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2006 Fields Medals
Awarded

On August 22, 2006, four Fields Medals were
awarded at the opening ceremonies of the Inter-
national Congress of Mathematicians (ICM) in
Madrid, Spain. The medalists are ANDREI OKOUNKOV,
GRIGORY PERELMAN, TERENCE TAO, and WENDELIN WERNER.
[Editors Note: During the award ceremony, John
Ball, president of the International Mathematical
Union, announced that Perelman declined to accept
the Fields Medal.]

The Fields Medals are given every four years by
the International Mathematical Union (IMU). Al-
though there is no formal age limit for recipients,
the medals have traditionally been presented to
mathematicians not older than forty years of age,
as an encouragement for future achievement. The
medal is named after the Canadian mathematician
John Charles Fields (1863–1932), who organized the
1924 ICM in Toronto. At a 1931 meeting of the Com-
mittee of the International Congress, chaired by
Fields, it was decided that funds left over from the
Toronto ICM “should be set apart for two medals
to be awarded in connection with successive In-
ternational Mathematical Congresses.” In outlining
the rules for awarding the medals, Fields specified
that the medals “should be of a character as purely
international and impersonal as possible.” During
the 1960s, in light of the great expansion of math-
ematics research, the possible number of medals
to be awarded was increased from two to four.
Today the Fields Medal is recognized as the world’s
highest honor in mathematics.

Previous recipients of the Fields Medal are: Lars
V. Ahlfors and Jesse Douglas (1936); Laurent
Schwartz and Atle Selberg (1950); Kunihiko Ko-
daira and Jean-Pierre Serre (1954); Klaus F. Roth and
René Thom (1958); Lars Hörmander and John W.

Milnor (1962); Michael F. Atiyah, Paul J. Cohen,
Alexandre Grothendieck, and Stephen Smale (1966);
Alan Baker, Heisuke Hironaka, Sergei P. Novikov,
and John G. Thompson (1970); Enrico Bombieri
and David B. Mumford (1974); Pierre R. Deligne,
Charles L. Fefferman, Grigorii A. Margulis, and
Daniel G. Quillen (1978); Alain Connes, William P.
Thurston, and Shing-Tung Yau (1982); Simon K.
Donaldson, Gerd Faltings, and Michael H. Freedman
(1986); Vladimir Drinfeld, Vaughan F. R. Jones,
Shigefumi Mori, and Edward Witten (1990); Jean
Bourgain, Pierre-Louis Lions, Jean-Christoph Yoc-
coz, and Efim Zelmanov (1994); Richard Borcherds,
William Timothy Gowers, Maxim Kontsevich, and
Curtis T. McMullen (1998); Laurent Lafforgue and
Vladimir Voevodsky (2002).

Andrei Okounkov
Citation: “for his contributions bridging probability,
representation theory and algebraic geometry”.

The work of Andrei Okounkov has revealed pro-
found new connections between different areas of
mathematics and has brought new insights into
problems arising in physics. Although his work is
difficult to classify because it touches on such a va-
riety of areas, two clear themes are the use of no-
tions of randomness and of classical ideas from rep-
resentation theory. This combination has proven
powerful in attacking problems from algebraic
geometry and statistical mechanics.

One of the basic objects of study in represen-
tation theory is the “symmetric group”, whose
elements are permutations of objects. For example,
if the objects are the letters {C, G, J, M, N, O, Q, Z},
then a permutation is an ordering of the letters,
such as GOQZMNJC or JZOQCGNM. The number of
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possible permutations
grows quickly as the num-
ber of objects grows; for 8
objects, there are already
40,320 different permu-
tations. If we consider an
abstract set of n objects,
then the “symmetric
group on n letters” is the
collection of all the dif-
ferent permutations of
those n objects, together
with rules for combining
the permutations.

