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A complex-valued function F defined in an open sub-
set of the complex plane is holomorphic if it satisfies
the Cauchy-Riemann equation: ∂z̄F = 1

2 (∂x+
i∂y )F = 0. Similarly, a C1-function defined in an open
subset U of Cn is holomorphic if its restriction to every
complex line passing through U is holomorphic. The
behavior of the boundary values of holomorphic func-
tions defined in domains in Cn, or more generally on
complex manifolds with boundary, is a problem of en-
during interest in complex analysis. When viewed
from a slightly different perspective, questions about
boundary values of holomorphic functions lead to
geometric questions about the boundaries of complex
manifolds themselves.

If f is a continuous function defined on the bound-
ary of the unit disk D then it is easy to tell whether
or not there is a holomorphic function F defined in
D with F �bD= f . We let Π+f denote the projection of
f onto the Fourier components with non-negative fre-
quencies; f is the restriction to the boundary of a
holomorphic function defined in D if and only if
Π+f = f .We let H+ denote the image of Π+. Using the
Riemann mapping theorem, we can give a similar an-
swer for any compact, simply connected domain
Ω ⊂ C with a smooth boundary γ. Let ϕ : D → Ω be
a Riemann map. A function f defined on γ is the
boundary value of a holomorphic function defined in
Ω if and only if ϕ∗f = f ◦ϕ ∈ H+.

Cauchy’s theorem tells us that, if f is the bound-
ary value of a holomorphic function defined on a
smoothly bounded domain Ω ⊂ C, then∫
bΩ f (z)dz = 0. This condition allows us to examine

the following geometric question: Let γ be a smooth
oriented curve in Cn. Does there exist a 1-dimensional
analytic variety X ↩ Cn with bX = γ? Suppose that

such a variety exists, and let (p1, . . . , pn) be an n-
tuple of polynomials in (z1, . . . , zn). Using Cauchy’s
theorem (via Stokes’ formula) we conclude that, if
ω =∑n

j=1 pj (z)dzj, then 
∫
γ ω =

∫
X ∂ω = 0. The left

hand side is a computation done entirely on γ, and
so the vanishing of these integrals provides necessary
conditions for the existence of the variety X. Start-
ing with work of Wermer, Bishop, and Alexander, and
continued by Harvey and Lawson, it was shown that
these are also sufficient conditions [2].

Colloquially the boundary components of a mani-
fold with boundary are its ends (though this is some-
what at variance with the usual usage in topology).
From the perspective of complex geometry, a curve
γ ⊂ Cn is a good end if there is an analytic variety
X ⊂ Cn with boundary equal to γ; otherwise it is a bad
end. It is clear that in order for a curve to be a good
end it must satisfy infinitely many independent con-
ditions. Hence most curves are bad ends, and the
property of being a good end is unstable under small
deformations of the embedding.

Another way to phrase these results is to let Hγ
+

be the closure, in the L2-norm, of the restrictions of
polynomials to γ. We let h : bD → γ be an orienta-
tion-preserving diffeomorphism and Hγ,h

+ = h∗(Hγ
+).

The curve γ ↩ Cn is a good end if and only if the map
Π+ : Hγ,h

+ → H+ has a finite-dimensional kernel and
co-kernel; in other words, if this restriction is a Fred-
holm map. The Fredholm index, when it is finite, is
related to the genus and singularities of X.

Now let Ω be a bounded domain in C2 with a
smooth boundary bΩ, and suppose that F is a holo-
morphic function defined in a neighborhood of Ω. This
implies that ∂z̄F = ∂w̄F = 0 in Ω. If ρ is a function
that is negative inside of Ω and vanishes simply on
bΩ, then the complex vector field ZbΩ = ρw̄∂z̄ − ρz̄∂w̄
has its real and imaginary parts tangent to bΩ. If F
is holomorphic in Ω and smooth up the the bound-
ary, then ZbΩ(F �bΩ) = 0. Even if f is defined only on
bΩ, we can compute ZbΩf . For f to be the boundary
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value of a holomorphic function in Ω, it is necessary
and sufficient that ZbΩf = 0. A function satisfying this
equation is called a CR-function.

The complex structure on C2 induces a geometric
structure on a hypersurface Y ↩ C2 : The complex
vector bundle T 0,1C2 is spanned at each point by
∂z̄, ∂w̄ . If Y is a hypersurface, then for each y ∈ Y there
is a complex line T 0,1

y Y ⊂ T 0,1
y C2, consisting of vec-

tors whose real and imaginary parts are tangent to Y.
These lines fit together smoothly to define a complex
vector bundle T 0,1Y → Y. This is called a CR-structure
on Y. For X, a complex 2-dimensional manifold with
boundary, the complex structure on X defines, in the
same way, a CR-structure on bX.

