Can you hear
the shape of a drum?” In fact what one hears are
solutions to the wave equation, i.e., eigenvalues of
the Laplace operator. The mathematical meaning
of Kac’s question is, what does this spectrum de-
termine about the geometry? In the very useful
analogy between spectral geometry and number
theory, eigenvalues of the Laplacian correspond to
zeros of L-functions, while geometric properties
correspond to properties of primes. It is very in-
teresting that the Deuring-Heilbronn phenomenon
(11), if it occurs, corresponds in this analogy to fre-
quencies in harmony.

Above I mentioned Stark’s Ph.D. thesis, in which
he used precise values of zeros of the Riemann zeta
function to show that a certain range of discrimi-
nants did not have h(−d) = 1. He later extended
this to the problem of h(−d) = 2. Montgomery and
Weinberger used low-lying zeros of auxiliary
L(s, χk1 ) to attack h(−d) = 2 and 3 in [6]. This work
led Montgomery to investigate the question, “If
GRH is true and there are no Siegel zeros and no
Deuring-Heilbronn phenomenon, what is the ver-
tical distribution of the zeros on the critical line?”
Remarkably, he discovered [7] that the “pair cor-
relation” of the zeros is the same as that for the
eigenvalues of random unitary matrices, the Gauss-
ian Unitary Ensemble (GUE). Montgomery’s proof
works only for a restricted range of test functions,
not in general, but the GUE hypothesis is also sup-
ported by the statistics of 10 billion zeros of the
zeta function computed by Odlyzko [8]. This sug-
gests the zeros of L-functions may indeed have a
spectral interpretation, as conjectured by Hilbert
and Pólya.
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About the Cover

Z(t) on the critical line
Two articles in this issue are concerned with ζ -functions, the
review of Dan Rockmore’s book and the article by Jeffrey
Stopple. This month’s cover displays the behavior of ζ(s) on
the critical line �(s) = 1/2. The function

ξ(s) = Γ (s/2)π−s/2ζ(s)

satisfies the functional equation ξ(s) = ξ(1− s) and there-
fore takes real values on the critical line. If ϑ(t) is the argu-
ment of Γ (1/4+ it/2)π−it/2 then Z(t) = eiϑ(t)ζ(1/2+ it) also

takes real values, and this is what
is graphed along the helix.
Lengths of the natural unit 2π
are marked. The colors display
the angle ϑ(t). 

The behavior of Z(t) encodes,
in principle, the mysterious dis-
tribution of prime numbers, and
it is hard to look at its graph with-
out trying to read a message from
it. But then humans are always
trying to read meaning into ran-
dom patterns.

—Bill Casselman, 
Graphics Editor

(notices-covers@ams.org)