Representation theory
allows one to study the
symmetric group by rep-
resenting it by other math-
ematical objects that pro-
vide insights into the

group’s salient features. The representation theory
of the symmetric group is a well developed subfield
that has important uses within mathematics itself
and also in other scientific areas, such as quantum
mechanics. It turns out that, for the symmetric
group on n letters, the building blocks for all of its
representations are indexed by the “partitions” of
n. A partition of a number n is just a sequence of
positive numbers that add up to n; for example
2 + 3 + 3 + 4 + 12 is a partition of 24.

Through the language of partitions, represen-
tation theory connects to another branch of math-
ematics called “combinatorics”, which is the study
of objects that have discrete, distinct parts. Many
continuous phenomena in mathematics are related
by virtue of having a common discrete substruc-
ture, which then raises combinatorial questions.
Continuous phenomena can also be discretized,
making them amenable to the methods of combi-
natorics. Partitions are among the most basic com-
binatorial objects, and their study goes back at
least to the 18th century.

Randomness enters into combinatorics when
one considers very large combinatorial objects,
such as the set of all partitions of a very large
number. If one thinks of partitioning a number as
randomly cutting it up into smaller numbers, one
can ask, What is the probability of obtaining a par-
ticular partition? Questions of a similar nature
arise in representation theory of large symmetric
groups. Such links between probability and repre-
sentation theory were considered by mathemati-
cians in Russia during the 1970s and 1980s. The
key to finding just the right tool from probability
theory suited to this question derives from view-
ing partitions as representations of the symmetric
group. A Russian who studied at Moscow State
University, Andrei Okounkov absorbed this view-
point and has deployed it with spectacular success
to attack a wide range of problems.

One of his early outstanding results concerns
“random matrices”, which have been extensively
studied in physics. A random matrix is a square
array of numbers in which each number is chosen
at random. Each random matrix has associated
with it a set of characteristic numbers called the
“eigenvalues” of the matrix. Starting in the 1950s,
physicists studied the statistical properties of
eigenvalues of random matrices to gain insight
into the problem of the prediction and distribution
of energy levels of nuclei. In recent years, random
matrices have received renewed attention by math-
ematicians and physicists.

Okounkov has used ideas from quantum field
theory to prove a surprising connection between ran-
dom matrices and increasing subsequences in per-
mutations of numbers. An increasing subsequence
is just what it sounds like: For example, in a per-
mutation of the numbers from 1 up to 8, say
71452638, two increasing subsequences are 14568
and 1238. There is a way to arrange these increas-
ing subsequences into a hierarchy: the longest sub-
sequence, followed by the second-longest, the third-
longest, and so forth, down to the shortest.

Andrei Okounkov Grigory Perelman Terence Tao

Wendelin Werner
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Okounkov proved that, for very large n, the se-
quence of largest eigenvalues of an n-by-n random
matrix behaves, from the probabilistic point of
view, in the same way as the lengths of the longest
increasing subsequences in permutations of the
numbers from 1 to n. In his proof, Okounkov took
a strikingly original approach by reformulating the
question in a completely different context, namely,
as a comparison of two different descriptions of a
random surface. This work established a connec-
tion to algebraic geometry, providing a seed for
some of his later work in that subject.

Random surfaces also arise in Okounkov’s work
in statistical mechanics. If one heats, say, a cubi-
cal crystal from a low temperature, one finds that
the corners of the cube are eaten away as the crys-
tal “melts”. The geometry of this melting process
can be visualized by imagining a corner to consist
of a bunch of tiny blocks. The melting of the crys-
tal corresponds to removing blocks at random.
Thinking of the partitioning of the crystal into tiny
blocks as analogous to partitioning integers, Ok-
ounkov brought his signature methods to bear on
the analysis of the random surfaces that arise. In
joint work with Richard Kenyon, Okounkov proved
the surprising result that the melted part of the
crystal, when projected onto two dimensions, has
a very distinctive shape and is always encircled by
an algebraic curve—that is, a curve that can be de-
fined by polynomial equations. This is illustrated

in the accompanying figure; here the curve is a
heart-shaped curve called a cardioid. The connec-
tion with real algebraic geometry is quite unex-
pected.