If Y ↩ Cn is a real 3-dimensional submanifold of
Cn, then for each y ∈ Y we let T 0,1

y Y =
T 0,1
y Cn ∩ TYy ⊗C. In order for there to be a complex

surface X ↩ Cn with boundary equal to Y it is clearly
necessary that dimT 0,1

y Y = 1, for every y ∈ Y. Such
a submanifold is called maximally complex. Harvey and
Lawson showed that this is also a sufficient condition
[2]. By analogy with the 1-dimensional case, we say that
a 3-manifold embedded in Cn is a good end provided
it is the boundary of a complex surface. If n > 2, then
maximal complexity is not generic: for most y, T 0,1

y Y
is just the zero vector. If Y ↩ Cn is a good end, then,
as before, wiggling the embedding a little usually pro-
duces a bad end.

A CR-structure can be defined intrinsically on a 3-
manifold: If Y is a 3-manifold and H ⊂ TY is a plane
field, then a smoothly varying choice of complex struc-
ture on the fibers of H defines a CR-structure. A CR-
structure is a splitting of H ⊗C into two conjugate
sub-bundles H ⊗C = T 0,1Y ⊕ T 1,0Y. We define a dif-
ferential operator on Y, analogous to the ∂ -operator:
∂̄bf = df �T0,1Y . A function f is a CR-function if
∂̄bf = 0. Let θ be a non-vanishing one-form defined
on Y so that H = kerθ. The plane field defines a con-
tact structure if θ ∧ dθ is non-vanishing. For a domain
this is the same as requiring that the Hermitian form,
L(Z,W ) =∂∂ρ(Z,W ) for Z,W ∈ T 1,0bΩ, be positive
definite. This form, called the Levi form, can be de-
fined intrinsically by setting L(Z,W ) =idθ(Z,W ).
The CR-manifold (Y,T 0,1Y ) is called strictly pseudo-
convex if L is positive definite.

Suppose that (Y,T 0,1Y ) is a compact strictly
pseudoconvex CR-manifold. If there exists a compact,
complex manifold X with strictly pseudoconvex
boundary (Y,T 0,1Y ) then we say that Y is a fillable CR-
manifold. A fillable CR-manifold is a good end, a non-
fillable CR-manifold is a bad end. On a fillable CR-man-
ifold, the CR-functions separate points.

It turns out that “most” strictly pseudoconvex 3-
manifolds are bad ends, see [1]. It is easy to write down
an explicit example of a bad end: The CR-structure on
the unit sphere S3 ⊂ C2 is generated by
Z = w∂z̄ − z∂w̄ . If ε ∈ C with 0 < |ε| < 1, then
Zε = Z + εZ defines a strictly pseudoconvex CR-
structure on S3 that does not arise as the strictly
pseudoconvex boundary of any complex manifold.
This seminal example appeared in the early 1960s in
the work of A. Andreotti, H. Grauert, and H. Rossi. Dan

Burns showed that all global solutions to Zεf = 0 are
even functions, and therefore the CR-functions defined
by Zε do not separate points.

Suppose that (Y,T 0,1Y ) is a good end. The CR-
structures on (Y,H) can be described by “Beltrami-
differentials,” that is, sections µ of the bundle
Hom(T 0,1Y,T 1,0Y ), with ‖µ‖∞ < 1.We would like to
know: What is the set of µ such that (Y, µT 0,1Y ) is a
good end? This problem is difficult because the set
of deformations is infinite-dimensional, and there are
infinitely many conditions that must be satisfied for
a deformation of a good end to be a good end. Nonethe-
less, in some cases, this question now has a good an-
swer.

Let (Y,H) be a contact 3-manifold and (Y,T 0,1Y )
a fillable, strictly pseudoconvex CR-structure on
(Y,H). For µ a deformation of the CR-structure, we
denote the corresponding ∂̄b-operator by ∂̄µb . Let Sµ
denote the orthogonal projection onto the ker ∂̄µb .
Using results of J. J. Kohn and L. Boutet de Monvel,
one can show that µ defines a good end if and only
if the restriction Sµ : ker ∂̄0

b �→ ker ∂̄µb is a Fredholm
operator [1]. We let R-Ind(S0, Sµ) denote the index of
this operator. Using a beautiful compactification trick,
L. Lempert showed that if Ω is a strictly pseudocon-
vex domain in C2, then any fillable, small deforma-
tion of the CR-structure on bΩ can be obtained by wig-
gling the embedding of bΩ in C2. Hence, the entire
algebra of CR-functions on bΩ is stable under small
embeddable deformations, and so in this case
R-Ind(S0, Sµ) equals 0 or ∞. In [1] it is conjectured
that, for any fillable strictly pseudoconvex 3-dimen-
sional CR-manifolds, among small fillable deforma-
tions, R-Ind(S0, Sµ) assumes only finitely many val-
ues. Among other things, this would imply that the
set of embeddable deformations is a closed subset.
This conjecture has been established in many cases.

Since the work of Kohn and Rossi, analysis on CR-
manifolds has been a major theme in several complex
variables. M. Kuranishi used the CR-manifolds, de-
fined as links of isolated analytic singularities, as the
starting point for his construction of versal defor-
mations. With the recent advances in the contact (sym-
plectic) geometry of 3-(4-)manifolds, initiated by the
pioneering work of Y. Eliashberg and M. Gromov, there
has been a resurgence of interest in the problem of
filling 3-dimensional CR-manifolds, see [3].
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