Over the past several years, Okounkov has, to-
gether with Rahul Pandharipande and other col-
laborators, written a long series of papers on ques-
tions in enumerative algebraic geometry, an area
with a long history that in recent years has been
enriched by the exchange of ideas between math-
ematicians and physicists. A standard way of study-
ing algebraic curves is to vary the coefficients in
the polynomial equations that define the curves and
then impose conditions—for example, that the
curves pass through a specific collection of points.
With too few conditions, the collection of curves
remains infinite; with too many, the collection is
empty. But with the right balance of conditions, one
obtains a finite collection of curves. The problem
of “counting curves” in this way—a longstanding
problem in algebraic geometry that also arose in
string theory—is the main concern of enumera-
tive geometry. Okounkov and his collaborators
have made substantial contributions to enumera-
tive geometry, bringing in ideas from physics and
deploying a wide range of tools from algebra, com-
binatorics, and geometry. Okounkov’s ongoing re-
search in this area represents a marvelous inter-
play of ideas from mathematics and physics.

Andrei Okounkov was born in 1969 in Moscow.
He received his doctorate in mathematics from
Moscow State University in 1995. He is a professor
of mathematics at Princeton University. He has
also held positions at the Russian Academy of Sci-
ences, the Institute for Advanced Study in Prince-
ton, the University of Chicago, and the University
of California, Berkeley. His distinctions include a
Sloan Research Fellowship (2000), a Packard Fel-
lowship (2001), and the European Mathematical
Society Prize (2004).

Grigory Perelman
Citation: “for his contributions to geometry and his
revolutionary insights into the analytical and geo-
metric structure of the Ricci flow”.

The name of Grigory Perelman is practically a
household word among the scientifically interested
public. His work from 2002-2003 brought ground-
breaking insights into the study of evolution equa-
tions and their singularities. Most significantly, his
results provide a way of resolving two outstand-
ing problems in topology: the Poincaré Conjecture
and the Thurston Geometrization Conjecture. As
of the summer of 2006 the mathematical commu-
nity is still in the process of checking his work to
ensure that it is entirely correct and that the con-
jectures have been proved. After more than three
years of intense scrutiny, top experts have en-
countered no serious problems in the work.

This picture shows a random surface that can
be thought of as the “melting” of a crystal. The

heart-shaped curve forming the border
between the melted and frozen regions is called

a cardioid.
Image courtesy of Richard Kenyon and Andrei Okounkov.
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and leads to the geometric notion of curvature.
2-manifolds can be classified by their geometry: A
2-manifold with positive curvature can be deformed
into a 2-sphere; one with zero curvature can be de-
formed into a torus; and one with negative curva-
ture can be deformed into a torus with more than
one hole.

The Poincaré Conjecture, which originated with
the French mathematician Henri Poincaré in 1904,
concerns 3-dimensional manifolds, or 3-manifolds.
A basic example of a 3-manifold is the 3-sphere:
In analogy with the 2-sphere, one obtains the
3-sphere by taking a ball in 3-dimensions and iden-
tifying its boundary points to a single point. (Just
as 3-dimensional space is the most natural home
for the 2-sphere, the most natural home for the
3-sphere is 4-dimensional space—which of course
is harder to visualize.) Can every simply connected
3-manifold be deformed into the 3-sphere? The
Poincaré Conjecture asserts that the answer to this
question is yes.

Just as with 2-manifolds, one could also hope
for a classification of 3-manifolds. In the 1970s
Fields Medalist William Thurston made a new con-
jecture, which came to be called the Thurston
Geometrization Conjecture and which gives a way
to classify all 3-manifolds. The Thurston
Geometrization Conjecture provides a sweeping
vision of 3-manifolds and actually includes the
Poincaré Conjecture as a special case. Thurston
proposed that, in a way analogous to the case of
2-manifolds, 3-manifolds can be classified using
geometry. But the analogy does not extend very far:
3-manifolds are much more diverse and complex
than 2-manifolds.

Thurston identified and analyzed 8 geometric
structures and conjectured that they provide a
means for classifying 3-manifolds. His work revo-
lutionized the study of geometry and topology.
The 8 geometric structures were intensively in-
vestigated, and the Geometrization Conjecture was
verified in many cases; Thurston himself proved it
for a large class of manifolds. But hopes for a proof
of the conjecture in full generality remained un-
fulfilled.

In 1982 Richard Hamilton identified a particu-
lar evolution equation, which he called the Ricci
flow, as the key to resolving the Poincaré and
Thurston Geometrization Conjectures. The Ricci
flow is similar to the heat equation, which de-
scribes how heat flows from the hot part of an ob-
ject to the cold part, eventually homogenizing the
temperature to be uniform throughout the object.
Hamilton’s idea was to use the Ricci flow to
homogenize the geometry of 3-manifolds to show
that their geometry fits into Thurston’s classifica-
tion. Over more than twenty years, Hamilton and
other geometric analysts made great progress in un-
derstanding the Ricci flow. But they were stymied

For decades the Poincaré Conjecture has been
considered one of the most important problems in
mathematics. The conjecture received increased
attention from the general public when it was
named as one of the seven Millennium Prize Prob-
lems established by the Clay Mathematics Institute
in 2000. The institute has pledged to award a prize
of US$1 million for the solution of each problem.
The work of Perelman on the Poincaré Conjecture
is the first serious contender for one of these
prizes.

The Poincaré Conjecture arises in topology,
which studies fundamental properties of shapes
that remain unchanged when the shapes are de-
formed—that is, stretched, warped, or molded, but
not torn. A simple example of such a shape is the
2-sphere, which is the 2-dimensional surface of a
ball in 3-dimensional space. Another way to visu-
alize the 2-sphere is to take a disk lying in the 2-
dimensional plane and identify the disk’s bound-
ary points to a single point; this point can be
thought of as the north pole of the 2-sphere. Al-
though globally the 2-sphere looks very different
from the plane, every point on the sphere sits in a
region that looks like the plane. This property of
looking locally like the plane is the defining prop-
erty of a 2-dimensional manifold, or 2-manifold. An-
other example of a 2-manifold is the “torus”, which
is the surface of a doughnut.

Although locally the 2-sphere and the torus look
the same, globally their topologies are distinct:
Without tearing a hole in the 2-sphere, there is no
way to deform it into the torus. Here is another way
of seeing this distinction. Consider a loop lying on
the 2-sphere. No matter where it is situated on the
2-sphere, the loop can be shrunk down to a point,
with the shrinking done entirely within the sphere.
Now imagine a loop lying on the torus: If the loop
goes around the hole, the loop cannot be shrunk
to a point. If loops can be shrunk to a point in a
manifold, the manifold is called “simply connected”.
The 2-sphere is simply connected, while the torus
is not. The analogue of the Poincaré Conjecture in
2 dimensions would be the assertion that any sim-
ply connected 2-manifold of finite size can be de-
formed into the 2-sphere, and this assertion is cor-
rect. It is natural then to ask, What can be said about
non-simply-connected 2-manifolds? It turns out
that they can all be classified according to the
number of holes: They are all deformations of the
torus, or of the double-torus (with 2 holes), or of
the triple torus (the surface of a pretzel), etc. (One
actually needs two other technical assumptions in
this discussion, compactness and orientability.)

Geometry offers another way of classifying
2-manifolds. When one views manifolds topologi-
cally, there is no notion of measured distance. En-
dowing a manifold with a metric provides a way of
measuring distance between points in the manifold
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in figuring out how to handle “singularities”, which
are regions where the geometry, instead of getting
homogenized, suddenly exhibits uncontrolled
changes.

That was where things stood when Perelman’s
work burst onto the scene. In a series of papers
posted on a preprint archive starting in late 2002,
Perelman established ground-breaking results
about the Ricci flow and its singularities. He
provided new ways of analyzing the structure of
the singularities and showed how they relate to the
topology of the manifolds. Perelman broke the im-
passe in the program that Hamilton had estab-
lished and validated the vision of using the Ricci
flow to prove the Poincaré and Thurston
Geometrization Conjectures. Although Perelman’s
work appears to provide a definitive endpoint in
proving the conjectures, his contributions do not
stop there. The techniques Perelman introduced for
handling singularities in the Ricci flow have gen-
erated great excitement in geometric analysis and
are beginning to be deployed to solve other prob-
lems in that area.

Perelman’s combination of deep insights and
technical brilliance mark him as an outstanding
mathematician. In illuminating a path towards an-
swering two fundamental questions in 3-dimen-
sional topology, he has had a profound impact on
mathematics.

Grigory Perelman was born in 1966 in what was
then the Soviet Union. He received his doctorate
from St. Petersburg State University. During the
1990s he spent time in the United States, includ-
ing as a Miller Fellow at the University of Califor-
nia, Berkeley. He was for some years a researcher
in the St. Petersburg Department of the Steklov In-
stitute of Mathematics. In 1994 he was an invited
speaker at the International Congress of Mathe-
maticians in Zurich.

Terence Tao
Citation: “for his contributions to partial differen-
tial equations, combinatorics, harmonic analysis
and additive number theory”.

Terence Tao is a supreme problem-solver whose
spectacular work has had an impact across several
mathematical areas. He combines sheer technical
power, an other-worldly ingenuity for hitting upon
new ideas, and a startlingly natural point of view
that leaves other mathematicians wondering, “Why
didn’t anyone see that before?”

At 31 years of age, Tao has written over eighty
research papers, with over thirty collaborators,
and his interests range over a wide swath of
mathematics, including harmonic analysis, non-
linear partial differential equations, and combina-
torics. “I work in a number of areas, but I don’t view
them as being disconnected,” he said in an inter-
view published in the Clay Mathematics Institute

Annual Report. “I tend to view mathematics as a
unified subject and am particularly happy when I
get the opportunity to work on a project that in-
volves several fields at once.”

Because of the wide range of his accomplish-
ments, it is difficult to give a brief summary of Tao’s
oeuvre. A few highlights can give an inkling of the
breadth and depth of the work of this extraordi-
nary mathematician.

The first highlight is Tao’s work with Ben Green,
a dramatic new result about the fundamental build-
ing blocks of mathematics, the prime numbers.
Green and Tao tackled a classical question that
was probably first asked a couple of centuries ago:
Does the set of prime numbers contain arithmetic
progressions of any length? An “arithmetic pro-
gression” is a sequence of whole numbers that dif-
fer by a fixed amount: 3, 5, 7 is an arithmetic pro-
gression of length 3, where the numbers differ by
2; 109, 219, 329, 439, 549 is a progression of length
5, where the numbers differ by 110. A big advance
in understanding arithmetic progressions came in
1974, when the Hungarian mathematician Emre
Szemeredi proved that any infinite set of numbers
that has “positive density” contains arithmetic pro-
gressions of any length. A set has positive density
if, for a sufficiently large number n, there is always
a fixed percentage of elements of 1,2,3, . . . n in the
set. Szemeredi’s theorem can be seen from differ-
ent points of view, and there are now at least three
different proofs of it, including Szemeredi’s orig-
inal proof and one by 1998 Fields Medalist Timo-
thy Gowers. The primes do not have positive den-
sity, so Szemeredi’s theorem does not apply to
them; in fact, the primes get sparser and sparser
as the integers stretch out towards infinity. Re-
markably, Green and Tao proved that, despite this
sparseness, the primes do contain arithmetic pro-
gressions of any length. Any result that sheds new
light on properties of prime numbers marks a sig-
nificant advance. This work shows great original-
ity and insight and provides a solution to a deep,
fundamental, and difficult problem.

Another highlight of Tao’s research is his work
on the Kakeya Problem, which in its original form
can be described in the following way. Suppose you
have a needle lying flat on a plane. Imagine the dif-
ferent possible shapes swept out when you rotate
the needle 180 degrees. One possible shape is a half-
disk; with a bit more care, you can perform the ro-
tation within a quarter-disk. The Kakeya problem
asks, What is the minimum area of the shape swept
out in rotating the needle 180 degrees? The sur-
prising answer is that the area can be made as
small as you like, so in some sense the minimum
area is zero. The fractal dimension of the shape
swept out provides a finer kind of information
about the size of the shape than you obtain in
measuring its area. A fundamental result about



the Kakeya problem says that the fractal dimension
of the shape swept out by the needle is always 2.

Imagine now that the needle is not in a flat
plane, but in n-dimensional space, where n is big-
ger than 2. The n-dimensional Kakeya problem
asks, What is the minimum volume of an 
n-dimensional shape in which the needle can be
turned in any direction? Analogously with the
2-dimensional case, this volume can be made as
small as you like. But a more crucial question is,
What can be said about the fractal dimension of this
n-dimensional shape? No one knows the answer to
that question. The technique of the proof that, in
the 2-dimensional plane the fractal dimension is
always 2, does not work in higher dimensions. The
n-dimensional Kakeya problem is interesting in its
own right and also has fundamental connections
to other problems in mathematics in, for example,
Fourier analysis and nonlinear waves. Terence Tao
has been a major force in recent years in investi-
gating the Kakeya problem in n dimensions and in

elucidating its connections to other problems in the
field.

Another problem Tao has worked on is under-
standing wave maps. This topic arises naturally in
the study of Einstein’s theory of general relativity,
according to which gravity is a nonlinear wave. No
one knows how to solve completely the equations
of general relativity that describe gravity; they are
simply beyond current understanding. However, the
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Tubes that are transverse can have smaller
intersection, and thus larger union, than tubes

that are nearly parallel. Recent progress on
problems such as the Kakeya conjecture has

been aided by a “bilinear” approach that
excludes the latter case from consideration.

Image courtesy of Terence Tao.

equations become far simpler if one considers a
special case, in which the equations have cylindri-
cal symmetry. One aspect of this simpler case is
called the “wave maps” problem, and Tao has de-
veloped a program that would allow one to un-
derstand its solution. While this work has not
reached a definitive endpoint, Tao’s ideas have re-
moved a major psychological obstacle by demon-
strating that the equations are not intractable,
thereby causing a resurgence of interest in this
problem.

A fourth highlight of Tao’s work centers on the
nonlinear Schrödinger equations. One use of these
equations is to describe the behavior of light in a
fiber optic cable. Tao’s work has brought new in-
sights into the behavior of one particular
Schrödinger equation and has produced definitive
existence results for solutions. He did this work in
collaboration with four other mathematicians,
James Colliander, Markus Keel, Gigliola Staffilani,
and Hideo Takaoka. Together they have become
known as the “I-team”, where “I” denotes many
different things, including “interaction”. The word
refers to the way that light can interact with itself
in a medium such as a fiber optic cable; this self-
interaction is reflected in the nonlinear term in
the Schrödinger equation that the team studied. The
word “interaction” also refers to interactions among
the team members, and indeed collaboration is a
hallmark of Tao’s work. “Collaboration is very im-
portant for me, as it allows me to learn about other
fields, and, conversely, to share what I have learnt
about my own fields with others,” he said in the
Clay Institute interview. “It broadens my experience,
not just in a technical mathematical sense, but
also in being exposed to other philosophies of re-
search and exposition.”

These highlights of Tao’s work do not tell the
whole story. For example, many mathematicians
were startled when Tao and co-author Allen Knut-
son produced beautiful work on a problem known
as Horn’s conjecture, which arises in an area that
one would expect to be very far from Tao’s exper-
tise. This is akin to a leading English-language nov-
elist suddenly producing the definitive Russian
novel. Tao’s versatility, depth, and technical
prowess ensure that he will remain a powerful
force in mathematics in the decades to come.

Terence Tao was born in Adelaide, Australia, in
1975. He received his Ph.D. in mathematics in 1996
from Princeton University. He is a professor of
mathematics at the University of California, Los An-
geles. Among his distinctions are a Sloan Founda-
tion Fellowship, a Packard Foundation Fellowship,
and a Clay Mathematics Institute Prize Fellowship.
He was awarded the Salem Prize (2000), AMS Bôcher
Prize (2002), and the AMS Conant Prize (2005,
jointly with Allen Knutson).
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field theory, which provides an approach to study-
ing two-dimensional critical phenomena. However,
this approach was difficult to understand in a rig-
orous mathematical way, and it provided no geo-
metric picture of how the systems behaved. One
great accomplishment of Wendelin Werner, to-
gether with his collaborators Gregory Lawler and
Oded Schramm, has been to develop a new ap-
proach to critical phenomena in two dimensions
that is mathematically rigorous and that provides
a direct geometric picture of systems at and near
their critical points.

Percolation is a model that captures the basic be-
havior of, for example, a gas percolating through a
random medium. This medium could be a hori-
zontal network of pipes where, with a certain prob-
ability, each pipe is open or blocked. Another ex-
ample is the behavior of pollutants in an aquifer.
One would like to answer questions such as, What
does the set of polluted sites look like? Physicists
and mathematicians study schematic models of
percolation such as the following. First, imagine a
plane tiled with hexagons. A toss of a (possibly bi-
ased) coin decides whether a hexagon is colored
white or black, so that for any given hexagon the
probability that it gets colored black is p and the
probability that it gets colored white is then 1− p.
If we designate one point in the plane as the origin,
we can ask, Which parts of the plane are connected
to the origin via monochromatic black paths? This
set is called the “cluster” containing the origin. If p
is smaller than 1/2, there will be fewer black hexa-
gons than white ones, and the cluster containing the
origin will be finite. Conversely, if p is larger than
1/2, there is a positive chance that the cluster con-
taining the origin is infinite. The system undergoes
a phase transition at the critical value p = 1/2.
This critical value corresponds to the case where
one tosses a fair coin to choose the color for each
hexagon. In this case, one can prove that all clus-
ters are finite and that whatever large portion of

A percolation cluster.
Image courtesy of Wendelin Werner.

Wendelin Werner
Citation: “for his contributions to the development
of stochastic Loewner evolution, the geometry of two-
dimensional Brownian motion, and conformal field
theory”.

The work of Wendelin Werner and his collabo-
rators represents one of the most exciting and
fruitful interactions between mathematics and
physics in recent times. Werner’s research has
developed a new conceptual framework for un-
derstanding critical phenomena arising in physical
systems and has brought new geometric insights
that were missing before. The theoretical ideas
arising in this work, which combines probability
theory and ideas from classical complex analysis,
have had an important impact in both mathemat-
ics and physics and have potential connections to
a wide variety of applications.

A motivation for Wendelin Werner’s work is
found in statistical physics, where probability the-
ory is used to analyze the large-scale behavior of
complex, many-particle systems. A standard ex-
ample of such a system is that of a gas: Although
it would be impossible to know the position of
every molecule of air in the room you are sitting
in, statistical physics tells you it is extremely un-
likely that all the air molecules will end up in one
corner of the room. Such systems can exhibit phase
transitions that mark a sudden change in their
macroscopic behavior. For example, when water is
boiled, it undergoes a phase transition from being
a liquid to being a gas. Another classical example
of a phase transition is the spontaneous magneti-
zation of iron, which depends on temperature. At
such phase transition points, the systems can ex-
hibit so-called critical phenomena. They can appear
to be random at any scale (and in particular at the
macroscopic level) and become “scale-invariant”,
meaning that their general behavior appears sta-
tistically the same at all scales. Such critical phe-
nomena are remarkably complicated and are far
from completely understood.

In 1982 physicist Kenneth G. Wilson received the
Nobel Prize for his study of critical phenomena,
which helped explain “universality”: Many different
physical systems behave in the same way as they get
near critical points. This behavior is described by
functions in which a quantity (for instance the dif-
ference between the actual temperature and the
critical one) is raised to an exponent, called a “crit-
ical exponent” of the system. Physicists have con-
jectured that these exponents are universal in the
sense that they depend only on some qualitative fea-
tures of the system and not on its microscopic de-
tails. Although the systems that Wilson was inter-
ested in were mainly three- and four-dimensional,
the same phenomena also arise in two-
dimensional systems. During the 1980s and 1990s
physicists made big strides in developing conformal



the lattice one chooses to look at, one will find (with
high probability) clusters of size comparable to
that portion. The accompanying picture represents
a sample of a fairly large cluster.

The percolation model has drawn the interest
of theoretical physicists, who used various non-
rigorous techniques to predict aspects of its criti-
cal behavior. In particular, about fifteen years ago,
the physicist John Cardy used conformal field
theory to predict some large-scale properties of per-
colation at its critical point. Werner and his col-
laborators Lawler and Schramm studied the con-
tinuous object that appears when one takes the
large-scale limit—that is, when one allows the hexa-
gon size to get smaller and smaller. They derived
many of the properties of this object, such as, for
instance, the fractal dimension of the boundaries
of the clusters. Combined with Stanislav Smirnov’s
2001 results on the percolation model and earlier
results by Harry Kesten, this work led to a complete
derivation of the critical exponents for this par-
ticular model.

Another two-dimensional model is planar Brown-
ian motion, which can be viewed as the large-scale
limit of the discrete random walk. The discrete
random walk describes the trajectory of a particle
that chooses at random a new direction at every
unit of time. The geometry of planar Brownian
paths is quite complicated. In 1982, Benoit Man-
delbrot conjectured that the fractal dimension of
the outer boundary of the trajectory of a Brown-
ian path (the outer boundary of the blue set in the
accompanying picture) is 4/3. Resolving this con-
jecture seemed out of reach of classical proba-
bilistic techniques. Lawler, Schramm, and Werner
proved this conjecture first by showing that the
outer frontier of Brownian paths and the outer
boundaries of the continuous percolation clusters
are similar, and then by computing their common
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The path of Brownian motion.
Image courtesy of Wendelin Werner.

dimension using a dynamical construction of the
continuous percolation clusters. Using the same
strategy, they also derived the values of the closely
related “intersection exponents” for Brownian mo-
tion and simple random walks that had been con-
jectured by physicists B. Duplantier and K.-H. Kwon
(one of these intersection exponents describes the
probability that the paths of two long walkers re-
main disjoint up to some very large time). Further
work of Werner exhibited additional symmetries of
these outer boundaries of Brownian loops.

Another result of Wendelin Werner and his co-
workers is the proof of the “conformal invariance”
of some two-dimensional models. Conformal in-
variance is a property similar to, but more subtle
and more general than, scale invariance and lies at
the roots of the definition of the continuous ob-
jects that Werner has been studying. Roughly speak-
ing, one says that a random two-dimensional ob-
ject is conformally invariant if its distortion by
angle-preserving transformations (these are called
conformal maps and are basic objects in complex
analysis) have the same law as the object itself. The
assumption that many critical two-dimensional
systems are conformally invariant is one of the
starting points of conformal field theory. Smirnov’s
above-mentioned result proved conformal invari-
ance for percolation. Werner and his collaborators
proved conformal invariance for two classical two-
dimensional models, the loop-erased random walk
and the closely related uniform spanning tree, and
described their scaling limits. A big challenge in this
area now is to prove conformal invariance results
for other two-dimensional systems.

Mathematicians and physicists had developed
very different approaches to understanding two-
dimensional critical phenomena. The work of Wen-
delin Werner has helped to bridge the chasm be-
tween these approaches, enriching both fields and
opening up fruitful new areas of inquiry. His spec-
tacular work will continue to influence both math-
ematics and physics in the decades to come.
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